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Abstract

Intensity standardization is an important preprocessing step in au-
tomated analysis of MRI. A popular method by Nyul et al. uses a
piece-wise linear approximation of histogram matching. We show
that this method is a non-uniform trapezoidal Riemann approxima-
tion of the ideal histogram matching operation, and suggest that
histogram matching is no better than histogram equalization for in-
tensity standardization in MRI. Experimental results are derived us-
ing synthetic data.

1 Introduction

One major obstacle to automated analysis of magnetic resonance
images (MRI) is the lack of standardization of the intensity scale
[1]. Tissue intensities vary with the acquiring scanner (model, field
strength) and image weighting (selection of TE, TR, etc.). As a re-
sult, many tools for analyzing images from multiple scanners em-
ploy some method of intensity standardization as preprocessing.

For an image X with intensities denoted x, an intensity transfor-
mation can be generally defined as τ : x 7→ y, y = τ(x), yielding the
adjusted image Y. In the context of standardization, τ is usually
monotonic, and uses characteristics of each realization of X to
minimize variation across a dataset. Many methods for intensity
standardization have been proposed. The work by Nyul et al. [1, 2]
describes one such method, which uses a piece-wise approxima-
tion of histogram matching.

In this work, we will show that the transformation proposed by Nyul
et al. is specifically a non-uniform trapezoidal Riemann approxima-
tion of the ideal histogram matching operation. We will also show
that errors associated with this approximation introduce artifacts in
the matched histograms, motivating the use of the ideal histogram
matching operation as a superior alternative. Experiments using
simulated data illustrate the convergence of the approximation for
large N, and the superiority of ideal histogram matching.

2 Histogram Equalization

Histogram equalization is one classic method of intensity standard-
ization. The histogram of an image X comprising K pixels with in-
tensities x ∈ [xmin,xmax] is denoted hx; it represents the number of
occurrences of each intensity in the image. The intensity probabil-
ity mass function (PMF) px(x) is therefore given by hx/K,

px(x) =
1
K

hx(x) =
1
K

K

∑
k=1

{
1 X (k) = x
0 X (k) 6= x

(1)

The cumulative distribution function (CDF) Px(x) is simply the cu-
mulative sum of px(x),

Px(x) =
x

∑
xmin

px(δ )dδ . (2)

Now, consider the intensity transformation given by the CDF of X ,

y = τx(x)
= Px(x). (3)

The result of this transformation is Y, and its PMF is denoted py.
From probability theory, the PMF of a transformed variable is de-
fined as

py(y) = px(x)
∣∣∣∣dx
dy

∣∣∣∣ . (4)

Using calculus, we can see that

dy
dx

=
d
dx

Px(x)

=
d
dx

[
x

∑
xmin

px(δ )dδ

]
= px(x), (5)

which means that the PMF of Y,

py(y) = px(x)
∣∣∣∣dx
dy

∣∣∣∣
= px(x)

∣∣∣∣ 1
px(x)

∣∣∣∣
= 1, x ∈ [xmin,xmax] (6)

is a uniform distribution. Thus, using the intensity CDF of X as an
intensity transformation is a histogram equalization operation.

3 Histogram Matching

Histogram matching is another method of standardization. A his-
togram matching transformation τxz : x 7→ z takes any input image X
and yields an output image Z with PMF pz. Following on the results
above, this operation can be defined as the function composition of
a histogram equalization transform τx = Px and the inverse equal-
ization transform τ−1

z = P−1
z ,

τxz = P−1
z (Px) (7)

Considering this result, we observe that P−1
z does not depend on

X – i.e. pz is independent of px – and is therefore applied equally
to all images after the image-specific equalization τx is applied.
Therefore, the target PMF pz is unrelated to the objective of in-
tensity standardization across different realizations of X . That is,
histogram matching equates to histogram equalization in the task
of intensity standardization.

4 Histogram Equalization Approximation

We now turn to the intensity transformation presented in [1]. We
show how this transformation is a non-uniform trapezoidal Riemann
approximation of the ideal histogram matching operation.

The proposed method uses histogram “landmarks” to define a piece-
wise linear intensity transformation for each image X . The land-
marks comprise intensity quantiles, and minimum and maximum
intensities. In a simplification of the original notation, we denote
these all µi, with i ∈ {0, . . . ,N}, since the minimum and maximum
intensities are also derived from quantiles. The target locations of
these landmarks in the output histogram are denoted sn; these can
be derived from a training set, or an arbitrary target histogram.

For an input image X and output image Y, the proposed transfor-
mation τ : x 7→ y is defined

y = τ(x)

= si +(x−µi)

(
si+1− si

µi+1−µi

)
, x ∈ [µi,µi+1] (8)

This transformation is illustrated in Figure 1. For simplicity, we
assume the landmarks s are distributed equally in the target his-
togram – i.e. the target histogram is a uniform distribution, and
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Fig. 1: Illustration of the Nyul et al. normalization, adapted from [2].

this approximates histogram equalization. As noted above, this
assumption is not important for inter-image standardization. The
output landmarks are therefore si =

i
N , where N + 1 is the number

of quantiles. The transformation (8), now denoted τe, becomes

τe(x) =
i
N
+(x−µi)

(
1/N

µi+1−µi

)
, x ∈ [µi,µi+1]. (9)

Now, consider the functional representation of any quantile, Q : η 7→
x, where η is a probability ∈ [0,1]. This can be defined mathemati-
cally as the functional inverse of the CDF of X [3],

Q(η) = P−1(η). (10)

If we define the probability η = i/N, and δ = 1/N, then

µi = Q
(

i
N

)
= Q(η) = P−1(η) (11)

µi+1 = P−1(η +δ ). (12)

Substituting this result into the denominator of the above expres-
sion, we obtain

τe(x) = η +(x−µi)

(
δ

Q(η +δ )−Q(η)

)
, x ∈ [µi,µi+1]. (13)

We notice the inverse of the Newton difference quotient for Q in the
final term. If we assume small δ (large N), then this approximates
dQ(η)/dη = Q′(η),

τe(x)≈ η +(x−µi)

(
1

Q′(η)

)
, x ∈ [µi,µi+1] (14)

Next, we invoke the inverse function theorem [4], which states,

( f−1)′( f (x)) =
1

f ′(x)
. (15)

In our case, f =Q, f−1 =Q−1 =P, and ( f−1)′ =P′ = p, which yields

τe(x)≈ η +(x−µi) px(Q(η)), x ∈ [µi,µi+1]. (16)

Now, we exploit the recursive parameterization of τe, namely that
η = τe(µi−1), with τe(µ0) = xmin. Substituting this result and replac-
ing µi = Q(η), we obtain

τe(x)≈ τe(µi−1)+(x−µi) px(µi), x ∈ [µi,µi+1]. (17)

Rewriting the recursion as a cumulative sum, we have

τe(x)≈
i

∑
j=0

[(
µ j+1−µ j

)
px(µ j)

]
+
(
x−µ j

)
px(µ j), x ∈ [µi,µi+1]

(18)
which we recognize as a non-uniform Riemann approximation of
the cumulative integral of px(x), with grid points {µ0, . . . ,µN}. For
large N, the last term is small, so it can be ignored,

τe(x)≈
i

∑
j=0

[(
µ j+1−µ j

)
px(µ j)

]
, x ∈ [µi,µi+1] (19)

≈ P(x). (20)

Therefore, for uniformly distributed output landmarks, the standard-
ization method proposed by Nyul et al. in [1, 2] is a non-uniform
trapezoidal Riemann approximation of the histogram equalization
transform. For non-uniform output landmarks deriving from a tar-
get histogram, the composition property illustrated in (7) suggests
how the Nyul method then approximates a histogram matching op-
eration.

5 Experiments & Results

To validate these results, we first show that the choice of target his-
togram is unrelated to graylevel agreement between different im-
ages following ideal histogram matching. Three 100× 100× 100
images are generated randomly to have unimodal, bimodal, and
trimodal PMF, as shown in Figure 2a. Histogram matching is then
used to match these images to one of four target histograms, in-
cluding the uniform distribution – i.e. this is histogram equalization.
The matched PMF are shown in Figure 2b–2e, including the image-
specific quantiles. Following standardization, these quantiles agree
almost perfectly, regardless of the target histogram: average abso-
lute quantile difference is reduced to 2.76% of the original spread.
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(b) H.M.: Uniform target
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(c) H.M.: Unimodal target
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(d) H.M.: Bimodal target
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(e) H.M.: Trimodal target
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(f) Nyul: Uniform target
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(g) Nyul: Unimodal target
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(h) Nyul: Bimodal target
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(i) Nyul: Trimodal target

Fig. 2: Histogram matching of three source images to four different
target histograms, using ideal histogram matching (H.M.) and the
Nyul method (N = 8). Intensity quantiles are shown as vertical lines,
with colour matching the image.

Next, we show that, under these same conditions, the Nyul method
results in worse intensity agreement among distributions. Repeat-



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

τ
(x
)

Fig. 3: Histogram equalization transformations: ideal (red) versus
quantile-Riemann approximated (blue) with different N.

ing the above procedure using the Nyul with N = 8 method gives
the results shown in Figures 2f–2i. This time, the average absolute
quantile difference is reduced only to 6.76%.

As illustrated in Section 4, these differences could be expected to
decrease if the Nyul method uses large N. To this end, we show
that the Nyul transformation with uniform output landmarks con-
verges to histogram equalization with increasing N. Using another
random image of the same size, with trimodal PMF, the ideal equal-
izing transform P(x) is computed as the CDF of the image intensi-
ties. The transformation τ(x)≈P(x) from [1] is also computed using
evenly spaced quantiles, with different N ∈ {22, . . . ,27}. As shown
in Figure 3, the approximation converges as N increases.

Finally, we explore the nature of the output histogram artifacts when
using the Nyul method with small N. Two random images are gen-
erated, with uniform and unimodal PMF respectively. Using the
Nyul method with N ∈ {22, . . . ,27}, the intensities are matched to
the same four target histograms as in Figure 2. The resulting PMF
are shown in Figure 4. It can be seen that, in piecewise sections,
the shape of the source PMF is maintained after standardization
using this method. These artifacts are particularly noticeable in
ranges of x where the source and target PMFs are most different .

6 Conclusion

Histogram matching operations are popular in MR image analy-
sis for intensity standardization. We have shown how a histogram
matching operation can be decomposed into an image-specific his-
togram equalization and a second inverse transform to obtain the
desired histogram. We note how this implies that the target his-
togram is unrelated to the objective of standardization across in-
puts. We also characterize the type of histogram matching approx-
imation proposed by Nyul et al., show the resulting artifacts, and
how this approximation is improved with increasing N.
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(b) Unimodal→ Uniform
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(c) Uniform→ Unimodal
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(d) Unimodal→ Unimodal
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(e) Uniform→ Bimodal
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(f) Unimodal→ Bimodal
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(g) Uniform→ Trimodal

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

y

p
y
(y
)

(h) Unimodal→ Trimodal

Fig. 4: PMF of synthetic data following histogram matching using
the Nyul method, with different N.


