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Abstract: Cold spray is an advanced additive manufacturing technology that is capable of restoration of damaged 

metallic components without exposing them to high temperatures. To expand the use of cold spray from restoring the 

geometry and structure of defective parts to full remanufacturing, extending their lifespan beyond the original life cycle 

by replacing internally damaged areas (typically only 10–15% of the part’s volume), the first step is to accurately assess 

the damage at the part’s hot spot. This study explores the capabilities of X-ray diffraction (XRD) as a non-destructive 

testing method for assessing damage in AA6061-T6. A set of dog-bone samples was prepared to introduce controlled 

damage at different levels. X-ray diffraction measurements were conducted on these samples to generate test data, to 

assess dislocation densities. These values offer a quantified measure of internal damage and provide insight into the 

microstructural evolution under fatigue loading.  By using this method, this study aims to develop a reliable method for 

pre-additive remanufacturing® damage assessment. In corroboration with earlier studies, we show that XRD can 

effectively detect internal material damage using dislocation densities through XRD-measured parameters such as full 

width at half maxima (FWHM), a measure of XRD peak broadening used for analyzing dislocation and strain. Integrating 

XRD-based damage assessment with cold spray additive manufacturing can enable precise and localized repairs. By 

implementing cold spray remanufacturing, this method can significantly reduce material waste, a major contributor to 

the greenhouse gas emissions, and extend components' lifespans across various industries, promoting sustainability and 

circular economy. 
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1. Introduction 
Cold spray (CS) technology has become increasingly important in additive remanufacturing due to its ability to restore 

components without thermally affecting the material. It enables the deposition of metallic coatings and layers by 

accelerating particles to speeds exceeding sound velocity in air and embedding them into the substrate via solid-state 

deformation. This low-temperature process preserves the mechanical properties of the material, making it ideal for 

repairing defective parts, by restoring damaged areas [1]. However, to fully utilize CS for functional remanufacturing, 

extension of parts life at the end of its life cycle, it is necessary to assessing the damage at the hot spots of load bearing 

parts. Components subjected to fatigue typically fail due to damage accumulation in localized regions caused by stress 

concentrations. Thus, detecting where damage occurs and assessing the remaining life enables selective, and localized 

fatigue life enhancement, extending the overall fatigue life of the component for an additional cycle. This approach 

results in significant material and energy savings while minimizing cost and environmental impact. 

X-ray diffraction (XRD) has emerged as a powerful, non-destructive technique for internal damage assessments. Under 

cyclic mechanical loading, materials experience deformation, dislocation accumulation, and lattice strain, all of which 

affect XRD patterns. Several studies have confirmed that fatigue causes XRD peak to shift and broaden [2-4]. This causes 

the value of the full width at half maximum (FWHM) change with the fatigue damage state of the material [5-7]. These 

peak shifts correspond closely with microstructural strain and damage evolution, validating XRD's role as a fatigue 

damage assessment. Uniform deformation of the microstructure results in a shift of the diffraction peak position, while 

non-uniform deformation in the microstructure leads to peak broadening, which is typically observed as an increase in 

FWHM  [8]. Traditionally, most research has focused on tracking one or two of the XRD peak parameters, typically 

FWHM, and establishing its relationship with fatigue life [7, 9]. While useful, this approach does not fully leverage the 

information embedded in the complete diffraction pattern. In parallel with the present experimental work, we have also 

developed a dataset that includes all extracted XRD parameters as well as the corresponding raw diffraction images. 

Although machine learning implementation is beyond the scope of this study, this dataset has been specifically structured 

for future work in which machine learning techniques may be applied to identify patterns in the data and improve 
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predictive capabilities. The ultimate goal is to assess damage and guide targeted material removal and remanufacturing 

through the cold spray method. 

2. Material and methods 

2.1 Sample preparation and fatigue testing 

The test material used in this study is AA6061-T6 aluminum alloy, a widely used material in automotive components 

due to its favorable mechanical properties and corrosion resistance. Standard dog-bone shaped specimens were machined 

from 25.4 × 25.4 mm extruded blocks. The exact dimensions of the specimens are shown in 

 

Figure 1a. 

 

Figure 1: The geometry of the dog bone samples (units in mm) and the 12 XRD test locations as the red circles 

Fatigue damage was induced in the samples by applying fully reversed cyclic load ranging from 10% to 90% of the total 

average number of cycles to failure, in 10% increments. The testing was performed using an 810 MTS uniaxial servo-

hydraulic machine, which has a ±50 kN load capacity. Stress-controlled fatigue cycles were applied at stress amplitude 

of 200 MPa in a fully reversed mode (𝑅 = −1). Based on the preliminary tests and a log-normal distribution of fatigue 

life, the estimated mean total life was 150,220 load cycles, with a standard deviation of 34,462, based on 27 fatigue tests.  

2.2 X-Ray diffraction measurements 

X-ray diffraction analysis was performed on each fatigue sample using a Bruker D8-Discover diffractometer equipped 

with a VÅNTEC-500 area detector with a radius of 135 mm. Cu-Kα radiation (𝜆 = 1.5406Å) was used, with the X-ray 

tube operating at 40 kV and 40 mA. The collimator size was 2.0 mm, and each measurement included 24 diffraction 

images taken between 30° and 150° at 5° intervals. The exposure time for each image was 40 seconds, resulting in a total 

scan time of 16 minutes. From each scan, 9 distinct diffraction peaks were generated, and for each peak, 17 parameters 

were extracted. These parameters are observation max, d observation max, FWHM, chord middle, d chord middle, 

integral breadth, gravity center, d gravity center, raw area, net area, crystal size, left and right intensities, gross intensity, 

net height, signal/noise ratio, and peak/background ratio. As a result, each XRD test produced 153 data. The parameters 

starting with "d" (e.g., d observation max, d chord middle, and d gravity center) represent the interplanar spacing 

calculated from the corresponding 2𝜃 values using Bragg’s law equation [2]. 

2.3 Dataset Formation 

The structured data obtained from XRD peak profile analysis was compiled into a comprehensive dataset. Each record 

in the dataset contains 153 numerical parameters extracted from nine diffraction peaks, including FWHM, integral 

breadth, peak area, position, and shape descriptors. Additionally, the dataset includes the corresponding fatigue damage 

level of the specimen, expressed as a percentage of total number of cycles to the average final failure, and the spatial 

location of each XRD measurement relative to the center of mass of the dog-bone sample. For every specimen, 

measurements were performed at 12 different positions as shown in 
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Figure 1a and  

Figure 1b, enabling the spatial mapping of damage evolution. Raw diffraction images corresponding to each measurement 

were also archived in the dataset. An example of these kinds of images is shown in Figure 2a. The location of these peaks 

and their associated crystallographic planes are also presented in Figure 2b.  

 

Figure 2: (a) Raw XRD diffraction image for AA6061-T6 samples, (b) The location and the Miller indices of the corresponding 

planes of the 9 peaks in the diffraction pattern of AA6061-T6 

2.4 Dislocation Density Estimation via Williamson–Hall Method 

To estimate dislocation density, the Williamson–Hall (WH) method was applied. This method separates the effects of 

crystallite size and lattice strain on peak broadening observed in XRD patterns. The WH equation is given by (1  Where 

𝛽 is the FWHM of the peak (in radians), 𝜃 is the Bragg angle, 𝜆 is the X-ray wavelength, 𝐷 is the average crystallite size, 

𝜀 is the microstrain, and 𝑘 is the shape factor (typically 0.9 [10]). Instrumental broadening was removed using relation 

for 𝛽, where 𝛽𝑜 and 𝛽𝑖 are the FWHM before correction and the instrumental FWHM in radians, respectively. 

                          4𝜀 sin 𝜃 +
𝑘𝜆

𝐷
= 𝛽 cos 𝜃;  𝛽 = √(𝛽𝑜 − 𝛽𝑖)√(𝛽𝑜

2 − 𝛽𝑖
2) (1) 

3. Results and discussion 

The first key result of this study is that, as expected, XRD peak characteristics respond measurably to fatigue-induced 

damage. For example, as shown in 

 
Figure 3a, the shape of peak 9 ([422] plane) changes significantly after damage is induced. The peak position (observation 

max) shifts from 137.315° to 137.149°, the FWHM decreases from 1.538° to 1.405°, and the maximum intensity (net 

height) drops from 22.66 to 17.65 counts per second after applying fatigue cycles equivalent to approximately 90% of 

the sample’s final life of 132,853 cycles. These changes confirm that XRD is sensitive to fatigue damage and can reliably 

capture its progression. 

Next, the WH method was applied to compare dislocation densities between undamaged samples and those that had 

fractured. A linear fit to the 𝛽 cos 𝜃 versus sin 𝜃, as shown in Figure 4, yields a slope related to the microstrain, and an 

intercept that corresponds to the crystallite size. Finally, the dislocation density 𝜌 is estimated as 𝜌 =
14.4𝜀2

𝑏2  , where 𝑏 is 

the Burgers vector, which is 
𝑎

√2
 for FCC structures like aluminum, and 𝑎 is 4.05 ×  10−10 𝑚 [11]. The calculation of the 

dislocation density 𝜌 is shown in Figure 4 as well.  
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Figure 3: (a) Changes of peak 9 of AA6061-T6 before and after damage, (b) The fracture surface of one of the samples. 

Location numbers are based on 

 

Figure 1. 

 

Figure 4: Williamson-Hall plot for one of the tests on AA6061-T6 samples. Solid blue circles representing the 9 peaks and the dash 

line is the linear fit, with the equation shown on the plot.   

Although the current set of tests did not reveal a clear linear correlation between dislocation density and damage level 

across all samples, a consistent trend was observed: the average dislocation density increased from about 1 ×  10¹⁴ 𝑚⁻² 

in undamaged samples to about 2 ×  10¹⁴ 𝑚⁻² in fractured specimens. This indicates that while dislocation density may 

not scale linearly during damage, it approximately doubles after failure, highlighting its potential as a late-stage damage 

indicator. Finally, post-fracture surface of one of the samples is shown in 

 
Figure 3b. Analysis revealed that the crack initiated from point number 1. Notably, this same location has the highest 

dislocation density in the pre-failure measurements (at 76% cycles of the final life). The value of the dislocation densities 

of the points 1,4,7, and 10 were 2.14 ×  10¹⁴ 𝑚⁻², 1.05 ×  10¹⁴ 𝑚⁻², 8.12 ×  1013 𝑚⁻², and 8.043 ×  1013 𝑚⁻² 

respectively. This finding supports the hypothesis that local dislocation density increases are predictive of impending 

crack initiation sites. 

4. Conclusion 

This study investigated fatigue-induced microstructural changes in AA6061-T6 through extensive X-ray diffraction 

(XRD) measurements and derived several key findings. First, a clear difference in dislocation density was observed 

between undamaged and fractured samples, with average values nearly doubling from ~1 × 10¹⁴ m⁻² to ~2 × 10¹⁴ m⁻². 

Second, noticeable changes in diffraction peak characteristics were detected under fatigue loading, including peak 

broadening, intensity reduction, and peak position shifts, confirming the sensitivity of XRD to damage evolution.  Third, 

the initiation site of fatigue cracks coincided with the location of maximum dislocation density measured prior to failure, 

highlighting the predictive capability of localized dislocation density analysis. Taken together, these results demonstrate 
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that a strong relationship exists between the extent of fatigue damage in AA6061-T6 components and the corresponding 

XRD responses. However, this relationship is not yet fully established and requires further investigation to be 

comprehensively validated.  As emphasized throughout this work, the value of XRD lies not only in tracking individual 

parameters such as FWHM but in leveraging the full spectrum of information embedded in both numerical features and 

raw diffraction images. To this end, all extracted peak parameters (153 per scan) together with the corresponding raw 

images have been systematically stored in a curated dataset. Looking forward, this dataset establishes the foundation for 

future machine learning applications. By integrating tabular data and raw diffraction images, both classical models (e.g., 

Random Forest, XGBoost) and deep learning approaches (e.g., convolutional neural networks) can be explored to 

enhance predictive capabilities and provide explainable insights into fatigue life estimation. Ultimately, this combined 

experimental–computational framework supports the development of targeted cold spray remanufacturing strategies, 

enabling cost reduction, material preservation, and improved sustainability. 
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