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Abstract: Data science techniques, particularly machine learning (ML), have proven to be valuable tools in PBF-LM 

research. While ML can rapidly model the large process parameter space of PBF-LM, their efficacy is dependent on 

large, informative and diverse training datasets. However, scarcity in the development and availability of such datasets 

is an on-going challenge. This work outlines the on-going progress to address this challenge through the development of 

a database platform, tentatively named msamDB (multi-scale additive manufacturing database). This platform, 

specifically created to manage PBF-LM academic research data, is a modular, extensible and scalable database that can 

promote data-sharing among researchers. The initial architecture of msamDB focuses on surface roughness data 

generated throughout the PBF-LM lifecycle. This work highlights the findings and challenges encountered in the design, 

implementation and pilot data population stages of msamDB. In its current stage, msamDB data spans data from 

approximately 30 builds, multiple research and industry studies, 3 different powder materials and a broad range of process 

parameters. Data has been collected from various stages such as powder characterization, build planning, process 

parameter selection, surface characterization, etc. In reference to surface roughness measurements, the database currently 

has more than 1000 data points across various surface orientations. This work represents first known effort to curate 

research PBF-LM data at scale for PBF-LM. The potential impact of such a database is to promote federated data for 

PBF-LM researchers, which allows for data-driven model development to have increased usability.  
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1. Introduction 

Product variability remains a significant concern in additive manufacturing (AM) and in laser powder bed fusion (PBF-

LM), specifically [1]. Machine learning (ML) approaches have gained significant traction in PBF-LM research for fast 

exploration of the process space. ML models complement the high-fidelity but costly experimentation and simulation 

approaches. However, the effectiveness of ML and other data-driven models depends on data availability, and there is a 

scarcity of large, diverse and usable data. This is illustrated in Figure 1, where selected datasets [2–16]  are compared for 

their size (i.e. rows), dimensionality (i.e. columns) and variety (number of builds, materials, machines, etc. used). The 

dataset composition shown in  Figure 1 (a) is used to create a data variety score for  Figure 1 (b) (normalized between 0-

6, where 6 indicates highest variety). The red line depicts the rule-of-thumb which proposes 100 datapoints (rows) for 

each dimension (columns) [17]. It is clear that most dataset sizes have high dimensionality but smaller size and variety.   

While there is precedence in data management efforts for AM data [1], there are few working implementations in the 

research domain. This work is a scalable, extensible implementation specifically for heterogenous research data. 

 

Figure 1: Visualized data scarcity in datasets reported in literature. (a) Shows the composition of datasets in terms of parts, builds, 

machines and materials. (b) Scatterplot indicating relationship between dataset length (rows – Y axis) and width (columns - X axis) 
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2. Materials and methods 

As illustrated in Figure 2, this work demonstrates a framework which facilitates data aggregation from different stages 

of PBF-LM lifecycle. The second stage of the framework systematically indexing data at relevant scales. To ensure a 

high level of trust and reduce data cleaning burden in downstream analytics efforts, msamDB also includes a 

comprehensive validation layer, which conducts rigorous rule-based and statistical testing of incoming datapoints. 

 

Figure 2: Graphical illustration of data ingestion workflow for the database. 

2.1 Modelling multi-scale PBF-LM data 

An entity relationship (ER) diagram was constructed for a preliminary understanding of the multi-scale nature of PBF-

LM data. ER diagrams allow for a high degree of abstraction to the database development process to conceptualize 

relationships between different data entities. Figure 3 shows an excerpt from the ER diagram (full diagram excluded for 

brevity) that shows the creation of entities such as “parts”, “measurements” and “measurement conditions”, which are 

linked by specific relationships. The developed database is postgres instance on a Linux server (Ubuntu OS). Postgres 

was chosen as the database platform due to significant community support and open-source nature.  

 

Figure 3: An excerpt from the ER diagram of the database, showing PBF-LM entities such as parts and surfaces 

2.2 Data indexing and validation layers 

By leveraging the relationships between entities as shown in Figure 3, data from different sources is first linked to a 

unique scaled based identifier. For example, data pertaining to a specific surface is indexed to a unique “region_id” 

(“regions” formulated as a generalization of “surfaces” in the database.). Next, data is passed through a validation layer. 

Selected examples of data validation scenarios are given in Table 1, along with potential outcomes:  

Table 1: Examples of data validation scenarios implemented for ensuring baseline levels of data quality 

Test scenario Success Failure 

Candidate datapoint has high probability of anomaly Safe to insert Warning  

Value (Power) with erroneous/missing unit (Watts) Safe to insert Error – reject insertion 

“Region” data inserted with a missing link to a part Safe to insert Error – reject insertion 

Part data inserted without any process outcomes Safe to insert Warning  
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3. Results and discussion 

For demonstrating the efficacy of the msamDB, surface roughness data was extracted from 10 different PBF-LM builds 

printed across two machines, a continuous laser system (EOS M290) and a modulated laser system (Renishaw AM400). 

The data encompasses different part geometries, three different ferrous alloys and surfaces with different orientation 

angles. Roughness measurements in the form of height maps and areal roughness parameters were extracted. Surface 

roughness measurements were collected using a confocal laser profilometer. Process parameters data was extracted from 

templated process parameter sheets and powder properties (thermal and morphological) was extracted from material 

sheets. These data were extracted from builds not intended for this work, hence simulating conditions where heterogenous 

data with variation in structure and quality is encountered. For reference, Table 2 includes baseline data retrieval metrics 

for two sample queries.  

Table 2: Baseline retrieval information for a simple query (single table) and joined query (two related tables) from the database 

Query type Query description Data rows Planning time [ms] Execution time [ms] 

Simple Fetch all parts from builds = [X,Y]  528 0.032 0.058 

Joined Fetch all parts and their linked (roughness) data 1043 0.087 0.336 

 

We also demonstrate the data validation layer where incoming data is assessed baseline quality. For brevity, we illustrate 

through one example wherein two candidate values of laser power are evaluated against the existing distribution. This is 

visualized in Figure 4. Given the distribution of the datapoints already in the database, the probability of the candidates 

being an outlier is computed. Once again, this evaluation will lead to an ingestion with warning, depending on the 

threshold for “probability of an outlier” chosen. Coupling the database with such built-in statistical evaluation processes 

can help maintain baseline quality of data added to the database, contributing to the need for improved data quality ML 

[18].  

 

Figure 4: Visualization of the statistical monitoring of data quality. Two candidate datapoints (star markers) with the distribution of 

the current datapoints (blue), and the probability of candidate data point being an anomaly is annotated. (σ = standard deviation) 

4. Conclusions 

This work shows prelimnary development of a novel data management solution that can help address a longstanding 

challenge with ML based approaches: data scarcity. This work shows that part-scale dataset size and variety can be 

achieved with research data, with access to a shared data platform which automatically evaluates incoming data to assure 

baseline data quality. msamDB can contribute to several data-driven efforts such as those illustrated in Figure 5. By 

integrating a data quality evaluation module with the database, we propose that it can facilitate scaling of data ingestion 

from 30 builds to hundreds of builds collected by different researchers. The authors welcome collaboration opportunities 

to demonstrate benefits of data sharing.  The current limitations our work are: (a) only surface roughness data ingested 

as process outcome, (b) only prelimnary architecture to ingest high volume temporal sensor data (e.g. photodiode 

streams) and (c) development of a user-interface (UI) to facilitate smoother data sharing. The authors hope to address (c) 

as future work. While (a) was intentionally chosen to manage scope of current work,  the relational model proposed was 

designed to be easily adapted for other process outputs.  (e.g. density related to part data). Finally, the authors hope to 

address (c) as future work by developing a prelimnary UI for data interaction. 
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Figure 5: Examples of data science applications possible with current (highlighted in green) and future extensions of msamDB. 
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