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Abstract

Video sensing has become very important in Intelligent Transporta-
tion Systems (ITS) due to its relative low cost and non-invasive de-
ployment. An effective ITS requires detailed traffic information, in-
cluding vehicle volume counts for each lane in surveillance video of
a highway or an intersection. The multiple-target, vehicle-tracking
and counting problem is most reliably solved in a reduced space
defined by the constraints of the vehicles driving within lanes. This
requires lanes to be pre-specified. An off-line pre-processing method
is presented which automatically discovers traffic lanes from vehi-
cle motion in uncalibrated video from a stationary camera. A mov-
ing vehicle density map is constructed, then multiple lane curves
are fitted. Traffic lanes are found without relying on possibly noisy
tracked vehicle trajectories.

1 Introduction

In computer vision, the heaviest focus on traffic lane detection is
in the autonomous driving application. Only the driver’s own lane
boundaries and adjacent lanes need to be detected. Lanes must
be localized in real world space from video image space. Hence
the camera for this set-up is typically a calibrated front facing cam-
era, relatively close to the road. The standard approaches often
rely on line fitting to edges from road markings which are clearly
visible to the driver from this vantage point [1, 2]. Ego motion in
the image is present and initial lane detections are tracked and up-
dated.

Another area where lane detection is required is for vehicle
counting from a statically mounted traffic surveillance camera. Of-
ten, in the computer vision literature, traffic lanes are specified
manually as a region of interest [4, 5, 6, 7, 8, 9]. This may be suffi-
cient in some situations where only total volumes are required, but
in many ITS applications a precise breakdown of counts for each
lane may be required. Yet manual lane annotation can prove to
be error prone, especially when lane marking are unclear and only
a small segment of video or a still frame is presented to the user
which does not fully demonstrate vehicle paths for every possible
lane.

For the vehicle counting application, it is sufficient to fit the traf-
fic lanes in the image space only. This avoids the need for calibra-
tion and extrinsic camera parameter estimation. Furthermore, if the
lane detection may be performed off-line as a pre-processing step,
lanes may be discovered and traced from the motion of detected
vehicles. This results in more reliable lane placement than rely-
ing on possibly noisy, degraded, or invisible edge markings. Lane
detection from moving vehicles was performed in [3] by tracking
trajectories and simple clustering of fitted lines. This assumes that
lanes are straight on a planar road and does not address noise
due to vehicle tracking errors. Most other automatic lane detection
work assumes straight planar lanes and employs manual annota-
tion, camera calibration, or homographies [9].

2 Methodology

The objective of this article is to use the positions of vehicles as
they move through the image in order to discover all of the traffic
lanes. The general approach is to tightly localize vehicles in every
frame and register their positions over time using a density image.
A random search is used to fit multiple curve models to the den-
sity image and thereby identify each separate lane as an individual
curve. See Fig. 1.

Since traffic cameras are mounted upright, vehicles are verti-
cally aligned and their tops and bottoms appear up and down re-
spectively. There may be a variety of vehicles of different heights
so the location of vehicle tops and centroids may vary in the image.
Nonetheless, the defining characteristic of all vehicles traveling in-

Fig. 1: Example traffic video. Three lanes (blue) are discovered
from moving vehicles. Vehicle density is also overlaid (red).
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Fig. 2: A demonstration of the appearance of various sized vehicles
in the image. The fronts of several vehicles are shown, all from the
same lane. The vehicle tops have various image projections but
the bottoms all converge near one image point. This may be used
to define the location of the lane in the image.

side a particular lane is the curve traced out by bottom point of their
apparent boundaries as they move through the image, see Fig. 2.

A greedy random search is employed to fit multiple quadratic
spline models to the density image. It is similar to sequentially ap-
plying Random Sample Consensus (RANSAC) to fit multiple mod-
els by removing fitted samples. There are a few key differences to
address the well-known pitfalls when using the greedy sequential
RANSAC strategy [11, 12].

2.1 Vehicle Density Image

Vehicle trajectories provide the locations of the lanes in which they
travel. Unfortunately, solving the multiple target tracking and data
association problem reliably enough to discover lanes from vehi-
cles trajectories proves difficult in practice. Furthermore, espe-
cially for vehicle counting, reliable identification and tracking is best
done in a reduced space where the traffic lanes are already identi-
fied [6, 7, 10].

In order to discover lanes from vehicle motion without explic-
itly tracking them, each vehicle is independently localized in ev-
ery frame of video. Vehicles are detected using a deep learning
vehicle contour detector which is fused with background subtrac-
tion [8]. This provides a precise closed boundary contour around
moving vehicles from which the bottom point of each vehicle can
be located in each frame. These points are added as samples in
a vehicle motion density image. The resulting density image has
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Fig. 3: Example vehicle motion density images. (a) and (c) show original video frames while (b) and (d) show the corresponding motion
density. Note the false positive blobs in the parking lot of (b).

strong signal along lane paths. See Fig. 3. The log-sample-density
image is taken to avoid saturation by stationary false positive vehi-
cle detections. Robust model fitting is then used to eliminate noise
and find the consistent lane paths.

2.2 Quadratic Spline Fitting

The curve models that are fitted to the samples are essentially
specified by quadratic splines. The models and the fitting process
are slightly enhanced to work more reliably within the sequential
RANSAC framework.

Each curve is specified by 7 parameters: A spline with 3 R2

control points and a thickness parameter. As specified in RANSAC,
10000 random curves are proposed from random points in the den-
sity image and the best is selected. Unlike RANSAC, instead of us-
ing a threshold to count inliers for suitability measurement, a kernel
is constructed for each proposed curve.

Fig. 4: An example image kernel for a proposed quadratic spline. It
has the same dimensions as the vehicle density image. It is applied
to the density image by element-wise multiplication of each pixel
and summing. The white area near the curve is positive to encour-
age inlying points. Its thickness is a parameter to be optimized.
The black area is negative and serves to penalize curves which
don’t fit along an isolated lane away from other density points. The
gray area is 0.

The kernel is inspired by the Gabor Filter [13] and is applied to

the density image to obtain a data fidelity score for a given model.
An example kernel for one spline model can be seen in Fig. 4.
Essentially the kernel positively scores close inliers, while penal-
izing conflating nearby points, and ignores distant outliers from
other lanes and noise. This encourages models that have a strong
agreement with inlier signal, yet are isolated from other signal. It
also discourages models that cross multiple lanes and have inliers
from each lane since the conflating lanes will have relatively high
density inside the penalized area.

Instead of explicit parameter fitting, a hill climbing approach
proves to be quite effective. It is much slower but is acceptable
for this off-line pre-processing task. The 7 parameters for the se-
lected model are optimized with respect to this data fidelity score.
This finds the closest appropriate lane.

2.3 Multiple Lane Models

After a model has been fit to a lane, its thickness parameter is
used to remove inlying points from the density image. It is added
to a list of proposed final lanes and the process is resumed to find
additional models.

This is continued until no random model can be found with suf-
ficient data fidelity. Then a final step is employed to validate all
proposed lanes globally. Each proposed lane model is further op-
timized on the original log-density image (where all previously re-
moved model inliers reappear) to compute its global data fidelity.
Models which now have a low score are likely to be too close to
better existing lane models or were spuriously constructed from co-
incidental noise in the active density image with removed samples.
They can safely be eliminated leaving true vehicle lanes.

3 Discussion

This method has been run on 135 different traffic videos and is
showing some great promise. See Fig. 5. By assumption, the
lanes must be distinct and separate and the kernel enforces this.
The effect is that any lane which appears too close to another lane
might be suppressed in the result.

Some measures have been taken to reduce the sensitivity of
sequential RANSAC. In particular the assumption of isolated lane
inliers may prevent a lane from being correctly detected if it is
too close to noise from false positives. A true globally optimized
multiple curve model estimator may prove more reliable than the
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Fig. 5: Results running the presented method on various videos. Resulting lane curves are shown in blue. Note some distant lanes in
(a) are merged together. (b) shows the limits of quadratic splines for turning movements. All lanes are successfully found in (d) despite
snow covering lane markings. Pedestrians and cyclists sometimes generate coherent false positives in the density map resulting in
spurious lanes in (f) and (a).

heuristics used here. To put the presented method into practise, a
human-in-the-loop should be effective to remove spurious curves,
make slight corrections, and to validate and correctly label resulting
lanes.

Quadratic splines were chosen because of their suitability to
represent curved lanes, straight lanes through curved camera lenses,
and some turning movement lanes. More advanced models may
be required in other traffic setups such as roundabouts. This could
expose the method to over-fitting and may require a stiffness or
regularization term in the optimization.

This is a costly non-deterministic off-line pre-processing step
for analyzing traffic videos. Therefore some aspects of this lane
finding approach are not suitable for real-time online deployment.
Importantly, vehicles must be detected and segmented in every
frame before lanes are even specified. Lanes are discovered solely
by vehicle motion, so lanes where no representative vehicle is
present in the entire video sample are necessarily missed. What
is more, the resulting lane models are initialized only once. In the
presence of camera motion and shifting it may be necessary to
iteratively collect additional vehicle density and update the curve
models.
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