
  

 

Abstract 

Measuring nutritional intake is a tool that is critical to the 

monitoring of health, both as an individual or of a group. It is 

especially important in the monitoring of those at risk for 

malnutrition, an issue which costs billions of dollars globally, and 

current methods used in practice are manual, time-consuming, 

and have inherent biases and inaccuracies. This study proposes a 

novel imaging system with a superpixel-based segmentation 

algorithm as part of an automated nutritional intake system. The 

study also examines three important parameters of the algorithm 

and their ideal values; region size and spatial regularization for 

superpixel segmentation, as well as spatial weighting in 

clustering. The experimental results demonstrate that the 

proposed system is effective in segmenting an image of a plate into 

its constituent foods. 

1. Introduction 

Measuring nutritional intake is vital for understanding and 

improving personal health, and is necessary to ensure that 

nutritional requirements are met [1] as malnutrition costs the 

health care industry and can lead to mortality [2]. This is especially 

important for vulnerable populations such as older adults living in 

long term care (LTC) homes; one in four older adults are at risk 

for malnutrition [3]. However, tracking intake for all LTC 

residents can be time-consuming and imprecise, which introduces 

errors into the system and often results in failure in tracking. 

An automatic quantitative nutrition tracking system to measure 

food intake may provide a powerful solution to the “pen-and-

paper” methods, which should allow a higher level of accuracy as 

well as reduce the time needed for tracking [4]. Fundamentally, 

such an imaging system must identify and separate food groups 

for tracking purposes. Such systems have been proposed, such as 

a segmentation system using Normalized Cuts based on intensity 

and colour of pixels [5]; however, this segmentation method 

included non-food items in the food classes, which led to 

inaccurate segmentation and would cause poor downstream 

nutritional analyses. In this study, a superpixel-based food group 

segmentation method was evaluated on simulated plates, with 

qualitative analyses being performed. To the best of the authors’ 

knowledge, this is the first superpixel-based image segmentation 

method used for food and nutritional tracking, and is a first step 

for the proposed Automatic Food Imaging and Nutrition Intake 

Tracking (AFINI-T) System. 

The methods section describes the methodology of the experiment 

and the steps involved in the algorithm. Following that, the results 

are discussed, with the effects of three keys parameters, region size 

and spatial regularization for superpixel segmentation and spatial 

weighting for clustering, being emphasized. The following 

discussion overviews limitations of the system and areas of future 

direction, and finally the conclusion discusses the impact of the 

experiment. 

 

2. Methods 

The proposed image processing method involves conversion from 

an image of a plate of food to a segmentation mapping which 

distinguishes between different classes of food on the plate. An 

overview of the algorithm, from the initial image to the final 

segmentation into the classes of food, is provided in Figure 1. The 

algorithm is composed of the following steps. 

 

Figure 1: Overview of the food segmentation algorithm. 

Superpixel segmentation. The image was segmented into smaller 

regions similar to a patch for the purpose of downstream clustering 

by simple iterative linear clustering (SLIC) superpixels [6]. The 

superpixel algorithm used k-means clustering to partition the 

image into regions which are more homogenous and consistent, 

based on tunable parameters for region size and spatial 

regularization. The algorithm returned labels for the region for 

each pixel of the image. Examples of the results of this superpixel 

segmentation with varying parameters are shown in Figure 3 and 

Figure 4. 

Background removal. The desired output from this stage was to 

only pass superpixels mostly comprised of food into the clustering 

algorithm. First, a circular Hough Transform [7] was used to 

remove the background outside of the plate. Then, using a 

calibration image, the superpixels that contained >50% plate, 

based on image subtraction and spectral thresholding, were 

masked out of the image. This process is shown in Figure 2. 

 

Figure 2: From left to right; a) the original image of the plate; b) the image 
after removing the background from a Hough Transform; c) the image 
after thresholding to remove the plate itself from the image. 

Median filtering. A median filter was applied to the original 

image to increase the homogeneity of the components of the 

Goldilocks and the Three Parameters:Empirically Finding the “Just Right” for Segmenting Food Images for 

the AFINI-T System 
Alexander MacLean1 

Kaylen J Pfisterer1,2 

Robert Amelard2 

 

Audrey G. Chung1 

Devinder Kumar1 

Alexander Wong1,2 

 

 

1University of Waterloo, Waterloo, Canada 
2Schlegel-UW Research Institute for Aging, Waterloo, Canada 

 

 



 

image, increasing the similarity of parts of the image that are in 

the same region and should be part of the same class, while 

maintaining the edges of objects without introducing new 

information into the image. 

Feature extraction. A 4D spectral-space feature vector of 

[a,b,γx,γy] was then extracted for each superpixel, with [a,b] being 

the normalized mean values for the chroma channels of the pixels 

contained in each superpixel after a transformation to the L,a,b 

colour space of the median filtered image, and [x,y] representing 

the coordinates for the centroid of the superpixel. The L channel 

was omitted from clustering as to only consider chroma 

information. The parameter γ is a weight that was applied to the 

spatial information, and examples of varying the γ parameter are 

shown in Figure 5. 

K-means clustering. K-means clustering [8] was performed using 

feature vectors for each superpixel to segment the image into 

classes representing each food, with the number of clusters set to 

the number of foods on the plate.  

Morphological hole-filling. A morphological hole-filling 

approach [9] was used to remove small inconsistencies in the 

clustering, under the assumption that the classes of food were 

separable and none were contained in any others. 

3. Results 

Three important parameters (region size, regularization, γ) for the 

proposed spectral-spatial superpixel segmentation method were 

qualitatively evaluated to identify accuracy and precision of 

segmentation. For each parameter, three examples of parameter 

tuning are presented to illustrate the impact of small, large, and 

empirically optimized parameter settings on the final 

segmentation. 

Figure 3 illustrates variation of the region size parameter for the 

superpixel algorithm. The larger the region size value given, the 

larger the area of each individual resulting superpixel. The region 

size parameter describes the initial size of the regions during 

superpixel segmentation, with higher values leading to larger 

regions with less homogeneity and lower values leading to smaller 

regions each with more homogeneity. Small values for the region 

size parameter (Figure 3a) led to failure to remove darker “islands” 

(e.g., marked plate labels), and the superpixels were not large 

enough to benefit from the ability of the algorithm to locate 

regions of homogeneity. Conversely, for large values for this 

parameter the outer pixels tended to contain both food and plate 

(e.g., the potatoes in Figure 3c, where the value of the parameter 

was 25). The result: the values taken for the feature vector from 

these pixels were skewed. With region size set to the empirically 

optimized value of 15 pixels as in Figure 3b, these issues were 

largely mitigated, as the pixels were large enough to be effective 

but also had a strong distinction between the food and plate, and 

ultimately led to improved clustering. 

Figure 4 shows variation of the spatial regularization parameter; 

increasing the value forced the superpixel to resemble traditional 

equal-sized pixel patches with straighter edges. Conversely, 

reducing the value resulted in superpixels with increased more 

variability in superpixel shape and size. When the spatial 

regularizer was set to small values (e.g., 0.0001 in Figure 4a), the 

algorithm created superpixels based on inhomogeneity; these 

superpixels may take any shape and thus tend to over-separate 

foods into regions. The result: over-clustering within the same 

food item. Conversely, for large values (e.g., 1.0 in Figure 4c), too 

stringent of requirements on the shape of the superpixel were 

imposed, leading to edges which were too forced and more similar 

to pixel patches thus minimizing the benefit of using superpixels 

over pixel patches. As a result, too many pixels contained both 

food and background, resulting in inaccurate removal of some 

food and poorer clustering performance. The ideal value of 0.01 

as shown in Figure 4b balanced these two pressures, creating 

superpixels that followed the natural borders of the image while 

not overfitting the differences within the foods. 

Figure 5 shows variation of the γ parameter for weighting the 

spatial components of the feature vector during clustering. Spatial 

information was used since any two regions close to each other 

were more likely to belong to the same food class; however, the 

importance of this relative spatial information needed to be tuned 

in comparison to the importance of the spectral chroma 

information. Intuitively, regions in closer proximity to each other 

were more likely to be related to each other than more distant 

regions (i.e., two superpixels on adjacent edges of different foods 

were more closely related than two superpixels on opposite ends 

of the same food item). For very small values of the spatial weight 

parameter (i.e., weighing spatial information too low), as in Figure 

5a where the value was 0.05, there was a greater risk of ignoring 

the relevance of spatial proximity. However, for very large values 

of spatial weighing (e.g., Figure 5c with a value of 2.0), spatial 

proximity dominated the clustering algorithm. Using the 

empirically found γ value of 0.4 appeared to provide the best 

middle ground, as shown in Figure 5b, as the spatial information 

helped to improve the homogeneity of the clustering while not 

being so large as to overpower the spectral information. 

4. Discussion 

The algorithm was developed specifically for images as shown in 

Figure 2a, where the food is located on a circular, white plate, and 

calibration images with an empty plate from the same 

experimental setup are available. Thus, while the superpixel 

segmentation and k-means clustering should function similarly 

under different conditions, the processing to remove the 

background of the image will need to be generalized to allow it to 

work in other varying environments. This, along with general 

improvements to the efficacy and precision of the background 

removal, is one of the primary directions of future research. 

5. Conclusion 

The results provide evidence that the algorithm is effective in 

segmenting an image of a plate into the food items present. Tuning 

the region size and spatial regularization parameters for superpixel 

segmentation and the spatial weighting parameter for feature 

extraction and clustering were critical for the development of the 

algorithm, and the ideal empirical values for the parameters are 

15, 0.01, and 0.4 respectively. Future work will focus on 

refinement of this algorithm with attention to generalizability 

(e.g., for other plates and conditions) with fewer constraints. 
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Figure 3: Results of superpixel segmentation, with variation of the region size parameter with a constant spatial regularization parameter of 0.01. 
From left to right, the values of the parameter are: a) 5, b) 15 (ideal), and c) 25. 

 

Figure 4: Results of superpixel segmentation, with variation of the spatial regularization parameter with a constant region size parameter of 15. From 
left to right, the values of the parameter are: a) 0.0001, b) 0.01 (ideal), and c) 1. 

 

Figure 5: Results of k-means clustering and morphological hole-filling, with variation of the spatial weighting parameter for feature extraction. 
From left to right, the values of the parameter are: a) 0.05, b) 0.4 (ideal), and c) 2.0. 
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