patient care and if new instrumentation can be demonstrated to be effective, we should welcome it.

In conclusion, I would propose that we should not be prepared to discount the advantages afforded to us by technology, particularly when clinical evidence is supportive, because our "seat of the pants" impression is that professional intuition or an "element of luck" will somehow solve the problem. If optometry is not prepared to acknowledge the fact that new instrumentation can provide the tools to assist us in providing "state of the art" vision care, then we may find ourselves delivering the "Model-T" of eye care.

Rodger Pace, O.D., F.A.A.O.
Associate Chief of Clinics
School of Optometry, University of Waterloo

References

3. Yellen, M. Sherman, S. Static vs dynamic visual field evaluation; with emphasis on the utility of the Friedmann Visual Field Analyzer, JAOA 50:95-99, 1979
5. Friedmann, A. Serial analysis of changes in visual field defects employing a new instrument to determine the activity of diseases involving the visual pathway, Ophthalmologica 152:1-12, 1966.

Standards for Protective Eyewear

The standards for protective eyewear recently published by the Canadian Standards Association apparently have given some optometrists cause for concern. A number of associations are questioning what would appear to be a serious omission from the standards, namely the thickness of lenses required to meet CSA approval.

No thickness was stipulated by CSA; as long as the lenses will withstand what has been set out for non-fracture, they are acceptable. It must be provided by the laboratory as an essential of the prescription.

It is hoped that this will serve to provide optometrists and associations with an interpretation of what CSA sought to accomplish for both the present technology and that of the future, while recognizing that changes in the standards can be made should the need arise.

Garson Lecker O.D., F.A.A.O.
Sydney, N.S.