Foot Depth Map Point Cloud Completion using Deep Learning with Residual Blocks

Nolan Lunscher
John Zelek

University of Waterloo, ON, Canada
University of Waterloo, ON, Canada

Abstract

Fit is extremely important in footwear as fit largely determines per-
formance and comfort. Current footwear fit estimation mainly uses
only shoe size, which is extremely limited in characterizing the
shape of a foot or the shape of a shoe. 3D scanning presents a
solution to this, where a foot shape can be captured and virtually
fit with shoe models. Traditional 3D scanning techniques have their
own complications however, stemming from their need to collect
views covering all aspects of an object. In this work we explore a
deep learning technique to compete a foot scan point cloud from
information contained in a single depth map view. We examine the
benefits of implementing residual blocks in architectures for this ap-
plication, and find that they can improve accuracies while reducing
model size and training time.

1 Introduction

Foot shape is complex and to properly characterize requires many
measures of lengths, widths, girths and angles [1]. The shoe size
system currently in use typically only relies on a single length mea-
surement which does not do enough to characterize shape. 3D
scanning can be used to capture more information about a persons
foot, which can then be used to better match with a well fitting piece
of footwear. A number of scanning solution have already been de-
veloped including the Vorum Yeti' and the Volumental scanner?,
however they are not commonly used and tend to be expensive or
difficult to operate.

In recent years, RGBD cameras have become popular devices
in a number of applications including their use in low cost 3D scan-
ners, as they are able to provide a fast and accurate depth map.
The typical process of 3D scanning requires the capture of images
from many positions that cover the entire surface of an object. Cap-
turing these images typically requires either a moving camera [2]
or camera array system [3, 4]. In the application of scanning a
person, the faster camera arrays are a better solution as people
are not rigid and will often move during a lengthy scan. In order
to further simplify and reduce the costs of the scanning process,
fewer cameras with fewer capture steps would be ideal. Towards
this goal, learning models can be used to extrapolate from limited
inputs, such as single images, and synthesize object images from
alternate views [5, 6, 7], and even depth map images containing
3D shape [8]. In this way, synthesized depth maps can be used to
form a 3D point cloud of an object from a limited viewpoint.

In our case, our goal is to produce a complete 3D foot point
cloud from a single depth map. When the input depth map is taken
from the profile of the foot, nearly half the points required are al-
ready present. Synthesizing a second view that covers the oppo-
site surface of the foot is sufficient to produce a near complete point
cloud of the foot surface. In this work we expand on our previous
work [9], and explore the impact of using different network architec-
tures. We implement two new architecture utilizing residual blocks,
which are a fundamental component of ResNet [10], one of the
most powerful deep networks to date.

2 Methods

We train a deep neural network to take as input a depth map of the
profile view of a foot, and to synthesize a depth map of the same
foot from the opposite viewpoint [9]. The points from this second
depth map can be merged with the points from the input depth map
to create a near complete 3D point cloud. To simplify the process
of registering the two sets of points, we synthesize the points from
the second depth map from the same camera pose as the input.
Figure 1 illustrates this process.

vorum.com/footwear/yeti-3d-foot-scanner
2volumental.com

Output depth map

A

Input depth map

A

Fig. 1: Depth map input/output configuration. Purple: points from
the input depth map, Green: points from the synthesized output
depth map.

Table 1: Camera pose parameters for the network input.

Pose Parameter Value Range Step
Radius (mm) 640 to 700 15
Azimuth (deg) 70to 110 or 250 to 290 1
Elevation (deg) -20to 20 1
Roll (deg) -5to5 1
2.1 Dataset

Due to a lack of freely available foot scan data, a depth map dataset
was constructed from renderings of body models from MPIl Hu-
man Shape [11] built from the CAESAR database [12]. The feet of
each body model were isolated, and virtually scanned at various
azimuth angles, elevation angles, roll angles and at varying radii
around the profile of a foot. Depth map images are rendered using
Panda3D? at a resolution of 128x128, using random camera poses
in the ranges described in Table 1, with additional Kinect noise ap-
plied [13]. A total of 8602 foot objects were available, which were
split into two sets, 80% for training and 20% for testing.

2.2 Network Architectures

Our first architecture, denoted Netl1, closely follows that used in
previous RGBD view synthesis works [8], and was used in our
previous works [9]. This network encodes information all the way
down to a compact 1 dimensional representation before decoding
the output depth map. This network does not use any batch nor-
malization [14].

Our second architecture, denoted Net2, uses an architecture
similar to ResNet-34 [10] as its encoder and decoder. Sixteen
residual blocks of two 3x3 convolutional layers are used in both
the encoder and decoder, with projection shortcuts used to match
dimensions. Up-scaling in the decoder’s residual blocks is done
using strided deconvolutional [15] layers. We do not include any
fully connected layers in Net2 in order to save parameters, as well
as to allow for more 2D spatial information to pass through the net-
work. Batch normalization was used in all layers except for the
last three residual blocks and the final deconvolution. We found
that batch normalization on the final layers made it difficult for the
output depth map pixels to take on the necessary values. This net-
work contains less parameters than Net1, but contains far more
processing at each representation size.

Our third architecture, denoted Net3, uses less residual blocks
than Net2, and does not down scale its representations to as small
a size, allowing it to have far less parameters than either Net1 or
Net2. Here we again use batch normalization everywhere except

Spanda3d.org

Table 2: Network architectures used. Abbreviations used: Con-
volution (c), Deconvolution (d), Stride of 2 (/2), Fully connected
(fc), Residual Block (res), Residual Block with deconvolutional up-

scaling (dres).

Output Size Net1 Net2 Net3
128x128 Input Input Input
64x64 c5x5,32,/2 c¢7x7,16,/2 ¢ 7x7,16,/2
- res, 16 res, 16
- res, 16 res, 16
- res, 16 res, 16
32x32 c 5x5, 32, /2 res, 32, /2 res, 32, /2
- res, 32 res, 32
- res, 32 res, 32
- res, 32 res, 32
16x16 c 5x5, 64, /2 res, 64, /2 res, 64, /2
- res, 64 res, 64
- res, 64 res, 64
- res, 64 -
- res, 64 -
- res, 64 -
8x8 c3x3,128,/2 res, 128, /2 -
- res, 128 -
- res, 128 -
4x4 ¢ 3x3, 256, /2 - -
1024 fc - -
4096 fc - -
8x8 d 3x3, 128, /2 res, 128 -
- res, 128 -
16x16 d 3x3, 64, /2 dres, 64, /2 -
- res, 64 -
- res, 64 -
- res, 64 -
- res, 64 res, 64
- res, 64 res, 64
32x32 d 5x5, 32, /2 dres, 32, /2 dres, 32, /2
- res, 32 res, 32
- res, 32 res, 32
- res, 32 res, 32
64x64 d 5x5, 32, /2 dres, 16, /2 dres, 16, /2
- res, 16 res, 16
- res, 16 res, 16
- res, 16 res, 16
128x128 d5x5, 1, /2 d7x7,1,/2 d7x7,1,/2
Output Output Output
Parameters 9,286,977 2,666,785 581,153

on the last three residual blocks and the final deconvolution. In all
three architectures, ReLU activations are used in all layers except
for the final deconvolution, which uses tanh. Our network architec-
tures are shown in Table 2.

2.3 Implementation Details

We implement our networks in Tensorflow* on a Linux machine
with an Nvidia K80 GPU. Training was done with mini-batch sizes
of 64 and the Adam optimizer [16] in all cases. We used the mean
L1 difference between the output and the ground truth pixels as the
Loss function. Net1 was trained with a learning rate of 5e-5, while
Net2 and Net3 used 5e-4.

In order to construct a complete point cloud using our networks,
we first project both the input depth map and output depth map
to world coordinate points. We then post process the points us-
ing MATLAB'’s pcdenoise function and 3D cropping. The combina-
tion of the input depth map points, and the synthesized depth map
points create a near complete overall point cloud.

“tensorflow.org

4L L A
AL A _A
AL A _A

Fig. 2: Depth map samples.
ground truth, Row 3: Net1 output depth map, Row 4: Net1 depth
map error, Row 5: Net2 output depth map, Row 6: Net2 depth
map error, Row 7: Net3 output depth map, Row 8: Net3 depth map
error.

Row 1: input depth map, Row 2:

3 Results

For each foot object in the test set, we generate 64 views to mea-
sure network performance. We evaluate performance with two
metrics. Our first metric measures the depth map error using a the
pixel-wise L1 difference between the synthesized depth map and
the ground truth. Samples of depth maps from each architecture
are shown in Figure 2 along with their distribution of error across
the image. We additionally measure the accuracy of the 3D point
cloud produced using the synthesized depth map. We use a metric
similar to that used by Luximon et al. [17]. Our metric is a two way
nearest neighbour euclidean distance measure. Were each point
in the synthesized depth map is compared using its euclidean dis-
tance to the nearest point in the ground truth and visa-versa. This
distance is averaged over the depth maps to produce an overall
point cloud error. Samples of synthesized point clouds are shown
in Figure 3. Our results are shown in Table 3.

As can be seen, Net2 and Net3 both significantly out-perform
Net1 in both metrics, while requiring less training time. The use
of residual blocks with batch normalization allows for higher learn-
ing rates reduced training time. The lack of fully connected layers
allows for smaller models with less parameters, while the residual
block skip connection allows for deeper networks, with more pro-
cessing at each representation size.

