Nutrition and Behavior as it Applies to Systemic and Ocular Disease²⁰⁰⁹

Specific Nutrients and Their Relevance to Disease

BY LARRY J. ALEXANDER, OD, FAAO

Constituents of a Diet that Support Healthy Systemic and Ocular Function

Vitamin C

inus Pauling brought Vitamin C to the forefront of healthcare by advocating mega-doses of Vitamin C to fight colds and minimize the risk of cancer. Even recently studies continue to corroborate his presumptions. The new information relates that the group most prone to enjoy the benefits of Vitamin C for the common cold are those individuals under heavy short-term physical stress. 280 Vitamin C is a water-soluble antioxidant working in concert with Vitamin E. Vitamin C must be obtained from the diet with absence creating the disease, scurvy. Early symptoms of scurvy include fatigue resulting from lowered levels of carnitine and norepinephrine.281

Vitamin C (Ascorbic Acid) is required for collagen synthesis, the synthesis of norepinephrine, carnitine and the conversion of cholesterol to bile acids. The overwhelming fame of Vitamin C is associated with its role as an antioxidant for the protection of molecules from damage by free radicals and reactive oxygen species (ROS) created during metabolism and toxin exposure such as smoking which creates oxidative stress.

IOP can be reduced by increasing concentrations of absorbate in the aqueous humor. This can be done by supplementing with vitamin C (0.5 gm/kg body weight). The IOPlowering actions of vitamin C occur by improving collagen formation, increasing blood osmolarity, improving aqueous outflow, inhibiting lipid peroxidation and raising glutathione levels.282-284 Vitamin C is known as a very active antioxidant that also creates an increase in Immunoglobulin A (IgA) and Immunoglobulin M (IgM) within the framework of the immune system.

There is the suggestion that vitamin supplementation suppresses leukocyte adhesion and thus endothelial dysfunction, associated with increase in iris blood flow perfusion in diabetes. It has also been suggested that the antioxidant vitamin C may be a therapeutic agent for preventing diabetic retinopathy. ²⁸⁵ Diabetes mellitus is associated with increased oxidative stress. One study suggests that supplementation with antioxidant vitamins C and E probably plays an important role in improving the constitution of the ocular surface in the patient with diabetes.286 Plasma vitamin C levels are inversely associated with the risk for type 2 diabetes. There is an inverse association between fruit and vegetable intake and the risk for type 2 diabetes, with a greater effect for fruit intake.²⁸⁷ Regarding Vitamin C as a part of an anti-Age Related Macular Degeneration formula, it has been shown that blue light could induce DNA damage to RPE cells but vitamin C could protect the RPE cells from the blue light-induced DNA damage.²⁸⁸ Regarding anterior segment, the addition of ascorbic acid to the irrigation solution reduced the amount of endothelial cell loss during phacoemulsification by approximately 70%.289 Likewise a significantly reduced mean level of ascorbic acid was observed in the aqueous humor of patients with exfoliation syndrome in one study. In view of the fact that ascorbic acid is a major protective factor against free radical action, a role for free radical action is suggested as a possible factor in the genesis of exfoliation syndrome.290

The utilization of Vitamin C for the prevention of cataract has long been in the literature. While studies continue to be controversial one

study showed the risk for cataract is 60% lower among persons who use multivitamins or any supplement containing vitamin C or E for more than 10 years. However the use of vitamins for shorter duration is not associated with reduced risk for cataract.291 Another study demonstrated that Vitamin C reduced the risk of cortical cataracts in women aged 60 years or less and carotenoids reduce the risk of posterior subcapsular cataract in women who have never smoked.²⁹² Research by the Nutrition and Vision Project (NVP), a cooperative effort of Harvard and Tufts University scientists, has found that women who consume higher-thanrecommended doses of vitamin C may lower their risk for more than one type of cataract.²⁹³

Immune system activities of Vitamin C are extensive. Vitamin C enhances prostaglandin E1 (PGE1) and thus assists in the regulation of T cell function. Vitamin C increases killer T cell activity and B cell function. It also increases glutathione levels. It is known to protect against viruses by strengthening connective tissue and neutralizing toxins released by phagocytes. The RDA for Vitamin C is 100 to 125 mg/day. The tolerable upper level for vitamin C is established at 2000 mg/day.²⁹⁴ Daily supplementation of vitamin C is recommended with consideration for the increased risk for kidney stones. 295 Recommended levels vary considerably with the sources and care should be exercised when evaluating these variables.

Potential harms of all variations of high-dose antioxidant supplementation must be considered. These may include an increased risk of lung cancer in smokers (betacarotene), kidney stones, heart failure in people with vascular disease or diabetes (vitamin E) and hospitalization for genitourinary conditions (zinc).

Vitamin D

Vitamin D is a fat-soluble vitamin (in actual fact a steroid hormone) essential for promoting calcium absorption in the gut and maintaining adequate serum calcium and phosphate concentrations to enable normal mineralization of bone and to prevent hypocalcemic tetany. It is also needed for bone growth and bone remodeling.²⁹⁶ Severe Vitamin D deficiency in infants and children results in rickets with growth plate enlarging without the support of mineralization of the long bones. This results in bowing. Vitamin D3 (cholecalciferol) can be synthesized by humans in the skin upon exposure to ultraviolet-B (UVB) radiation. It can also be obtained from the diet, but is fat-soluble. Sufficient vitamin D prevents rickets in children and osteomalacia in adults and, together with calcium, vitamin D helps protect older adults from osteoporosis. A quantitative meta-analysis recently concluded that at a mean daily dose of vitamin D of 528 IU there was a significant decrease in death (7%) to 8%) for those using vitamin D supplement. 297

It has been estimated that 50% to 60% of people do not have satisfactory vitamin-D status, likely related to urbanization, demographic shifts, decreased outdoor activity, air pollution and global dimming, as well as decreases in the cutaneous production of vitamin D with age. One prospective cohort study demonstrates for the first time that low 25-hydroxyvitamin-D and 1,25-dihydroxyvitamin-D levels are associated with increased risk in allcause and cardiovascular mortality compared with patients with higher serum vitamin-D levels.298-300 Another recent study found that 40.7% of patients with chronic migraine were deficient in 25-hydroxyvitamin D. The study also showed that the longer individuals had chronic migraine, the more likely they were to be vitamin D deficient. 301

Vitamin D deficiency is widespread among patients being treated for osteoporosis, and such deficiency should be treated aggressively.³⁰² Recent reports have increased the awareness of a much broader role for vitamin D. Vitamin D is involved in differentiation of tissues during development and in proper functioning of the immune system. Over 900 different genes are now known to be able to bind the vitamin D receptor, through which vitamin D mediates its effects. The majority of effects of vitamin D in the body are related to the activity of 1,25(OH)2D including 50 specific genes. 1,25(OH)2D also inhibits proliferation and stimulates differentiation of cells as well as having activity as an immune

system modulator. It is even suggested that 1,25(OH)2D may enhance innate immunity and protect against many autoimmune disorders.³⁰³⁻³⁰⁴ Evidence also continues to accumulate suggesting a beneficial role for vitamin D in protecting against autoimmune diseases, including multiple sclerosis and type I diabetes, as well as some forms of cancer, particularly colorectal and breast.305-306 Most biological effects of Vitamin D are mediated through a nuclear transcription factor VDR.307-309 A recent article concludes that there is ample biological evidence to suggest an important role for vitamin D in brain development and function, and that supplementation for groups chronically low in vitamin D is warranted. Since Calcium is so linked to neurodegeneration, one may hypothesize a link between Vitamin D, the immune system and the negative actions of the calcium ion.³¹⁰

Hypovitaminosis D, especially at levels less than 30 ng/mL, is associated with an increased risk for Myocardial Infarct in men. Vitamin D is likely to exert its effect on the risk for cardiovascular disease via vascular smooth muscle cell proliferation, inflammation, vascular calcification, the renin-angiotensin system, and blood pressure.³¹¹⁻³¹² The rate of cardiovascular disease-related deaths is greater at higher latitudes, lower at higher altitudes, and higher in the winter months - all associations related to vitamin D deficiency. The vitamin D axis affects vascular smooth muscle cell proliferation, inflammation, vascular calcification, the renin-angiotensin

system, and blood pressure, all of which affect cardiovascular disease and MI risk, but evidence linking hypovitaminosis D and MI is sparse. Current recommendations for vitamin D are 200 to 600 IU per day, which may be inadequate to prevent cardiovascular disease. Another recent study demonstrated that use of calcitriol in patients with stage III or IV Chronic Kidney Disease (CKD) with hyperparathyroidism is associated with reduced risk for mortality and long-term dialysis and that the use of calcitriol in patients with stage III or IV CKD with hyperparathyroidism is associated with increased risk for hypercalcemia. CKD affects more than 10% of the US population with disturbances in vitamin D and mineral metabolism. 313

For the first time Vitamin D deficiency has been linked to a poorer outcome in breast cancer.314 Risk factors for Vitamin D deficiency include: dark skin, sunscreens, clothing covering the majority of the skin, increasing age, gastrointestinal disorders associated with fat malabsorption, obesity, bariatric surgery, ill-advised dieting, and a poor diet. The results of most clinical trials suggest that vitamin D supplementation can slow bone density losses or decrease the risk of osteoporotic fracture in men and women.315-318 but the issue is still very controversial. Indeed, vitamin D3 (cholecalciferol) is now known to be greater than three times more potent than vitamin D2.319-320 In order for vitamin D supplementation to be effective in preserving bone health, adequate dietary calcium (1,000 to

1,200 mg/day) should also be consumed. In general adults should take a supplement that supplies 400IU of vitamin D3 daily and should have 10-15 minutes of sun exposure at least three times a week as close to noon as possible. Should sunlight exposure be unattainable, 800IU of D3 is advised. In reality it is best to aim for serum levels of 80 nmol/L to minimize risk of disease. Toxicity-hypercalcemia can lead to bone loss, kidney stones, and calcification of the heart and kidneys. Because the consequences of hypervitaminosis D and ensuing hypercalcemia are severe, the Food and Nutrition Board established a very conservative upper limit of 2,000 IU/day (50 mcg/day) for children and adults 321 while other reports suggest 10,000IU is tolerated.322-323

A recent study, while equating low vitamin D levels to an increased risk of mortality, concludes that they would not advise people to take supplements without knowing their vitamin-D levels and that the most sensible advice for those wanting to ensure their levels remain optimal is to spend 10 to 15 minutes per day in the sun and to eat vitamin-D-fortified foods, such as milk and oily fish.³²⁴

More recent studies relate the importance of Vitamin D3 to the eyes. Based on encouraging preliminary findings, more study is recommended on the benefit of antioxidant supplements for age-related macular degeneration and of selenium for cancer prevention. In contrast to the state of the art for antioxidant supplements, there is strong and compelling support for the health benefits of supplements of Vitamin D and calcium when intake/status of these nutrients is not optimal. Thus, specific recommendations for these supplements in older adults are warranted. 325 It has been shown that Levels of serum vitamin D were inversely associated with early AMD but not advanced AMD and that milk intake was inversely associated with early AMD. Coincidently fish intake was inversely associated with advanced AMD in this report. It was reported that consistent use vs nonuse of vitamin D from supplements was inversely associated with early AMD only in individuals who did not consume milk daily.326 Carrying this one step further, it was found that Higher levels of Bone Mineral Density (BMD) may be associated with lower risk for ARM. The underlying mechanism is unknown, although BMD may be a marker for lifetime endogenous estrogen exposure.327

Vitamin D is present in only a few foods (e.g. fatty fish), and is also added to fortified milk, but our supply typically comes mostly from exposure to ultraviolet rays (UV) in sunlight. UV from the sun converts a biochemical in the skin to vitamin D, which is then metabolized to calcitriol, its active form and an important hormone. Formation of vitamin D by UV can be 6 times more efficient in light skin than dark skin, which is an important cause of the known widespread vitamin D deficiency among African Americans living in northern latitudes. The issue of how Vitamin D relates

Vol 71 No 5

October / octobre 2009

to the general and ocular health of individuals is evolving with research outstripping one's ability to "keep up." A recent AARP magazine presented the following as cited by Michael F. Holick PhD, MD of the Vitamin D, Skin and Bone Research Laboratory of Boston University Medical Center.

"To get the vitamin D value of ten minutes' exposure to sunlight, you'd have to eat... 6 ¹/₂ pounds of shitake mushrooms or 150 egg yolks or 3 ³/₄ pounds of fresh farmed salmon or 30 servings of fortified cereal or 2 1/6 pounds of sardines or 30 cups of fortified orange juice." Do the calorie count on that exercise and realize that food sources of vitamin D actually complicate the issue.

Vitamin E

Alpha-tocopherol is the only form of Vitamin E in the human body and is the form recommended for supplementation. Vitamin E is the body's primary fat-soluble antioxidant and it must be obtained from food or supplements. As an antioxidant Alpha-tocopherol neutralizes free radicals then must be transformed back to Alpha-tocopherol with the assistance of other antioxidants such as Vitamin C. Vitamin E travels through the body in low-density liporoteins which protect them from from oxidation. Vitamin E is known to affect the expression and activity of immune and inflammatory cells, to enhance vasodilation and to inhibit the activity of the cell signaling molecule protein kinase C (PKC). Modulating the PKC

pathway may be relevant in glaucoma as PKC inhibitors relax the trabecular meshwork and affect matrix metalloproteinase and PGF2 alpha.³²⁸ It has been shown that retinal vascular dysfunction due to hyperglycemia was prevented by vitamin E.³²⁹ It has also been reported that vitamin E as d-alpha tocopheryl acetate in 300 to 600 mg/day dosages improved blood flow and reduced visual field change in glaucomatous eyes.³³⁰

Alpha-tocopherol at 400 to 800 IU per day is an effective antioxidant with fame in reducing the oxidation of low-density lipoproteins to prevent formation of foam cells and thus atherosclerotic plaques. Most interest in vitamin E surrounds the cardiovascular issue. While the studies are variable most point to the fact that vitamin E consumption is associated with some degree of risk reduction in cardiovascular disease with up to 90% of Americans not consuming the RDA of 15 mg/day. 331-334 Results of trials of intervention with vitamin E in vascular disease have been totally non-definitive. 335-337

In the framework of diabetes, the studies are likewise inconsistent and contradictory.³³⁸⁻³⁴⁰ One study does however state that oral vitamin E treatment appears to be effective in normalizing retinal hemodynamic abnormalities and improving renal function in type 1 diabetic patients of short disease duration without inducing a significant change in glycemic control. This suggests that vitamin E supplementation may provide an additional benefit in

reducing the risks for developing diabetic retinopathy or nephropathy.³⁴¹

Data from the NHANES 1999-2000 indicate that mean dietary intake of alpha-tocopherol is 6.3 mg/ day and 7.8 mg/day for women and men, respectively.³⁴²⁻³⁴² These intakes are well below the current intake recommendations of 15 mg/day. As previously stated it is estimated that more than 90% of Americans do not meet daily dietary recommendations for vitamin E.³⁴⁴

Alpha-tocopherol has been shown to enhance the immune system. Additionally, it works synergistically with Omega 3 Fatty Acids to protect cells from tumor necrosis factor alpha (TNF-a) induced apoptosis. Supplementation with Vitamin E has also been shown to increase B cell activity in the aging patient. ³⁴⁵⁻³⁴⁶ Vitamin E also works synergistically with Vitamin C to reduce inflammatory prostaglandins and increase T cells, IL-2 and tumor necrosis factor beta (TNF-B).

In a prospective observational data from a large cohort of female health professionals, higher dietary intakes of lutein/zeaxanthin and vitamin E from food and supplements were associated with significantly decreased risks of cataract. ³⁴⁷ Of interest, a recent study points to the fact that results demonstrated that there was no significant difference between the 600 mg vitamin E and placebo groups in the incidence of cataract when vitamin E was the only intervention.³⁴⁸ While this might surprise some, nutrition and

health are a combination of many elements. In the realm of ARMD, one study showed evidence that antioxidant (beta-carotene, vitamin C, and vitamin E) and zinc supplementation slowed down the progression to advanced AMD and visual acuity loss in people with signs of the disease, but no evidence that vitamin E or beta-carotene prevented AMD. ³⁴⁹⁻³⁵¹ Health is not a single item but rather a cornucopia of actions and these two contradictory studies point to that.

Upper levels for safety of consumption of vitamin E are established by the Food and Nutrition Board of the Institute of Medicine to minimize hemorrahage for alphatocopherol supplements are 1,000 mg/day of alpha-tocopherol in any form (equivalent to 1,500 IU/day of RRR-alpha-tocopherol or 1,100 IU/day of all-rac-alpha-tocopherol). One meta-analysis reported that to reduce the risk of any disease that 2000 IU/day were necessary to reduce the risk by 6%.352 Other studies found no evidence of the decrease of the risk of death with vitamin E supplementation.353-355

Drug interactions must be taken into account realizing that hemorrhage at excessive dosages is a potential issue. Any pharmaceutical agents, foods or supplements such as gingko biloba should raise the caution of interaction.

Scientists at the Linus Pauling Institute in Oregon feel there exists credible evidence that taking a supplement of 200 IU (134 mg) of natural source d-alpha-tocopherol

13

(RRR-alpha-tocopherol) daily with a meal may help protect adults from chronic diseases, such as heart disstroke, neurodegenerative ease, diseases, and some types of cancer. The amount of alpha-tocopherol required for such beneficial effects appears to be much greater than that which could be achieved through diet alone. ((lpi.oregonstate. edu) Controversy reigns with recommendations on Vitamin E and any dosages beyond RDA should be carefully considered in view of other health and nutritional issues.

Natural sources of alpha-tocopherol include olive oil, sunflower oil, nuts, whole grains, green leafy vegetables but usually provide less than the RDA of 15 mg/day of RRRalpha-tocopherol.³⁵⁶ Supplements made from entirely natural sources contain only RRR-alpha-tocopherol (also labeled d-alpha-tocopherol). RRR-alpha-tocopherol is the isomer preferred for use by the body, making it the most bioavailable form of alpha-tocopherol. Synthetic alphatocopherol is less bioavailable and only half as potent. The formulas for conversion to the RRR form are:

- RRR-alpha-tocopherol (natural or d-alpha-tocopherol):
- IU x 0.67 = mg RRR-alphatocopherol
- all-rac-alpha-tocopherol (synthetic or dl-alpha-tocopherol):
- IU x 0.45 = mg RRR-alphatocopherol.

Lutein/Zeaxanthin

The yellow color of the macula lutea is due to the presence of the carotenoid pigments lutein and zeaxanthin. In contrast to human blood and tissues, no other major carotenoids including Beta-carotene or lycopene are found in this tissue.³⁵⁷ The associations between MP density and serum lutein, serum zeaxanthin, and adipose lutein concentrations are stronger in men than in women.³⁵⁸

A number of studies intended to examine trends in a population suggest a link between increased lutein and decreased risk of eye disease:

In 1994, a National Eye Institute (NEI)-supported study indicated that consumption of foods rich in carotenoids — particularly green, leafy vegetables such as collard greens, kale, and spinach — was associated with a reduced risk of developing macular degeneration.³⁵⁹

In 1999, data from the Nurses Health Study showed a reduced likelihood of cataract surgery with increasing intakes of lutein and another carotenoid — zeaxanthin. ³⁶⁰

In 1999, the Health Professionals Follow-up Study found a trend toward a lower risk of cataract extraction with higher intakes of lutein and zeaxanthin. ³⁶¹

In 1999, a follow-up to an NEIsupported population-based study called the Beaver Dam Study — concluded that people with diets higher in lutein and zeaxanthin had a lower risk of developing cataract. ³⁶²

In 2001, data from the Third National Health and Nutrition Examination Survey reported that higher intakes of lutein and zeaxanthin among people ages 40-59 may be associated with a reduced risk of advanced AMD.³⁶³ Conversely, in 1998, the Beaver Dam Study found no significant association between the risk of either early or advanced AMD in groups that had either the highest intakes of lutein and zeaxanthin or the lowest intakes of lutein and zeaxanthin. The study researchers caution that generally, the consumption of lutein and zeaxanthin in this population may have been too low to have had an impact on the risk of AMD. ³⁶⁴⁻³⁶⁵

In the 2004 LAST (Lutein Antioxidant Supplement Trial) study, 90 AMD patients were supplemented daily with an OcuPower supplement capsule containing 10 mg of crystalline FloraGLO lutein, 10 mg lutein plus a mixed antioxidant formula, or placebo for 12 months. The average American ingests one to two mg of lutein daily. Patients ingesting the lutein supplement experienced significant improvements in several objective measurements of visual function including glare recovery, contrast sensitivity, and visual acuity vs. placebo. Patients also experienced a 50% increase in macular pigment density relative to those on placebo.366

In the 2007 LAST study it was found that individuals with the lowest Macular Pigment Optical Density (MPOD) and in greatest need of supplementation, were also likely to benefit from lutein or the lutein plus antioxidant.³⁶⁷

Another study evaluated a total of 1802 women from ages 50 to 79. These women were described as having dietary and serum levels of lutein and zeaxanthin either above the 78th (high) or below the 28th (low) percentile. The prevalence of nuclear cataract was 23% lower in the high-diet group compared with the low-diet group. Furthermore, those in the highest quintile were 32% less likely to have a nuclear cataract compared with the lowest quintile. ³⁶⁸

Higher dietary intake of lutein/ zeaxanthin was independently associated with decreased likelihood of having neovascular AMD, geographic atrophy, and large or extensive intermediate drusen.369-370 In non-advanced AMD eyes, a selective dysfunction in the central retina (0 degrees - 5 degrees) can be improved by the supplementation with carotenoids and antioxidants. No functional changes are present in the more peripheral (5 degrees - 20 degrees) retinal areas.³⁷¹ It has been shown that the synergistic action of zeaxanthin and vitamin E or C found in one study demonstrates the importance of the antioxidant interaction in efficient protection of cell membranes against oxidative damage induced by photosensitized reactions.372

One report suggests that lutein and zeaxanthin (the only carotenoids found in the lens) may retard aging of the lens.³⁷³ Another reports that observations indicate dietary modulation of diabetic retinopathy risk may be possible by increasing intakes of lutein and lycopene-rich foods.³⁷⁴ While the studies continue to be both prolific and very controversial very interesting conclusions have been drawn in juxtaposition. On the basis of one evidencebased review, the FDA concluded

that no credible evidence exists for a health claim about the intake of lutein or zeaxanthin (or both) and the risk of age-related macular degeneration or cataracts.375 Another study states that a higher dietary intake of lutein/zeaxanthin was independently associated with decreased likelihood of having neovascular AMD, geographic atrophy, and large or extensive intermediate drusen.376 A contrary study found only alpha-tocopherol and betacryptoxanthin were related to late AMD as single antioxidants. On the other hand, the carotene and carotenoid families as a combination of antioxidants were protectively associated with late AMD. No relationship was found between serum antioxidants and early AMD. Our findings support the hypothesis that a combination of serum antioxidants obtained from the traditional Japanese diet is protective for late AMD, but not for early AMD.³⁷⁷ Further controversy continues with finding stating that persons with intermediate age-related macular degeneration or advanced age-related macular degeneration (neovascular or central geographic atrophy) in one eye should consider taking the AREDS-type supplements. Further evaluation of nutritional factors, specifically, lutein/zeaxanthin and omega-3 fatty acids will be tested in a multicenter controlled, randomized trial — the Age-Related Eye Disease Study 2 (AREDS2).³⁷⁸

No one can even accurately estimate the RDA of Lutein. One study cites the fact that macular concentration of lutein and zeaxantin decreases with age, what exacerbates harmful effect of blue light on photoreceptors. Lutein and zeaxantin act as a filter of the high energy blue light. Besides, these carotenoids are strong antioxidants and neutralize light-generated free radicals. Plant foods are the exclusive dietary sources of the carotenoids. Their average intake in the European countries is several times lower than 6 mg daily, which is the estimated recommended intake.379 One study is bold enough to say that elderly human subjects with and without AMD can safely take supplements of lutein up to 10 mg/d for 6 months with no apparent toxicity or side effects.380

One study covers the ground pretty well stating that observational and clinical trials support the safety of higher intakes of the phytochemicals lutein and zeaxanthin and their association with reducing risks of cataracts in healthy postmenopausal women and improving clinical features of AMD in patients. Additional phytochemicals of emerging interest, like green tea catechins, anthocyanins, resveratrol, and Ginkgo biloba, shown to ameliorate ocular oxidative stress, deserve more attention in future clinical trials. Obtuse, yet obtuse.381 Yet another spin, The carotenoid zeaxanthin accumulates in the human macula lutea and protects retinal cells from blue light damage.

Thus, consumption of zeaxanthin-rich potatoes significantly increases chylomicron zeaxanthin concentrations suggesting that potentially such potatoes could be used as an important dietary source of zeaxanthin.382 Another study chimes in with the assessment that after multivariate adjustment for potential confounders 1980 energy-adjusted intakes of alpha-carotene, beta-carotene, lycopene, total retinol, total vitamin A, and total vitamin E were significantly inversely related to the prevalence of pigmentary abnormalities (PA). Furthermore, increasing frequency of consuming foods high in alpha-or beta-carotene was associated with lower odds of Pigmentary Abnormalities. Alluding to the impact of multiple antioxidants on ARMD.³⁸³

Another interesting historical twist has presented in the nutritional arena as related to lutein. One report states that concentrations of serum lutein 26% and zeaxanthin 38% increased after 5-wk of 1 egg/d compared with the phase prior to consuming eggs. Serum concentrations of total cholesterol, LDL cholesterol, HDL cholesterol, and triglycerides were not affected. These findings indicate that in older adults, 5 wk of consuming 1 egg/d significantly increases serum lutein and zeaxanthin concentrations without elevating serum lipids and lipoprotein cholesterol concentrations.384 Another report goes on to say for these reasons, dietary recommendations aimed at restricting egg consumption should not be generalized to include all individuals (70% of the population experiences a mild increase or no alterations in plasma cholesterol concentrations when challenged with high amounts of dietary cholesterol (hyporesponders). It appears that diverse healthy populations experience no risk in developing coronary heart disease by increasing their intake of cholesterol but, in contrast, they may have multiple beneficial effects by the inclusion of eggs in their regular diet.385 In regard to the potential negative cardiovascular risk other studies suggest as well a potential contribution of lutein and zeaxanthin to the prevention of heart disease and stroke. It is worth noting that recommendations to consume foods rich in xanthophylls are consistent with current dietary guidelines. Lutein and zeaxanthin are xanthophyll carotenoids found particularly in dark-green leafy vegetables and in egg yolks. They are widely distributed in tissues and are the principal carotenoids in most tissue throughout the body.386-387 In conclusion, the lutein bioavailability from egg is higher than that from other sources such as lutein, lutein ester supplements, and spinach.³⁸⁸

The most provocative information to come along in a while is the relationship of Omega 3 fatty acids to the entire process of macular degeneration, ocular disease and systemic disorders. While these are not covered in detail here, it is important to understand the concept of inflammation and how it contributes to ARMD and ocular disorders. One study's objective was to determine the effects of lutein (12 mg/d)and DHA (800 mg/d) on their serum concentrations and macular pigment optical density (MPOD) Lutein supplementation increased MPOD eccentrically. DHA resulted in central increases. These results may be due to changes in lipoproteins. Lutein and DHA may aid in prevention of age-related macular degeneration.389 Another study corroborates the fact that n-3 Fatty acids, particularly docosahexaenoic acid (DHA), are highly concentrated in brain and retinal tissue and may prevent or delay the progression of dementia and AMD. Low dietary intakes and plasma concentrations have been reported to be associated with dementia, cognitive decline, and AMD risk. They go on to reports that their own unpublished observations from the Framingham Heart Study suggest that > or =180 mg/d of dietary DHA (approximately 2.7 fish servings/wk) is associated with an approximately 50% reduction in dementia risk. At least this amount of DHA is generally found in one commercially available 1-g fish oil capsule given daily.³⁹⁰ Further information regarding inflammation and AMD demonstrated that Linolenic acid was positively associated with risk of AMD docosahexaenoic acid (DHA) had a modest inverse relation with AMD and that >4 servings of fish/ wk was associated with a 35% lower risk of AMD compared with < or = 3 servings/mo. Also total fat intake was positively associated with risk of AMD. The conclusion was a high intake of fish may reduce the risk of AMD.³⁹¹ Likewise higher levels of serum antioxidants vitamin C and lutein/zeaxanthin and higher fish intake were associated with lower serum C-Reactive Protein (CRP) levels, whereas serum vitamin E, smoking, and increased body mass index

were associated with increased CRP. Furthermore, serum vitamin E, serum alpha-carotene, and dietary intake of antioxidants and vitamin B6 were associated with lower levels of plasma HCY, whereas hypertension was associated with increased HCY. C-reactive protein and HCY levels are related to traditional dietary and behavioral factors associated with age-related macular degeneration. ³⁹² One more study corroborates the relationship stating that a higher frequency of fish consumption was associated with decreased odds of late ARM. Subjects with higher energyadjusted intakes of cholesterol were significantly more likely to have late ARM. The amount and type of dietary fat intake may be associated with ARM.393

With review of the issues of lutein, ambiguity reigns. One report advocates that vitamins C and E, and lutein/zeaxanthin should be included in our theoretically ideal ocular nutritional supplement.394 Another understates saying that until scientifically sound knowledge is available we recommend for patients judged to be at risk for AMD to: alter their diet to more dark green leafy vegetables, wear UV protective lenses and a hat when outdoors. 395 Lutein and zeaxanthin do not exist in a vacuum and the entire issue of health is multifactorial. Diet looms as critically important in the genesis of all disease and AMD is not an exception. An illustration of that is the fact that high consumption of corn bread indicated significant association with central vision loss (OR 0.4; 95% CI 0.2,

0.9)in 168 rural elders.³⁹⁶ This relates to the fact that cross-sectional studies indicate that diets that provide a higher dietary glycemic index (dGI) are associated with a greater risk of age-related macular degeneration (AMD). Persons at risk of AMD progression, especially those at high risk of advanced AMD, may benefit from consuming a smaller amount of refined carbohydrates.397 The association between dietary glycemic index (dGI) and AMD from the AREDS cross-sectional analysis at baseline suggests that a reduction in the dGI, a modifiable risk factor, may provide a means of diminishing the risk of AMD.³⁹⁸

While Lutein and Zeaxanthin are readily available in dark leafy green vegetables, patients with concerns about blood clotting must avoid some of these because of the Vitamin K-clotting factor-in these vegetables. Lutein and Zeaxanthin may be supplemented in pill or egg form without fear of interference with blood thinners.

Glutathione

Glutathione is the most abundant antioxidant in the body, produced in the body, found in every cell in the body and is the primary free radical fighter. It is the regenerator of immune cells. It is produced in every cell with the help of selenium, magnesium and vitamin C. Glutathione production decreases with age. The pathway for collagen remodeling and apoptosis induction in glaucoma seems to be exogenously influenced by water-soluble antioxidants, for example, glutathione. The pathway for elastin remodelling and apoptosis induction seems to be influenced by endogenous lipid-soluble antioxidants, for example, vitamin E.³⁹⁹ Supplementation with glutathione is not accomplished well orally and the utilization of supplementation is not well documented.

Magnesium

Magnesium is a mineral and is very short acting. The majority of magnesium is within the skeleton, with about 25% in muscle and it is involved in more than 300 essential reactions within the body.400 Magnesium is involved in glutathione production, cell membrane genesis and chromosome activity. As related to cellular mechanism magnesium is critical in ions transport across cell membranes, as evident in the neurodegeneration model. Magnesium acts as a smooth muscle relaxant, partially inhibits the effect of endothelin (a vasoconstrictor), and is a calcium channel blocker, and as such often acts as a vasodilator and improves peripheral circulation.401-404 Some studies suggest that magnesium plays a role in hypertension and cardiovascular disease but there is no definitive work to underscore the recommendations for intervention.405-411 Magnesium is very involved in the ATP-synthesizing protein in mitiochondria and as such in the neuroprotection pathway. 412

Magnesium seems to have a beneficial effect on the visual field in glaucoma patients with both increased and normal IOP — possibly by alleviating vasospasm at 300 mg/day. Magnesium also works to activate enzymatic systems.⁴¹³⁻⁴¹⁴ Magnesium does not directly influence immune function but rather is critical in 300 enzymatic functions in the body. Magnesium deficiency causes an increase in proinflammatory cytokines and an excess production of free radicals and as a result increases the effects of the inflammatory process.

Magnesium depletion is commonly associated with both insulin dependent (IDDM) and non-insulin dependent (NIDDM)diabetes mellitus. Between 25% and 38% of diabetics have been found to have decreased serum levels of magnesium (hypomagnesemia) perhaps associated with urinary issues.⁴¹⁵ It is suggested but not proven that magnesium supplementation may be beneficial in patients with diabetes.⁴¹⁶⁻⁴¹⁷

From a neurological standpoint, persons with recurrent migraines have lower magnesium levels.⁴¹⁸ Supplementation to alleviate the headaches has produced conflicting results and the levels of supplementation to achieve modulation of the headaches result in side effects.⁴¹⁹⁻⁴²⁰

Magnesium absorption is impaired by a low protein diet, a high fiber diet, and excesses in zinc consumption, GI disorders, bariatric surgery renal disorders, chronic alcoholism, increasing age.⁴²¹ Magnesium can interact with digoxin, anti-malarials, some drugs to treat osteoporosis,, tranquilizers, oral anticoagulants and some antibiotics. In seriously ill patients, the primary care physician should be consulted.

Consumption of magnesium in the US is considered lower than the

RDA. Natural sources of magnesium are cereals, brown rice, nuts, beans, spinach, chard, okra and bananas. Recommended daily dosage is 420 mg/day for men over 30 and 320 mg/day for women over 30 years of age. The recommended supplement is 100 mg/day assuming some dietary consumption of magnesium. The tolerable upper level of intake (UL), which is 350 mg/day set by the Food and Nutrition Board.⁴²²

Zinc

Zinc is an essential trace element for the proper functioning of a number of human systems. Zinc is critical for 100 different enzymes relevant to their catalytic role.⁴²³ Zinc is also critical in the structure of proteins and cell membranes. Cell membranes are susceptible to oxidative damage with loss of zinc. ⁴²⁴ Zinc also has a role in gene expression acting in the role of transcription factors as well as having responsibilities in cell signaling. Zinc also plays a role in apoptosis.⁴²⁵

Zinc served the role as the entry point for eye care into the realization of the importance of nutrition in ocular health. Use in the management of macular degeneration has resulted in mixed reports. ⁴²⁶⁻⁴³² The element is, however, a part of the AREDS recommendation. When speaking about commercially available vitamin supplements it should be noted that zinc at 80 mg/day resulted in increase genitourinary hospital admissions in the AREDS study.⁴³³ It has also been found that based on the evidence it is suggest that zinc plays a role in sub-RPE deposit formation in the aging human eye and possibly also in the development and/or progression of AMD.⁴³⁴

Large quantities of zinc interfere with copper bioavailability by inducing intestinal sysnthesis of metallothionein, which traps copper.435 This action may then lead to cupric anemia. Zinc consumption must be accompanied by copper supplementation. Iron supplementation and calcium combined with phytic acid (limes) may also decrease the availability of zinc.436 Zinc is required for the enzyme that converts retinol (vitamin A) to retinal. Zinc deficiency is associated with decreased release of vitamin A from the liver, which may contribute to symptoms of night blindness that are seen with zinc deficiency.437 High doses of zinc also impact negatively in the absorption of magnesium.438

Zinc is important in the immune system and has gained much press in regard to the prevention of colds and respiratory disease and gastrointestinal disorders especially as related to children.439-443 There are also implications regarding diarrhea with The World Health Organization and the United Nations Children's Fund currently recommending zinc supplementation as part of the treatment for diarrheal diseases in young children.444 A recent meta-analysis of published randomized controlled trials on the use of zinc gluconate lozenges in colds found that evidence for their effectiveness in reducing the duration of common colds was still lacking.445 Use of intranasal zinc is also of questionable value.446-447 with recent removal from the market for loss of smell. $^{\rm 448}$

Zinc picolinate has been promoted as a more absorbable form of zinc, but there are few data to support this idea in humans. In order to prevent copper deficiency, the U.S. Food and Nutrition Board set the tolerable upper level of intake (UL) for adults at 40 mg/day, including dietary and supplemental zinc.449 Most AREDs formulas contain double that recommendation. The recommendation for zinc is to take a multivitamin supplement containing 100% of the daily values (DV) of most nutrients will generally provide 15 mg/day of zinc. Use of zinc may decrease the absorption of tetracyclines and quinolones so an interval of two hours is appropriate.450

Natural sources of zinc include crab, oysters, beef, pork, dark meat chicken and turkey, yogurt, cheese, milk, cashews, almonds, peanuts, and beans.

Zinc is critical in a number of different interactions in the body but in excess there may be danger both systemically and in the potentiation of ARMD.

Part 4 of this series will be a continuation of the discussion of the specific supplements and their benefits in the management of diseases and disorders. This will include an extensive discussion of the very timely issue of Omega 3 and Omega 6 fatty acids. It will be printed in Spring, 2010. Dr. Alexander receives no reimbursement from any nutritional supply company. He is the Sr. Director of Clinical Education and Professional Relations for Optovue, Inc, a digital imaging company, which produces the RTV ue and has a commitment to the visual well-being of the world.

References Part 3 CJO

- 280. Douglas RM, Hemila H, Chalker E, Treacy B. Vitamin C for preventing and treating the common cold. Cochrane Database Syst Rev. 2007; 18(3):CDOOO980).
- 281. Stephen R, Utecht T. Scurvy identified in the emergency department: a case report. J Emerg Med 2001;21(3):235-237.
- 282. Galley HF, Walker BE, Howdle PD, Webster NR. Regulation of nitric oxide synthase activity in cultured human endothelial cells: effect of antioxidants. Free Radic Biol Med 1996;21(1):97-101.
- 283. Wilson JX. Antioxidant defense of the brain: a role for astrocytes. Can J Physiol Pharmacol 1997;75(10-11):1149-1164.
- 284. Taddei S, Virdis A, Ghiadoni L, et al. Vitamin C improves endothelium-dependent vasodilation by restoring nitric oxide activity in essential hypertension. Circulation 1998;97(22):2222-2229.
- 285. Jariyapongskul A, Rungiaroen T, Kasetsuwan N, et al. Long-term effects of oral vitamin C supplementation on the endothelial dysfunction in the iris microvessels of diabetic rats. Microvasc Res 2007;74(1):32-38. Epub 2007 Mar 23.
- 286. Peponis V, Bonovas S, Kapranou A, et al. Conjunctival and tear film changes after vitamin C and E administration in noninsulin dependent diabetes mellitus. Med Sci Monit 2004;10(5):CR213-217.
- 287. Harding AH, Wareham NJ, Bingham SA, et al. Plasma vitamin C level, fruit and vegetable consumption, and the risk of new-onset type 2 diabetes mellitus: the European prospective investigation of cancer—Norfolk prospective study. Arch Intern Med 2008;168(14):1493-1499.
- 288. Zhou JW, Ren GL, Shang XM, et al. Study of blue light induced DNA damage of retinal pigment epithelium(RPE) cells and the protection of vitamin C. Shi Yan Sheng Wu Xue Bao 2003;36(5):397-400.

- 289. Bubowitz A, Assia EI, Rosner M, Topaz M. Antioxidant protection against corneal damage by free radicals during phacoemulsification. Invest Ophthalmol Vis Sci 2003;44(5):1866-1870.
- 290. Koliakos GG, Konstas AG, Schlotzer-Schrehardt U, et al. Ascorbic acid concentration is reduced in the aqueous humor of patients with exfoliation syndrome. Am J Ophthalmol 2002;134(6):879-883.
- 291. Mares-Perlman JA, Lyle BJ, Klein R, et al. Vitamin supplement use and incident cataracts in a population-based study. Arch Ophthalmol 2000;118(11):1556-1563.
- 292. Taylor A, Jacques PF, Chylack LT Jr, et al. Long-term intake of vitamins and carotenoids and odds of early age-related cortical and posterior subcapsular lens opacities. Am J Clin Nutr 2002;75(3):540-549.
- 293. No authors listed. Vitamin C and cataract risk in women. Harv Womens Health Watch 2002;9(9):1.
- 294. Food and Nutrition Board, Institute of Medicine. Vitamin C. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids. Washington D.C.: National Academy Press; 2000:95-185.
- 295. Taylor EN, Stampfer MJ, Curhan GC. Dietary factors and the risk of incident kidney stones in men: new insights after 14 years of followup. J Am Soc Nephrol. 2004;15(12):3225-3232.
- 296. Holick MF. Vitamin D: importance in the prevention of cancers, type 1 diabetes, heart disease, and osteoporosis. Am J Clin Nutr 2004;79(3):362-371.
- 297. Giovannucci E. Can vitamin D reduce total mortality? Arch Intern Med 2007;167(16):1709-1710.
- 298. Dobnig H, Pilz S, Scharnagl H, et al. Independent association of low serum 25-hydroxyvitamin d and 1,25-dihydroxyvitamin d levels with all-cause and cardiovascular mortality. Arch Intern Med 2008;168(12):1340-1349.
- 299. Martins D, Wolf M, Pan D, et al. Prevalence of cardiovascular risk factors and the serum levels of 25-hydroxyvitamin D in the United States: data from the Third National Health and Nutrition Examination Survey. Arch Intern Med 2007;167(11):1159-1165.
- 300. Holick MF. Vitamin D deficiency. N Engl J Med 2007;357(3):266-281.
- 301. Wheeler S. American Headache Society 50th Annual Scientific Meeting: Abstract S33. Presented June 28, 2008.

Vol 71 No 5 October / octobre 2009

- 302. Singh H. American Association of Clinical Endocrinologists 17th Annual Meeting and Clinical Congress: Abstract 520. Presented May 16, 2008.
- 303. Griffin MD, Xing N, Kumar R. Vitamin D and its analogs as regulators of immune activation and antigen presentation. Annu Rev Nutr 2003;23:117-145.
- 304. hayes CE, Nashold FE, Spach KM, Pedersen LB. The immunological functions of the vitamin D endocrine system.. Cell Mol Biol 2003;49(2):277-300.
- 305. Vieth R, Bischoff-Ferrari H, Boucher BJ, et al. The urgent need to recommend an intake of vitamin D that is effective. Am J Clin Nutr 2007;85(3):649-650.
- 306. Bodnar LM, Simhan HN, Powers RW, et al. High prevalence of vitamin D insufficiency in black and white pregnant women residing in the northern United States and their neonates. J Nutr 2007;137(2):447-452.
- 307. Holick MF. Vitamin D: A millennium perspective. J Cell Biochem 2003;88(2):296-307.
- 308. Sutton AL, MacDonald PN. Vitamin D: more than a "bone-a-fide" hormone. Mol Endocrinol 2003;17(5):777-791.
- 309. Guyton KZ, Kensler TW, Posner GH. Vitamin D and vitamin D analogs as cancer chemopreventive agents. Nutr Rev 2003;61(7):227-238.
- 310. McCann JC, Ames BN. Is there convincing biological or behavioral evidence linking vitamin D deficiency to brain dysfunction? FASEB J 2008:22(4):982-1001.
- 311. Li YC, Kong J, Wei M, et al. 1,25-Dihydroxyvitamin D(3) is a negative endocrine regulator of the renin-angiotensin system. J Clin Invest 2002;110(2):155-156.
- 312. Giovannucci E, Liu Y, Hollis BW, Rimm EB. 25-hydroxyvitamin D and risk of myocardial infarction in men: a prospective study. Arch Intern Med 2008;168(11):1174-1180.
- 313. Shoben AB, Rudser KD, de Boer IH, et al. Association of oral calcitriol with improved survival in nondialyzed CKD. J Am Soc Nephrol 2008;19(8):1613-1619.
- 314. American Society of Clinical Oncology 2008 Annual Meeting: Abstract 511 Preview presscast, May 15, 2008. Appearing in Medscape Today May 21, 2008.
- 315. Lips P, Hosking D, Lippuner K, et al. The prevalence of vitamin D inadequacy amongst women with osteoporosis: an international epidemiological investigation. J Intern Med 2006;260(3):245-254.

- 316. Lips P. Vitamin D deficiency and secondary hyperparathyroidism in the elderly: consequences for bone loss and fractures and therapeutic implications. Endocr Rev 2001;22(4):477-501.
- 317. Bischoff-Ferrari HA, Willett WC, Wong JB, et al. Fracture prevention with vitamin D supplementation: a meta-analysis of randomized controlled trials. JAMA 2005;293(18):2257-2264.
- 318. Jackson RD, LaCroix AZ, Gass M, et al. Calcium plus vitamin D supplementation and the risk of fractures. N Engl J Med 2006;354(7):669-683.
- 319. Armas LA, Hollis BW, Heaney RP. Vitamin D2 is much less effective than vitamin D3 in humans. J Clin Endocrinol Metab 2004;89(11):5387-5391.
- 320. Houghton LA, Vieth R. The case against ergocalciferol (vitamin D2) as a vitamin supplement. Am J Clin Nutr 2006;84(4):694-697.
- 321. Food and Nutrition Board, Institute of Medicine. Vitamin D. Dietary Reference Intakes: Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride. Washington D.C.: National Academies Press; 1999:250-287.
- 322. Vieth R. Vitamin D supplementation, 25-hydroxyvitamin D concentrations, and safety. Am J Clin Nutr 1999;69(5):842-856.
- 323. Bischoff-Ferrari HA, Giovannucci E, Willett WC, et al. Estimation of optimal serum concentrations of 25-hydroxyvitamin D for multiple health outcomes. Am J Clin Nutr 2006;84(1):18-28.
- 324. Melamed ML, Michos ED, Post W, Astor B. 25-hydroxyvitamin D levels and the risk of mortality in the general population. Arch Intern Med 2008;168(15):1629-1637.
- 325. Buhr G, Bales CW. Nutritional supplements for older adults: review and recommendations-part I. J Nutr Elder 2009;28(1):5-29.
- 326. Parekh N, Chappell RJ, Millen AE, et al. Association between vitamin D and agerelated macular degeneration in the Third National Health and Nutrition Examination Survey, 1988 through 1994. Arch Ophthalmol 2007;125(5):661-669.
- 327. Seitzman RL, Mangione CM, Cauley JA, et al. Bone mineral density and age-related maculopathy in older women. J Am Geriatr Soc 2007;55(5): 740-746.
- Engin KN. Alpha-tocopherol: looking beyond an antioxidant. Molecular Vision 2009;15:855-860.

- 329. Lee IK, Koya D, Ishi H, et al. d-Alphatocopherol prevents the hyperglycemia induced activation of diacylglycerol (DAG)protein kinase C (PKC) pathway in vascular smooth muscle cell by an increase of DAG kinase activity. Diabetes Res Clin Pract 1999;45(2-3):183-190.
- 330. Engin KN, Engin G, Kucuksahin H, et al. Clinical evaluation of the neuroprotective effect of alpha-tocopherol against glaucomatous damage. Eur J Ophthalmol 2007;17(4):528-533.
- 331. Knekt P, Reunanen A, Jarvinen R, et al. Antioxidant vitamin intake and coronary mortality in a longitudinal population study. Am J Epidemiol 1994:139(12):1180-1189.
- 332. Cheurbini A, Zuliani G, Costantini F, et al. High vitamin E plasma levels and low lowdensity lipoprotein oxidation are associated with the absence of atherosclerosis in octogenarians. J Am Geriatr Xoc 2001;49(5):651-654.
- 333. Lee IM, Cook NR, Gaziano JM, et al. Vitamin E in the primary prevention of cardiovascular disease and cancer: the Women's Health Study: a randomized controlled trial. JAMA 2005;294(1):56-65.
- 334. Traber MG, Frei B, Beckman JS. Vitamin E revisited: do new data validate benefits for chronic disease prevention? Curr Opin Lipidol 2008;19(1):30-38.
- 335. Stephens NG, Parsons A, Schofield PM, et al. Randomised controlled trial of vitamin E in patients with coronary disease: Cambridge Heart Antioxidant Study (CHAOS). Lancet 1996;347(9004):781-786.
- 336. Boaz M, Smetana S, Weinstein, et al. Secondary prevention with antioxidants of cardiovascular disease in endstage renal disease (SPACE): randomised placebo-controlled trial. Lancet 2000;356(9237):1213-1218.
- 337. Yusuf S, Dagenais G, Pogue J, et al. Vitamin E supplementation and cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med 2000;342(3):154-160.
- 338. Paolisso G, D'Amore A, Giugliano D, et al. Pharmacologic doses of vitamin E improve insulin action in healthy subjects and noninsulin-dependent diabetic patients. Am J Clin Nutr 1993;57(5):650-656.
- 339. Paolisso G, D'Amore A, Gaizerano D, et al. Daily vitamin E supplements improve metabolic control but not insulin secretion in elderly type II diabetic patients. Diabetes Care 1993;16(11):1433-1437.

- 340. Jain Sk, McVie R, Jaramillo JJ, et al. Effect of modest vitamin E supplementation on blood glycated hemoglobin and triglyceride levels and red cell indices in type I diabetic patients. J Am Coll Nutr 1996;15(5):458-461.
- 341. Bursell SE, Clermont AC, Aiello LP, et al. High-dose vitamin E supplementation normalizes retinal blood flow and creatinine clearance in patients with type 1 diabetes. Dibetes Care 1999;22(8):1245-1251.
- 342. Ahuja JK, Goldman JD, Moshfegh AJ. Current status of vitamin E nutriture. Ann N Y Acad Sci. 2004;1031:387-390.
- 343. Ford ES, Sowell A. Serum alpha-tocopherol status in the United States population: findings from the Third National Health and Nutrition Examination Survey. Am J Epidemiol. 1999;150(3):290-300.
- 344. Maras JE, Bermudez OI, Qiao N, et al. Intake of alpha-tocopherol is limited among US adults. J Am Diet Assoc 2004;104(4):567-575.
- 345. Meydani SN, Leda LS, Fine BC, et al. Vitamin E and respiratory tract infections in elderly nursing home residents: a randomized controlled trial. JAMA 2004;292(7):828-836.
- 346. Han SN, Meydani SN. Vitamin E and infectious diseases in the aged. Proc Nutr Soc 1999;58(3):697-705.
- 347. Christen WG, Liu S, Glynn RJ, et al. Dietary carotenoids, vitamins C and E, and risk of cataract in women: a prospective study. Arch Ophthalmol 2008;126(1):102-109.
- 348. Christen WG, Glynn RJ, Chew EY, Buring JE. Vitamin E and age-related cataract in a randomized trial of women. Ophthalmology 2008;115(5):822-829.
- 349. Evans J. Antioxidant supplements to prevent or slow down the progression of AMD: a systematic review and meta-analysis. Eye 2008;22(6):751-760.
- 350. Evans JR, Henshaw K. Antioxidant vitamin and mineral supplements for preventing age-related macular degeneration. Cochrane Database Syst Rev 2008;(1):CD000253.
- 351. Chong EW, Wong TY, Kreis AJ, et al. Dietary antioxidants and primary prevention of age related macular degeneration: systematic review and meta-analysis. BMJ 2007;335(7623):755.
- 352. Miller ER 3rd, Pasotr-Barriuso R, Dalal, et al. Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality. Ann Intern Med 2005;142(1):37-46.
- 353. Shekelle PG, Morton SC, Jungvig LK, et al. Effect of supplemental vitamin E for the

prevention and treatment of cardiovascular disease. J Gen Intern Med 2004;19(4):380-389.

- 354. Eidelman RS, Hollar D, Hebert PR. Randomized trials of vitamin E in the treatment and prevention of cardiovascular disease. Arch Intern Med 2004;164(14):1552-1556.
- 355. Bjelakovic G, Nikolova D, Gluud LL, et al. Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and metaanalysis. JAMA 2007;297(8):842-857.
- 356. Food and Nutrition Board, Institute of Medicine. Vitamin E. Dietary reference intakes for vitamin C, vitamin E, selenium, and carotenoids. Washington D.C.: National Academy Press; 2000:186-283.
- 357. Stahl W. Macular carotenoids: lutein and zeaxanthin. Dev Ophthalmol 2005;38:70-88.
- 358. Broekmans WM, Berendschot TT, Klopping-Ketelaars IA, et al. Macular pigment density in relation to serum and adipose tissue concentrations of lutein and serum concentrations of zeaxanthin. Am J Clin Nutr 2002;76(3):595-603.
- 359. Seddon JM, Ajani UA, Sperduto RD, et al. Dietary carotenoids, vitamins A, C, and E, and advanced age-related macular degeneration. Eye Disease Case-Control Study Group. JAMA 1994;272(18):1413-1420.
- 360. Chasan-Taber L, Willett WC, Seddon JM, et al. A prospective study of carotenoid and vitamin A intakes and risk of cataract extraction in US women. Am J Clin Nutr 1999;70(4):431-432.
- 361. Brown L, Rimm EB, Seddon JM, et al. A prospective study of carotenoid intake and risk of cataract extraction in US men. Am J Clin Nutr 1999;70(4):517-524.
- 362. Lyle BJ, Mares-Perlman JA, Klein R, et al. Serum carotenoids and tocopherols and incidence of age-related nuclear cataract. Am J Clin Nutr 1999;69(2):272-277.
- 363. Mares-Perlman JA, Fisher AI, Klein R, et al. Lutein and zeaxanthin in the diet and serum and their relation to age-related maculopathy in the third national health and nutrition examination survey. Am J Epidemiol 2001;153(5):424-432.
- 364. Mares-Perlman JA, Klein R, Klein BE, et al. Association of zinc and antioxidant nutrients with age-related maculopathy. Arch Ophthalmol 1996;114(8):991-997.
- 365. VandenLangenberg GM, Mares-Perlman JA, Klein R, et al. Associations between antioxidant and zinc intake and the 5-year

incidence of early age-related maculopathy in the Beaver Dam Eye Study. Am J Epidemiol 1998;148(2):204-214.

- 366. Richer S, Stiles W, Statkute L, et al. Doublemasked, placebo-controlled, randomized trial of lutein and antioxidant supplementation in the intervention of atrophic age-related macular degeneration: the Veterans LAST study (Lutein Antioxidant Supplementation Trial). Optometry 2004;75(4):216-230
- 367. Richer S, Devenport J, Lang JC. LAST II: Differential temporal responses of macular pigment optical density in patients with atrophic age-related macular degeneration to dietary supplementation with xanthophylls. Optometry 2007;78(5):213-219.
- 368. Moeller SM, Voland R, Tinker, et al. Associations between age-related nuclear cataract and lutein and zeaxanthin in the diet and serum in the Carotenoids in the Age-Related Eye Disease Study, an Ancillary Study of the Women's Health Initiative. Arch Ophthalmol 2008;126(3);354-364.
- 369. Age-Related Eye Disease Study Research Group, SanGiovanni JP, Chew EY, Clemons TE, et al. The relationship of dietary carotenoid and vitamin A, E, and C intake with age-related macular degeneration in a case-control study: AREDS Report No. 22. Arch Ophthalmol 2007;125(9):1225-1232.
- 370. Tan JS, Wang JJ, Flood V, et al. Dietary antioxidants and the long-term incidence of age-related macular degeneration: the Blue Mountains Eye Study. Ophthalmology 2008;115(2):334-341.
- 371. Parisi V, Tedeschi M, Gallinaro G, et al. CARMIS Study Group. Carotenoids and antioxidants in age-related maculopathy Italian study: multifocal electroretinogram modifications after 1 year. Ophthalmology 2008;115(2):324-333.
- 372. Wrona M, Rozanowska M, Sarna T. Zeaxanthin in combination with ascorbic acid or alpha-tocopherol protects ARPE-19 cells against photosensitized peroxidation of lipids. Free Radic Biol Med 2004;36(9):1094-1101.
- 373. Berendschot TT, Broekmans WM, Klöpping-Ketelaars IA, et al. Lens aging in relation to nutritional determinants and possible risk factors for age-related cataract. Arch Ophthalmol 2002;120(12):1732-1737.
- 374. Brazionis L, Rowley K, Itsiopoulos C, O'Dea K. Plasma carotenoids and diabetic retinopathy. Br J Nutr 2009;101(2):270-277.
- 375. Trumbo PR, Ellwood KC. Lutein and zeaxanthin intakes and risk of age-related macular degeneration and cataracts: an evaluation using the Food and Drug

Administration's evidence-based review system for health claims. Am J Clin Nutr 2006;84(5):971-974.

- 376. Age-Related Eye Disease Study Research Group, SanGiovanni JP, Chew EY, Clemons TE, et al. The relationship of dietary carotenoid and vitamin A, E, and C intake with age-related macular degeneration in a case-control study: AREDS Report No. 22. Arch Ophthalmol 2007;125(9):1225-1232.
- 377. Michikawa T, Ishida S, Nishiwaki Y, et al. Serum antioxidants and age-related macular degeneration among older Japanese. Asia Pac J Clin Nutr 2009;18(1):1-7.
- 378. Coleman H, Chew E. Nutritional supplementation in age-related macular degeneration. Curr Opin Ophthalmol 2007;18(3):220-223.

379. Carpentier S, Knaus M, Suh M. Associations between lutein, zeaxanthin, and age-related macular degeneration: an overview. Crit Rev Food Sci Nutr 2009;49(4):313-326.

- 380. Khachik F, de Moura FF, Chew EY, et al. The effect of lutein and zeaxanthin supplementation on metabolites of these carotenoids in the serum of persons aged 60 or older. Invest Ophthalmol Vis Sci 2006;47(12):5234-5242.
- 381. Rhone M, Basu A. Phytochemicals and age-related eye diseases. Nutr Rev 2008;66(8):465-472.
- 382. Bub A, Moseneder J, Wenzel G, Rechkemmer G, Briviba K. Zeaxanthin is bioavailable from genetically modified zeaxanthin-rich potatoes. Eur J Nutr 2008;47(2):99-103.
- 383. Morris MS, Jacques PF, Chylack LT, et al. Intake of zinc and antioxidant micronutrients and early age-related maculopathy lesions. Ophthalmic Epidemiol 2007;14(5):288-298.
- 384. Goodrow EF, Wilson TA, Houde SC, et al. Consumption of one egg per day increases serum lutein and zeaxanthin concentrations in older adults without altering serum lipid and lipoprotein cholesterol concentrations. J Nutr 2006;136(10):2519-2524.
- 385. Fernandez ML. Dietary cholesterol provided by eggs and plasma lipoproteins in healthy populations. Curr Opin Clin Nutr Metab Care 2006;9(1):8-12.
- 386. Kritchevsky SB. A review of scientific research and recommendations regarding eggs. J Am Coll Nutr 2004;23(6 Suppl):5968-6008.
- 387. Ribaya-Mercado JD, Blumberg JB. Lutein and zeaxanthin and their potential roles in disease prevention. J Am Coll Nutr 2004;23(6 Suppl):567S-587S.

- 388. Chung HY, Rasmussen HM, Johnson EJ. Lutein bioavailability is higher from luteinenriched eggs than from supplements and spinach in men. J Nutr 2004;134(8):1887-1893.
- 389. Johnson EJ, Chung HY, Caldarella SM, Snodderly DM. The influence of supplemental lutein and docosahexaenoic acid on serum, lipoproteins, and macular pigmentation. Am J Clin Nutr 2008;87(5):1521-1529.
- 390. Johnson EJ, Schaefer EF. Potential role of dietary n-3 fatty acids in the prevention of dementia and macular degeneration.
- 391. Am J Clin Nutr 2006;83(6Suppl):1494S-1498S).
- 392. Cho E, Hung S, Willett WC, et al. Prospective study of dietary fat and the risk of agerelated macular degeneration. Am J Clin Nutr 2001;73(2):209-218.
- 393. Seddon JM, Gensler G, Klein ML, Milton RC. C-reactive protein and homocysteine are associated with dietary and behavioral risk factors for age-related macular degeneration. Nutrition 2006;22(4):441-443.
- 394. Smith W, Mitchell P, Leeder SR. Dietary fat and fish intake and age-related maculopathy. Arch Ophthalmol 2000;118(3):401-404.
- 395. Bartlett H, Eperjesi F. An Ideal ocular nutritional supplement?
- 396. Ophthalmic Physiol Opt 2004;24(4):339-349.
- 397. Mozaffarieh M, Sacu S, Wedrich A. The role of the carotenoids, lutein and zeaxanthin, in protecting against age-related macular degeneration: a review based on controversial evidence. Nutr J 2003;2:20.
- 398. Holcomb CA, Consumption of caroltenoidrich foods and central vision loss:a matched case-controlled study in Kansas. J Nutr Elder 2004;24(1):1-18.
- 399. Chiu CJ, Milton RC, Klein R, et al. Dietary carbohydrate and the progression of agerelated macular degeneration: a prospective study from the Age-Related Eye Disease Study. Am J Clin Nutr 2007;86(4):1210-1218.
- 400. Chiu CJ, Milton RC, Gensler G, Taylor A. Association between dietary glycemic index and age-related macular degeneration in nondiabetic participants in the Age-Related Eye Disease Study. Am J Clin Nutr 2007;86(1):180-188.
- 401. Veach J. Functional dichotomy: glutathione and vitamin E in homeostasis relevant to primary open-angle glaucoma. Br J Nutr 2004;91(6):809-829.
- 402. Spencer H, Norris C, Williams D. Inhibitory effects of zinc on magnesium balance and

magnesium absorption in man. J Am Coll Nutr 1994;13(5):479-484.

- 403. Shechter M, Sharir M, Labrador MJ, et al. Oral magnesium therapy improves endothelial function in patients with coronary artery disease. Circulation 2000;102(19):2352-2358.
- 404. Dettmann ES, Luscher TF, Flammer J, Haefliger IO. Modulation of endothelin-1induced contractions by magnesium/calcium in porcine ciliary arteries. Graefes Arch Clin Exp Ophthalmol 1998;236(1):47-51.
- 405. Shechter M, Merz CN, Paul-Labrador M, et al. Oral magnesium supplementation inhibits platelet-dependent thrombosis in patients with coronary artery disease. Am J Cardiol. 1999;84(2):152-156.
- 406. Gaspar AZ, Gasser P, Flammer J. The influence of magnesium on visual field and peripheral vasospasm in glaucoma. Ophthalmologica 1995;209(1):11-13.
- 407. Song Y, Manson JE, Cook NR, et al. Dietary magnesium intake and risk of cardiovascular disease among women. Am J Cardiol. 2005;96(8):1135-1141.
- 408. Ascherio A, Rimm EB, Giovannucci EL, et al. A prospective study of nutritional factors and hypertension among US men. Circulation. 1992;86(5):1475-1484.
- 409. Liao F, Folsom AR, Brancati FL. Is low magnesium concentration a risk factor for coronary heart disease? The Atherosclerosis Risk in Communities (ARIC) Study. Am Heart J. 1998;136(3):480-490.
- 410. Ascherio A, Hennekens C, Willett WC, et al. Prospective study of nutritional factors, blood pressure, and hypertension among US women.Hypertension. 1996;27(5):1065-1072.
- 411. Peacock JM, Folsom AR, Arnett DK, et al. Relationship of serum and dietary magnesium to incident hypertension: the Atherosclerosis Risk in Communities (ARIC) Study. Ann Epidemiol. 1999;9(3):159-165.
- 412. Sontia B, Touyz RM. Role of magnesium in hypertension. Arch Biochem Biophys. 2007;458(1):33-39.
- 413. Dickinson HO, Mason JM, Nicolosn DF, et al. Lifestyle interventions to reduce raised blood pressure: a systematic review of randomized controlled trials. J Hypertens. 2006;24(2):215-233.
- 414. Rude RK, Shils ME. Magnesium. In: Shils ME, Shike M, Ross AC, Caballero B, Cousins RJ, eds. Modern Nutrition in Health and Disease. 10th ed. Baltimore: Lippincott Williams & Wilkins; 2006:223-247.

- 415. Gaspar AZ, Gasser P, Flammer J. The influence of magnesium on visual field and peripheral vasospasm in glaucoma. Ophthalmologica 1995;209(1):11-13.
- 416. Winterkorn JM. The influence of magnesium on visual field and peripheral vasospasm in glaucoma. Surv Ophthalmol 1995;209(1):83-4.
- 417. Tosiello L. Hypomagnesemia and diabetes mellitus. A review of clinical implications. Arch Intern Med. 1996;156(11):1143-1148.
- 418. Rodriguez-Moran M, Guerrero-Romero F. Oral magnesium supplementation improves insulin sensitivity and metabolic control in type 2 diabetic subjects: a randomized double-blind controlled trial. Diabetes Care. 2003;26(4):1147-1152.
- 419. Song Y, He K, Levitan EB, et al. Effects of oral magnesium supplementation on glycaemic control in Type 2 diabetes: a meta-analysis of randomized doubleblind controlled trials. Diabet Med. 2006;23(10):1050-1056.
- 420. Mauskop A, Altura BM. Role of magnesium in the pathogenesis and treatment of migraines. Clin Neurosci. 1998;5(1):24-27.
- 421. Wang, F, Van Den Eeden SK, Ackerson LM, et al. Oral magnesium oxide prophylaxis of frequent migrainous headache in children: a randomized, double-blind, placebo-controlled trial. Headache. 2003;43(6):601-610.
- 422. Pfaffenrath V, Wessely P, Meyer C, et al. Magnesium in the prophylaxis of migrainea double-blind placebo-controlled study. Cephalalgia. 1996;16:436-440.
- 423. Schwartz R, Walker G, Linz MD, MacKellar I. Metabolic responses of adolescent boys to two levels of dietary magnesium and protein. I. Magnesium and nitrogen retention. Am J Clin Nutr. 1973;26:510-518.
- 424. Food and Nutrition Board, Institute of Medicine. Magnesium. Dietary Reference Intakes: Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride. Washington D.C.: National Academy Press; 1997:190-249.
- 425. Food and Nutrition Board, Institute of Medicine. Zinc. Dietary reference intakes for vitamin A, vitamin K, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Washington, D.C.: National Academy Press; 2001:442-501.
- 426. O'Dell BL. Role of zinc in plasma membrane function. J Nutr. 2000;130(55 Suppl):1432S-1436S.
- 427. Truong-Tran AQ, Ho LH, Chai F, Zalewski PD. Cellular zinc fluxes and the regulation of apoptosis/gene-directed cell death. J Nutr. 2000;130(5S Suppl):1459S-1466S.

24

- 428. Newsome DA, Swartz M, Leone NC, Elston RC, Miller E. Oral zinc in macular degeneration. Arch Ophthalmol. 1988;106(2):192-198.
- 429. Evans JR. Antioxidant vitamin and mineral supplements for slowing the progression of age-related macular degeneration. Cochrane Database Syst Rev. 2006;(2):CD000254.
- 430. VandenLangenberg GM, Mares-Perlman JA, Klein R, Klein BE, Brady WE, Palta M. Associations between antioxidant and zinc intake and the 5-year incidence of early agerelated maculopathy in the Beaver Dam Eye Study. Am J Epidemiol. 1998;148(2):204-214.
- 431. Smith W, Mitchell P, Webb K, Leeder SR. Dietary antioxidants and age-related maculopathy: the Blue Mountains Eye Study. Ophthalmology. 1999;106(4):761-767.
- 432. Cho E, Stampfer MJ, Seddon JM, et al. Prospective study of zinc intake and the risk of age-related macular degeneration. Ann Epidemiol. 2001;11(5):328-336.
- 433. Stur M, Tittl M, Reitner A, Meisinger V. Oral zinc and the second eye in age-related macular degeneration. Invest Ophthalmol Vis Sci. 1996;37(7):1225-1235.
- 434. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Arch Ophthalmol. 2001;119(10):1417-1436.
- 435. Johnson AR, Munoz A, Gottlieb JL, Jarrard DF. High dose zinc increases hospital admissions due to genitourinary complications. J Urol 2007;177(2):639-643.
- 436. Lengyel I, Flinn JM, Peto T, et al. High concentration of zinc in sub-retinal pigment epithelial deposits. Exp Eye Res 2007;84(4):772-780.
- 437. King JC, Cousins RJ. Zinc. In: Shils ME, Shike M, Ross AC, Caballero B, Cousins RJ, eds. Modern Nutrition in Health and Disease. 10th ed. Baltimore: Lippincott Williams & Wilkins; 2006:271-285.
- 438. Sandstrom B. Micronutrient interactions: effects on absorption and bioavailability. Br J Nutr. 2001;85 Suppl 2:S181-S185.
- 439. Hambidge M. Human zinc deficiency. J Nutr. 2000;130(5S Suppl):1344S-S1349S.
- 440. Spencer H, Norris C, Williams D. Inhibitory effects of zinc on magnesium balance and magnesium absorption in man. J Am Coll Nutr. 1994;13(5):479-484.
- 441. Bhutta ZA, Black RE, Brown KH, et al. Prevention of diarrhea and pneumonia by zinc supplementation in children in

developing countries: pooled analysis of randomized controlled trials. Zinc Investigators' Collaborative Group. J Pediatr. 1999;135(6):689-697.

- 442. Sazawal S, Black RE, Ramsan M, et al. Effect of zinc supplementation on mortality in children aged 1-48 months: a communitybased randomised placebo-controlled trial. Lancet. 2007;369(9565):927-934.
- 443. Fortes C, Forastiere F, Agabiti N, et al. The effect of zinc and vitamin A supplementation on immune response in an older population. J Am Geriatr Soc. 1998;46(1):19-26.
- 444. Fischer Walker CL, Black RE. Micronutrients and diarrheal disease. Clin Infect Dis. 2007;45 Suppl 1:S73-77.
- 445. Aggarwal R, Sentz J, Miller MA. Role of zinc administration in prevention of childhood diarrhea and respiratory illnesses: a metaanalysis. Pediatrics. 2007;119(6):1120-1130.
- 446. The United Nations Children's Fund/World Health Organization. WHO/UNICEF Joint Statement: Clinical Management of Acute Diarrhoea. Geneva; New York; 2004:1-8. Available at: http://www.unicef.org/ publications/index_21433.html
- 447. Jackson JL, Lesho E, Peterson C. Zinc and the common cold: a meta-analysis revisited. J Nutr. 2000;130(5S Suppl):1512S-1515S.
- 448. Belongia EA, Berg R, Liu K. A randomized trial of zinc nasal spray for the treatment of upper respiratory illness in adults. Am J Med. 2001;111(2):103-108.
- 449. Eby GA, Halcomb WW. Ineffectiveness of zinc gluconate nasal spray and zinc orotate lozenges in common-cold treatment: a double-blind, placebo-controlled clinical trial. Altern Ther Health Med. 2006;12(1):34-38.
- 450. DeCook CA, Hirsch AR. Anosmia due to inhalational zinc: a case report. Chem Senses. 2000;25(5):659.
- 451. Food and Nutrition Board, Institute of Medicine. Zinc. Dietary reference intakes for vitamin A, vitamin K, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Washington, D.C.: National Academy Press; 2001:442-501.
- 452. Minerals. In Drug Facts and Comparisons. St. Louis, MO: Facts and Comparisons, 2000:27-51.