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Abstract

We explore the role of scale for improved feature learning in con-
volutional networks. We propose multi-neighborhood convolutional
networks, designed to learn image features at different levels of
detail. Utilizing nonlinear scale-space models, the proposed multi-
neighborhood model can effectively capture fine-scale image char-
acteristics (i.e., appearance) using a small-size neighborhood, while
coarse-scale image structures (i.e., shape) are detected through
a larger neighborhood. The experimental results demonstrate the
superior performance of the proposed multi-scale multi-neighborhood
models over their single-scale counterparts.

1 Introduction

In recent years the computer vision community has witnessed the
success of “learned” image descriptors against engineered hand-
crafted features for image classification. These feature learning
models are generally multi-layer architectures with different weight-
sharing schemes between layers, where the Convolutional Neural
Network (CNN) [2] is the most widely-used model of this type.

The conventional convolutional networks used for image clas-
sification are single-neighborhood, in the sense that for each pixel
only a single-size neighborhood is considered, and single-scale, in
the sense that only the input image at a single level of detail is used
for extracting feature.

In this paper we present an extension of deep convolutional
models which can more explicitly capture features at different lev-
els of details through the use of non-linear scale-space models [1].
Our proposed multi-neighborhood model captures fine-scale im-
age characteristics through a small-size neighborhood and coarse-
scale image characteristics by exploring a wider range of depen-
dencies over a larger neighborhood. Finally, we will demonstrate
how one can train these models to get a higher accuracy without
increasing training cost.

2 Multi-Neighborhood Architectures

In order to capture a richer set of features using a multi-scale con-
volutional architecture, it will be essential to have neighborhoods
of different sizes, consequently we need a multi-neighborhood ar-
chitecture with small/large neighborhoods at fine/coarse scales, re-
spectively.

Based on nonlinear scale-space models [1], our purpose is to
design a multi-scale multi-neighborhood convolutional architecture
with feature detectors sensitive over a range of scales. Our base-
line solution, the Uniform Multi-Scale architecture, is a set of par-
allel feature extractors each with the same architecture applied on
images of the same size but at different levels of details. The final
vector is obtained by concatenating the extracted features.

The second proposal, Multi-neighborhood in Input architecture,
is based on down-sample the representation of the input image at
coarser scales by a larger factor. The final strategy is to introduce
aspects of scale in pooling. In the Multi-neighborhood in Pooling
architecture, all of the input representations are of the same size,
but the difference appears in the pooling ratio; larger pooling size
for coarser scales.

The proposed multi-scale architectures are composed of a set
of parallel feature extractors applied to the representations of the
input image at an ensemble of scales. Our strategy to train a set of
parallel single-scale networks is to train the network for scale 0 (i.e.,
the original input representation) and then to reuse its learned pa-
rameters for all of the single-scale networks. Therefore, the compu-
tational complexity of a multi-scale architecture is unchanged from
single-scale networks.

CNN Architecture No. of Accuracy
Scales %

Single Scale: scale 0 1 74.78
Uniform Multi-scale 5 74.98
Multi-neigh. Input 5 76.15
Multi-neigh. Pooling 5 75.77

Table 1: Performance for supervised feature learning.

3 Experiments

Given the scalable learning algorithm, we evaluate the effective-
ness of the three proposed multi-scale architectures for image clas-
sification, compared to each other and to an equivalent single-scale
architecture. For the experiments the standard CIFAR10 data set
is used.

First we focus on unsupervised feature learning. Figure 1 shows
the recognition performance of different architectures on the CI-
FAR10 data set as a function of the number of learned filters. Ob-
serve that, with the same training cost, all of the three multi-scale
architectures outperform the single-scale counterpart, clearly demon-
strating the advantage of extracting scale-dependent or detail-dependent
image representations. Among the multi-scale models, both of the
multi-neighborhood architectures (i.e., in input and in pooling) offer
a better performance than the uniform model, especially for larger
numbers of filters.

Also, we examine the proposed multi-scale architectures for su-
pervised feature learning. In this case, at each scale a CNN with
two layers of convolution is used. Table 1 illustrates the positive ef-
fect of extracting features at multiple scales. Among the proposed
multi-scale models, the multi-neighborhood architectures gener-
ate more discriminative features due to exploring a wider range
of dependencies over a larger neighborhood. Also, for multi-scale
models observe how the scalable learning strategy substantially re-
duces the training cost (i.e., the number of learned filters) while the
recognition rate is still superior to that of their single-scale counter-
part. Note that these results are obtained using a simple base-line
two-layer network and can be applied to the state of the art models
without loss of generality.
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Fig. 1: Performance for unsupervised feature learning.


