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Abstract

The fundamental shortcoming underlying monocular-based local-
ization and mapping solutions (SfM, Visual SLAM) is the fact that
the obtained maps and motion are solved up to an unknown scale.
Yet, the literature provides interesting solutions to scale estimation
using cues from focus or defocus of a camera. In this paper, we
take advantage of the scale offered by image focus to properly ini-
tialize Visual SLAM with a correct metric scale. We provide exper-
iments showing the success of the proposed method and discuss
its limitations.

1 Introduction

Simultaneous Localization and Mapping (SLAM) is an attractive
alternative to motion estimation when GPS cannot be relied on.
In the absence of an infrastructure, SLAM solutions are consid-
ered indispensable for robot navigation. While SLAM solutions
have been proposed for different types of sensors, the employ-
ment of a camera as the sole sensory input—systems known as
visual SLAM— established its sovereignty in applications where
size, weight and power consumption are deciding factors. Visual
SLAM branches horizontally into two main categories: stereo sys-
tems and monocular systems. While the former offer plenty of ad-
vantages, they fall short when compared to the cost and flexibility
of monocular methods[1]. In the wake of the increasing interest
of the research community in monocular Visual SLAM, many so-
lutions were recently devised[2] based on the skeleton put forward
in the pioneering work of Klein and Murray, dubbed PTAM (Parallel
tracking and Mapping) [3]. Simply put, PTAM can be stripped down
to five core modules, of particular importance to this work, is the
initialization module, which was approached differently by different
groups. For example, in Davison and Reid’s MonoSLAM[4], system
initialization required the camera to be placed at a known distance
from a planar scene, and SLAM was initialized with the distance
keyed in by the operator. PTAM, suggested the usage of the five-
point algorithm [5] to estimate and decompose a Fundamental ma-
trix into an assumed to be non-planar initial scene. PTAM initializa-
tion was later changed to the usage of a Homography [6],where the
scene is assumed to be composed of 2D planes. Other systems
include the work of Forester et al. [7] who adopted a Homography,
or that of Tan et al.[8] and Herrera et al. [9] who used an Es-
sential matrix [10], where the scene is assumed non-planar. With
the exception of MonoSLAM, all the suggested methods suffered
from degeneracies when their implied assumption of the scene was
violated. To address the issue, Mur-Artal et al. [11] employed
both methods in parallel and suggested a metric to elect either
one when a degenerate case is detected in the other. SchÃűps
and Cremers [12] suggested a randomly initialized scene’s depth
from the first viewpoint that is later refined through measurements
across subsequent frames. Limited by the capabilities of single
cameras to generate bearing-only measurements, a fundamental
limitation of all monocular Visual SLAM solutions is that the actual
scale of the scene cannot be recovered accurately during initial-
ization. This means that, without additional information, the rela-
tionship between image coordinates and corresponding 3D point
coordinates can only be determined up to an unknown scale λ .

The work in this paper aims to diminish the above limitation
by suggesting a novel initialization technique for Visual SLAM that,
unlike MonoSLAM requires no human input. The gist of the solu-
tion is to determine scale of a scene using depth from focus. More
specifically, during initialization, the camera is moved normally to
the scene in search of the image that is most focused. This is pos-
sible by performing an offline pre-calibration of the camera, where
for a given camera focal distance, we determine the corresponding
scene depth producing maximum image focus. Although the sys-

tem is very sensitive to motion rotation, experiments demonstrate
the success of the proposed technique. The remainder of this pa-
per is structured as follows. Section 2 surveys depth from focus
methods. Section 3 describes our adaptation and implementation
of depth from focus to initialize and estimate the scale of a visual
SLAM system. Section 4 presents the experiments and section 5
discusses the obtained results. The paper concludes in Section 6.

2 Depth from focus

While traditional visual SLAM concerns itself with depth estima-
tion from parallax, research in optics suggest two methods capa-
ble of recovering depth from images that do not exhibit parallax;
namely, depth from focus and depth from defocus. Depth-from-
Defocus (DfD) provides a solution to estimate the depth of a scene
by measuring the blurriness of objects. On the other hand, Depth-
from-Focus (DfF) recover depth by searching for the state of the
imaging system for which the object is in-focus in the image plane.
This can be achieved by either (1) varying the distance between the
lens and the imaging sensor or by (2) varying the distance from the
lens to the observed scene. Objects that are at the focal plane will
result in maximum focus on the camera sensor. Any change from
the focal plane results in a blurred representation of the scene. In
the first technique, for each scene the focus of camera is varied
until the image is in focus. Pucihar and Coulton [13], provide such
a solution, which requires an offline calibration resulting in a lookup
table relating focus-to-depth. Allowing the camera to change its fo-
cus during a visual SLAM session is ruinous because the intrinsic
camera calibration parameters, vital to achieve acceptable track-
ing performance, varies with the focus and would lead to track-
ing failure. Furthermore, not all cameras retain an auto-focusing
mechanism nor allow access to their drives. Suwajanakorn et al.
[14] recently suggested an algorithm capable of recovering depth
from focus using an uncalibrated camera; however, their suggested
pipeline requires twenty minutes of processing, which is intractable
for real-time operations.

In this work, we adopt the second approach by moving the cam-
era during initialization in the direction normal to the scene along its
optical axis and estimate depth corresponding to the most in focus
image. For this method to succeed, an appropriate focus measure
operator is a critical in ensuring accurate depth estimation. A wide
variety of algorithms [15] have been used to measure the degree of
focus of image patches or the image as a whole. Given their real-
time requirements, Visual SLAM implementations pose constraints
on the amount of allowable processing time for each frame, There-
fore, a simple, fast, and relatively accurate focus operator is used,
consisting of first extracting the Laplacian eq.1

∇
2I(x,y) =

∂ 2I(x,y)
∂x2 +

∂ 2I(x,y)
∂y2 (1)

and then summing the Laplacian over a window as in eq.2; a step
necessary to help deal with poorly-textured surfaces.

FM(x0,y0) = ∑
(x,y)∈σ(x0,y0)

∇
2I(x,y) (2)

where σ(x0,y0) is the support window chosen as the 24x24 pixel
patch centered at I(x0,y0). The total focus measure of the image is
then found using eq.3

F =
1
n ∑
(x,y)∈I

FM(x,y)2 (3)

where n is the number of pixels in the image. Finally, a moving
average filter is employed to attenuate the effect of noisy measure-
ments in the focus measure operator.



3 Depth from focus in Visual SLAM

A camera moving longitudinally along a path toward a planar scene
exhibits maximum focus when the distance between the camera
and the scene is equal to its focal plane. Figure 1 illustrates how
the focus measure of an image is expected to vary with the distance
from the scene.

Fig. 1: Focus measure profile vs change in distance between cam-
era and scene.

Therefore, what is sought in this work is an algorithm that is
capable of determining, among a range of images, the image ex-
hibiting maximum focus Fpeak for a given scene. To make this pos-
sible, before initializing Visual SLAM, the system would have to be
calibrated in order to determine, for a given focal length, the depth
corresponding to maximum focus. The proposed calibration is per-
formed offline, by fixing either the camera or the planar scene and
moving the other longitudinally away, while monitoring the focus
measure response. When a peak in the focus measure response
is recorded, the corresponding distance from the camera is regis-
tered as the focal plane’s distance.

Once the focal plane’s distance is known through the calibration
process, it can be used to initialize any Visual SLAM system, as-
suming the observed scene during initialization is planar as is the
case in most Visual SLAM implementations. In this paper, we test
the technique on PTAM as a replacement for its default initializa-
tion using Homographies. Once the system is started, tracking and
mapping are set to an idle state, while the user is asked to move
forward and backward towards a planar scene. The focus measure
is then recorded automatically at every frame and the one corre-
sponding to the peak focus measurement is registered as the first
keyframe in the map.

The pose of the keyframe is represented as a rigid body trans-
formation ∈ SE (3). Initially, the pose E1,w, is assigned to the 4×4
identity matrix. FAST features [16] from the 0th pyramid level are
then extracted and their 3D coordinates are initialized as in eq.4
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Px

D
,
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D
,
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where D = 1
f ocal planedistance , hardcoded into the system beforehand

through the camera calibration process. Px and Py are pixel co-
ordinates of the extracted features projected onto a normalized
image plane using the radial distortion model of [17]. Similar to
PTAM, the mean of the 3D features is then elected to serve as
the world coordinate frame and the entire map is then transformed
accordingly. Once the initialization procedure is complete, the vi-
sual SLAM system resumes its regular tasks, performing camera
tracking and scene mapping.

The initialization here is considerably different from the tradi-
tional methods of Visual SLAM, in which the user is required to
trigger the system, move the camera a distance that is ad-hoc, and
then trigger the system again once sufficient parallax is achieved.
In what we are proposing, no human intervention is required; the
camera is moved tangent to its optical axis until the system auto-
matically initializes. This type of motion is more natural than a lat-
eral one, especially for mobile platforms such as Unmanned Aerial
Vehicles (UAV) with a downward looking camera, or for nonholo-
nomic land vehicles equipped with forward looking cameras.

4 Experiments and Results

Our proposed method was implemented in PTAM [3] and tested
on a laptop with an Intel Core i7-4710HQ 2.5GHZ CPU, 16 GB
memory; no GPU acceleration was used. As table 1 shows, the
computational cost for each focus measurement required at every
frame 5.4 ms; once the focused frame is found, our proposed ini-
tialization requires 8.5 ms to kick-start the system, in contrast to the
default Homography initialization of PTAM that requires on average
250 ms. Furthermore, our proposed initialization does not yield
multiple solutions in contrast to the Homography estimation that in
some cases may be degenerate or return ambiguous results.

Table 1: Computational cost for initialization

Operation Time(ms)
Focus measurement 5.4

Proposed initialization module 8.5
Homography initialization 250

To test our system, two experiments were conducted. During
our experiments, motion was only in the vertical direction, there-
fore ground truth was collected manually, by measuring the actual
distance between the lens and the scene.

4.1 Experiment 1

Experiment 1 consisted of fixing the camera on a rig that can move
in a single direction normal to a planar scene. This was necessary
to validate the theory and test its application to PTAM in a controlled
environment The camera was focused and calibrated beforehand
at a distance of 23 cm. Within the controlled confines of a fixed
rig, the experiment was repeated 31 times, either moving towards
the planar scene from a starting position of 30 cm or moving away
from the scene with a starting position of 10 cm, at a constant rate.
The actual distance between the camera and the scene, at which
our proposed method initialized the system, was then recorded.

Fig. 2: Experiment 1- System initialization.

The obtained results are shown on figure 2 as circles; with a
mean of 22.93 cm and a standard deviation of 0.2 cm, they demon-
strate the accuracy and precision of our initialization module. Next,
the same experiment was repeated but this time the hand-held
camera was free to move in 6D. Nevertheless, the user was asked
to avoid high acceleration movements and tilting as much as pos-
sible. In this experiment, the objective was to study the impact of
factors such as camera orientation changes and motion blur, in-
duced by human interference, on the initialization quality of PTAM.

4.2 Experiment 2

The second experiment consists of initializing PTAM using our method
and then recording its camera pose measurements and compare
them to the ground truth for both the fixed rig and handheld cases.
While this experiment can be easily performed in 6D, for visual-
ization purposes, it was conducted along a single dimension. Af-
ter initialization, the scene was explored, by inserting keyframes
with enough parallax between them, to ensure a good baseline
for feature triangulation to take place, before returning to the ex-
periment’s configuration of motion along a single direction. The
recorded paths are shown in figures 3a and 3b. They show that our
initialization module was able to snap to the actual scene’s scale by



Fig. 3: Experiment 2- Path recorded by PTAM initialized with our method.

yielding pose estimates with an RMSE of 0.49 cm in the confined
camera case and 0.62 cm in the handheld version of the experi-
ment.

5 Discussion

The accuracy and repeatability reported in Experiment 1 proves the
viability of the suggested initialization under the constraints, where
the camera moves normally to the planar scene; however, as the
constraints are relaxed through the hand-held version of Experi-
ment 1, where the camera’s motion is subject to human interfer-
ence, the results varied. The decrease in accuracy and repeatabil-
ity, in the hand-held version, can be traced back to several factors
namely, (1) motion blur caused by jittering and fast motions of the
camera, (2) rotation deviations from the normal of the scene due
to camera handling errors. To reduce the effects of jittering and
motion blur on the system, a down sampled representation of the
image may be used to estimate the focus measure, at the expense
of decreasing its sensitivity. Whereas the second source of error is
tightly linked with the camera’s motion assumption of moving along
its optical axis normal to the observed scene. As the camera is
tilted at an angle with the normal to the plane, the reported dis-
tance at which the peak focus measure would fall shorter than the
actual focal plane distance, which explains why the mean of the
hand held version of Experiment 1 was shifted below the actual
value of the focal plane.

6 Conclusion

In the course of this work we have presented an adaptation of
depth from focus methods to suggest a novel visual SLAM initial-
ization procedure, capable of initializing the system and recovering
its accurate scale using a single frame, captured by a monocular
camera moving longitudinally towards/away from a planar scene.
We proved the accuracy and precision of our initialization proce-
dure through a controlled experiment and highlighted, in another
experiment, the challenges that faces its deployment for handheld
cameras, mainly motion blur and rotations.
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