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Abstract

The increasing availability of both high-resolution projectors and
imperfect displays make radiometric correction an essential com-
ponent in all modern projection systems. Particularly, projecting
in casual locations, such as classrooms, open areas and homes,
calls for the development of radiometric correction techniques that
are fully automatic and deal with display imperfections in real-time.
This paper reviews the current radiometric compensation algorithms
and discusses the influence of different training images on their
performance.

1 Introduction

Radiometric compensation is the process of changing projector im-
ages such that visual quality of the image is maintained when pro-
jected on a textured background [1][2][3]. This is accomplished
by a projector - camera (pro-cam) system, where the camera pro-
vides the feedback of projection on the surface, which is then used
to compensate for a desired image.

Pro-cam system calibration is a prerequisite for Radiometric
Compensation (RC). Geometric calibration provides the pixel cor-
respondence between the projector and camera. Structured light
patterns are projected and captured by the camera to acquire the
required calibration. After the system is geometrically calibrated,
radiometric functions are used to model the transformation from
the projector pixel intensity to its corresponding camera pixel inten-
sity [1][2][3]. The training set for the radiometric model develop-
ment is obtained by projecting colored images and capturing their
response from the screen. Linear RC models require the camera
to be calibrated in order to remove the nonlinear response of the
camera [1]. A summary of the existing methods to calculate the
camera response function can be found in [4].

Bimber et al. [3] proposed a multi-projector approach where
each channel is compensated independently. However, as the
spectral responses of the projector and camera can overlap, Na-
yar et al. [1] proposed a 3× 3 matrix to model the transformation
between the projector and camera.

C =V P (1)
where, C and P are the camera and projector image pixels respec-
tively and V is the color mixing matrix, which models the surface
reflectance property of the screen and the overlap of spectral re-
sponse between the projector and camera. It is a pixel level model,
where the color mixing matrix is calculated for each projector- cam-
era pixel pair. Yoshiha et al. [2] extended the linear model to 3×4
matrix by considering environmental light and projector black level.
Grossberg et al. [5] proposed an algorithm which uses a minimal
set of 6 images to find the extended color mixing matrix and pro-
jector response function.

Mihara et al. [6] proposed to use high spatial resolution cam-
era to capture the steep reflection variation across a single pro-
jector pixel. In this method, multiple camera pixels are used to
capture the image of one projector pixel and a linear model is de-
veloped for each camera pixel. Grundhofer et al. [7] proposed a
thin plate splines interpolation with radial basis function to model
the radiometric compensation function. The training images are
formed by the spare sampling of projector gamut. Grundhofer’s
nonlinear model does not require the camera to be pre-calibrated.

The aforementioned RC methods assume a pixel level model,
where each camera pixel intensity is a function of only one projec-
tor pixel intensity. Also, the environmental light is considered to be
constant. Camera should be pre-calibrated for the linear model,
whereas the nonlinear model assumes that the camera can cap-
ture the entire projector gamut without saturation.

Projector image Camera image

Fig. 1: Sample images in plain training set.

Projector image Camera image

Fig. 2: Sample images in textured training set.

2 Analysis of Training images

Linear and nonlinear radiometric approaches are used to model the
transformation between the camera and projector images. A train-
ing set plays a very important role in building a robust radiometric
model. Hence, the purpose of this paper is to discuss the impact
of different training images on the performance of the radiometric
approaches.

The Modular Transfer Function (MTF) of the imaging system is
its ability to transfer the contrast of the object to the image. The
function models the reduction in contrast of the object while going
through an imaging system as a function of spatial resolution of the
contrast [8]. Since both the projector and camera have MTF, the
pro-cam system’s MTF is the product of its individual MTF. Hence,
when an image P is projected and captured by the camera, the
camera image C contains a contrast reduced version of P. The
amount of contrast reduction depends on the magnitude and spa-
tial frequency of the contrast. This results in a spatially dependent
pro-cam system.

Spatial dependency can also occur because of inter pixel cou-
pling [9], which includes leakage of projector brightness to adjacent
pixels or activation of a camera sensor by multiple projector pix-
els. Such inaccuracies in pro-cam devices can make the captured
camera pixel intensity depend on multiple projector pixel intensity.
Also, these inaccuracies are prominent in the regions of contrast
difference [9]. The camera pixels on the border of the darker side
of contrast difference are influenced by the brighter side and vice
versa. This leads to contrast reduction in the camera image.

MTF and inter pixel coupling are the two major reasons behind
the contrast reduction of the object in its image. Both the projector
and camera suffer from the above mentioned defects. The resul-
tant spatial dependency from MTF and inter pixel coupling contra-
dicts the primary assumption made in the existing RC algorithms.
As mentioned earlier, both the linear and nonlinear algorithms as-
sume a pixel level model where the camera pixel is affected by only
one projector pixel. Since we are modeling a spatially dependent
system with a spatially independent model, using different training
images will have different results for a RC algorithm.

Four scenarios are explored to understand the dependency of
radiometric approach on training images:

• Plain training set with textured background

• Textured training set with textured background
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Textured Background Image1 Image2 Plain Background Image1 Image2

(a) Direct Projection (b) Textured training set (c) plain training set (d) Direct Projection (e) Textured training set (f) plain training set

Fig. 3: Comparison between direct projection and compensation by the linear model trained with textured and plain training sets.
Columns (a), (b) & (c) show the results with textured background, while (d), (e) & (f) show the results with plain background surface.
Second and third row shows the RMSE images which is the error map between the target image and the compensated image. The
error maps are enhanced for visualization. The plain training set performs better then the textured training set for both backgrounds.
The textured training set introduces additional errors because of the contrast present in the projector images.

RMSE CIE2000 SSIM
Image Direct Textured Plain

Image1-Background1 17.55 5.45 4.18
Image2-Background1 19.65 6.99 5.07
Image1-Background2 8.85 4.23 2.54
Image2-Background2 10.49 4.56 3.72

Image Direct Textured Plain
Image1-Background1 10.44 1.70 1.51
Image2-Background1 12.69 2.04 1.71
Image1-Background2 5.58 1.52 0.98
Image2-Background2 6.49 1.61 1.24

Image Direct Textured Plain
Image1-Background1 0.552 0.982 0.988
Image2-Background1 0.507 0.965 0.982
Image1-Background2 0.930 0.989 0.992
Image2-Background2 0.931 0.984 0.990

Table 1: RMSE, CIE2000 and SSIM scores for images. Direct represents Projection without compensation, Textured and Plain repre-
sents compensation using textured and plain training sets respectively, RMSE and CIE2000, smaller is better, whereas SSIM larger is
better.

• Textured training set with plain background

• Plain training set with plain background

Figure 3(a) & (d) shows textured and plain backgrounds re-
spectively. Colored projector images without contrast are projected
and captured by the camera to form the plain training set as shown
in Figure 1. Here, the projector images doesn’t contain contrast
difference, whereas the camera images contain the contrast dif-
ference of the background. The textured training set is composed
of real world images as projector images and their corresponding
camera images as shown in Figure 2. Textured training set with
plain background is used to study the artifacts produced by train-
ing images without interference from the background.

The errors resulting from RC algorithms can be classified into
two broad categories, namely radiometric error and saturation er-
ror. The radiometric error is caused by the inability of the RC al-
gorithm to reproduce the target intensity in the resultant camera
image. This can be due to the device inaccuracies or assumptions
in the RC algorithm. The saturation error is caused by the limited
dynamic range of the projector, which occurs when the required
projection intensity given by the RC algorithm exceeds the projec-
tor gamut. The following section discusses the radiometric error
caused by using different training images.

3 Results and Conclusion

Single chip DLP projector at 1920x1200 resolution along with 5MP
gigabit ethernet machine vision camera from Point Grey are used
to form the pro-cam system. Device specific artifacts are avoided

by repeating the experiments with different 5MP ethernet machine
vision cameras. The Gray scale coding algorithm [10] is used to ac-
quire the geometric calibration between the projector and camera.
The textured background shown in Figure 1, is printed on paper
and pasted against the wall to form a flat surface.

The grossberg’s linear model is implemented in Matlab to show
the impact of different training images on RC algorithms. Inter-
national Commission on Illumination color difference metric ∆E∗

00
(CIE2000) [11] along with Root Mean Square Error (RMSE) and
Structural Similarity Index (SSIM) [12] are used as evaluation met-
rics for image comparison. CIE2000 score provides the perceived
difference between two colors by the human eye. The score in-
creases with higher perceptual difference. In CIE2000, the images
are converted into a device independent CIE L*a*b* color space
and the score is calculated by incorporating the spatial, hue and
lightness characteristic of the human eye. RMSE provides the ab-
solute difference between the two colors. RMSE scores helps in
identifying the existing errors, whereas CIE2000 helps in identify-
ing errors that are significant to the observers. Lower scores by
CIE2000 and RMSE, and higher scores by SSIM metrics indicate
better performance.

The results of the experiments are illustrated in Figure 3. Columns
(d), (e) and (f) show the results of compensation on plain back-
ground surface (Background-2). Second and third row show the
RMSE error map between the target image and the compensated
image. It helps in identifying the regions of artifacts in the com-
pensated image. From the RMSE images we can see that using
textured training set creates more artifacts than using plain training
set as shown in figure 3(e). The error pattern for textured training
set is common for both image1 and image2. The pattern depicts an
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amalgamation of the contrast present in the training images shown
in Figure 4. As discussed earlier, the camera captures the contrast
reduced version of the scene. The RC algorithm attributes this
contrast reduction of the projector images to the background tex-
ture and overcomes it by increasing the brightness in the regions
of contrast. This increased brightness causes artifacts in the com-
pensated image. Since the camera images of the plain training set
does not contain any contrast, the camera accurately captures the
reflectance properties of the background and is able to produce the
desired image on the screen.

Similar observations are drawn from the results of background-
1. We can see that the plain training set is not able to hide the
background texture. The linear model delivers satisfactory results
in the uniform regions, but deteriorates from the target in the re-
gions of contrast difference of the background. This phenomenon
can be clearly observed in the RMSE images. The camera images
of the plain training set contain the contrast of the background sur-
face. Inaccurate reading of this contrast by the camera results in
artifacts in the compensated images as shown in figure 3(c). The
camera images of the textured training set contain contrast of both
the background surface and projector images. Hence, RMSE im-
ages of the textured training set contain artifacts from both these
contrasts.

The saturated pixel locations of the projector image are omitted
during the calculation of results. A pixel location is considered to
be saturated when at least one channel value goes beyond the pro-
jector gamut (0-255). Omission of these pixel locations helps us to
understand the radiometric error without the influence of saturation.
Table 1 gives the RMSE, CIE2000 and SSIM scores for the images
in figure 3. From the table, we can observe that the plain training
set performs better then the textured training set. The best results
are given by using the plain training set with the plain background.
Using textured training set with textured background provides the
least performance.

This paper explored the impact of different training images on
the performance of the linear RC algorithm with two backgrounds.
The results of compensation using the plain and textured training
set with the plain and textured background are discussed in de-
tail. It is observed that the performance of the RC algorithm is
enhanced by reducing the contrast of the scene in the camera im-
ages of the training set. The reduced contrast minimizes the MTF
and inter pixel coupling errors of the camera. Plain training set per-
forms better than the textured training set as the contrast of the
scene in plain training set is less compared to textured training set.
Similarly, the results of compensation with the plain background are
better than the textured background. Future work involves propos-
ing a new procedure to acquire the training images that can assist
in the development of radiometric compensation algorithms.
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