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1 Introduction

Urban water scarcity is frequently identified as an important social and economic concern
globally (He et al., 2021; Dolan et al., 2021) and in the United States, in particular (Brown
et al., 2019). Economists tend to highlight the role of water management institutions that
allocate resources inefficiently within and across sectors as contributors to this problem,
noting, for example, that re-allocation via markets or other means might go a long way
toward mitigating urban water constraints (Zilberman et al., 1993; Olmstead, 2010; Debaere
et al., 2014). Given current institutions and legal water allocation regimes, however, cities
in arid regions often struggle to meet peak seasonal water demand. Recent examples
include Cape Town, São Paulo, Las Vegas, and Melbourne (Hughes et al., 2025).

The intensity, duration, and frequency of droughts are increasing in many regions (Xu
et al., 2019; Caretta et al., 2022; Trenberth et al., 2013), complicating the challenge of urban
water demand management. What changes might we expect in urban water demand
behavior from exposure to drought? Conventional wisdom among U.S. water utilities
suggests that periodic drought induces changes in water demand that last well beyond
a drought’s official end date, an effect sometimes referred to as the “drought shadow”
(Alliance for Water Efficiency, 2014). Another phenomenon anecdotally attributed to
drought is “demand hardening” or the tendency of water demand to become less responsive
to demand management policies over time as households and firms make investments in
water conservation, some of which leave them with less capacity to respond in the future
(Howe and Goemans, 2007; Kenney, 2014). If drought shocks prompt long-term changes
in water demand behavior, and these changes occur at broad geographic scale, they could
have important implications for modeling adaptive responses to water scarcity, making
this a worthy subject for research.

The peer-reviewed empirical literature on both of these effects is thin and mixed,
however. Considering the pure demand effect first, urban households and firms affected
by drought may respond to mandatory or voluntary water supply restrictions or price
increases by installing water-efficient technologies (fixtures, appliances, landscaping,
industrial process machinery), which, even with a rebound effect, could suppress long-run
demand (Brelsford and Abbott, 2017; Musolesi and Nosvelli, 2011). While the effects
would be smaller and easier to reverse, simple behavioral changes (e.g., shorter showers)
might also persist after a drought. Research in Barcelona, Spain suggests that post-drought
water consumption decreased by 4-5 percent after a major drought in 2007-2008 (Bernardo
et al., 2015). During a severe drought in the U.S. State of California in 2011-2017, the state
called for a 25 percent reduction in water use relative to 2013. In response, households
self-reported engaging in many conservation behaviors and reducing water demand (Stone
and Johnson, 2022). However, empirical evaluation suggests that compliance with the
statewide conservation mandate at the water utility level may have reached only about
50 percent (Soliman, 2022), and public announcements about the crisis do not appear
to have induced statistically significant water savings (Browne et al., 2021). In terms of
long-run impacts, some analyses suggest that water usage in California appears to have
returned to its pre-drought levels fairly quickly after restrictions were lifted (Soliman,
2022), while others find that water conservation by residential users persisted for several
years (Bolorinos et al., 2022).
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Brelsford and Abbott (2017) find that a drought alert in Las Vegas, Nevada may
have decreased demand contemporaneously, but the alert coincided with many different
conservation policies, so the effect may not be attributable to drought, alone, and it is not
clear how long the effect persisted. In a field experiment conducted in the Atlanta, Georgia
area, a drought-related social comparison nudge reduced household water demand, but
this effect declined significantly within a few months (Ferraro and Price, 2013). Similarly,
behavioral interventions to encourage residential water conservation during a drought
in California appear to have had effects that lasted for less than 6 months (Jessoe et al.,
2021). Thus, empirical evidence for a “drought shadow” is mixed, whether we consider
droughts, alone, or the various policies implemented to achieve water savings during
these hydrologic extremes.1

Turning to drought’s impacts on price elasticity, Klaiber et al. (2014) and Mansur
and Olmstead (2012) both find that urban households are less price-elastic during dry
conditions, but these estimated effects are seasonal (occurring regularly in the summer
months), rather than responses to seasonally-anomalous drought conditions. In contrast,
one study suggests that residential water users in Colorado may actually be more sensitive
to prices during drought periods (Kenney et al., 2008). In a meta-analysis of water demand
studies, the price elasticity of demand appears to be smaller in areas prone to water scarcity,
though this result exploits cross-sectional variation in climate, rather than experience with
drought in locations observed repeatedly over time (Garrone et al., 2019). Two recent
studies provide strong empirical evidence of demand hardening at the utility scale. Stone
et al. (2020) find that urban households are less responsive to water prices after a major
drought in Colorado, even though prices increased quite steeply in the post-drought
period. And in a study of Phoenix, Arizona, conversion to drought-tolerant landscaping
has reduced price responsiveness among households in the metro area (Brent, 2016).
Whether such effects occur more generally at broad spatial scale is an open question.

In this paper, we assemble a novel dataset on residential water demand and pricing in
the western United States to test empirically for effects of drought on water demand (the
“drought shadow”) and price elasticity (“demand hardening”). We perform our analysis
using aggregate quantity, price, and drought data at the water utility level. Our approach
accounts for endogenous prices under increasing-block water tariffs and uses both average
and marginal water fees in estimating water demand functions. Results are consistent
with the demand hardening hypothesis that households may become less price-sensitive
after exposure to drought. However, we do not find evidence consistent with long-run,
drought-related reductions in water demand, itself.

2 Data

There is no central repository for data on water consumption and pricing in the United
States. Researchers estimating water demand functions in the U.S., thus, face a data

1In an important application focusing on energy demand that provides a contrast to results in the literature
for water demand, Costa and Gerard (2021) study the effects of a drought in Brazil that reduced hydroelectricity
generation and resulted in a mix of household quotas and incentives to reduce electricity use. They find that
about 23 percent of the reduction in residential electricity use attributable to this policy intervention, which
lasted only 9 months, has persisted for 12 years.
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collection challenge. One approach is to work with individual water utilities to obtain
household-level data on water consumption along with utility-level price schedules. There
are many examples of this approach in the literature (e.g., Ferraro and Price (2013); Klaiber
et al. (2014); Wichman (2014); Clarke et al. (2017); Asci et al. (2017)). Other water demand
research uses household-level consumption data and utility price schedules from the
Residential End Uses of Water Survey, which collected several months of water demand
data from a small number of utilities in the United States and Canada in the mid-1990s
(Olmstead et al., 2007; Olmstead, 2009; Mansur and Olmstead, 2012).

We take a different approach, collecting aggregate price and quantity data to estimate
utility-level demand functions for residential water, for two reasons. First, in order to
answer our primary research questions about the impacts of drought on water demand
and price elasticity, we require significant variation in drought exposure over time and
geographic space, which is difficult to achieve working with data from a single utility,
or even a small number of utilities. Second, our interest is in broad-scale changes in
water demand behavior, and results from a modest number of individual utilities might
have low external validity. Given the tradeoffs between external validity and plausibly
causal interpretation of demand parameter estimates, our approach complements the
literature that examines the impact of drought on water use within individual utilities
using quasi-experimental or experimental methods (Ferraro and Price, 2013).2 Note that
our approach requires that we collect and standardize data from many different sources,
and in some states, the raw data may be more reflective of water supply to the residential
sector than of water demand from this sector. While the two are likely to be strongly
correlated, water supply data could include system leakage (beyond any household meter),
seepage, and unbilled water. To the extent that these supply-side factors respond to
drought conditions (e.g., through utility investment in reducing water losses), the effects
we estimate could combine drought responses by both households and their water utilities.

2.1 Water demand and pricing data

In this section, we describe the water price and use data obtained from each state.
Additional subsections describe how we construct a standardized estimate of water use
(average per capita monthly consumption by utility-year) and a common set of price tiers
for the analysis.

2.1.1 California water fees and quantities

For the State of California, we collect water fees from the Electronic Annual Reports (eAR)
of public drinking water systems managed by the Division of Drinking Water (DDW)
within the State Water Resources Control Board (SWRCB).3 eAR is an annual survey of
public water systems that collects water system information intended to assess regulatory
compliance. The reports are publicly available since 2013, though response rates and
the consistency in reporting water prices improve from 2017 onward. Prior to 2017, the
reports exclude information on usage cutoffs for each price tier, as well as fixed charges.

2Wichman (2024) compiles a similarly-large, utility-level dataset for two states in the eastern U.S. to examine
the efficiency and equity implications of water pricing strategies.

3See https://www.waterboards.ca.gov/.

https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwaterk/ear.html
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Since 2017, utilities have been asked to report total water bills (including fixed charges and
volumetric rates) for standard quantities of 6, 12 and 24 hundred cubic feet (CCF).4 Thus,
we retain reports from 2017-2020. On average, 80 water utilities report their water rates in
each year of this sample.

We import water consumption data for California utilities from the Water Conservation
and Production Reports prepared by the SWRCB. 5 The reports contain population served,
monthly potable water production, and water usage percentages by sector (residential,
commercial, industrial, institutional) for urban water suppliers from 2014 onward. From
the reports, we are able to calculate monthly total and per-capita residential water usage
for each reporting public drinking water system and match these data with the water fee
data obtained from California’s eARs, 2017-2020.

2.1.2 Texas water fees and quantities

For the State of Texas, we obtain water fees and water consumption data from the Texas
Municipal League (TML) Water & Wastewater Survey.6 Only municipal utilities are
included. The survey includes population served, total number of connections, average
per-capita water usage, and total residential fees at monthly quantities of 5000 and 10000
gallons, including fixed charges, and the data are publicly available since 2015. On average,
580 cities report their water fees and consumption levels in each year.

2.1.3 Arizona water fees and quantities

We obtained water fees for each water utility in the State of Arizona from the University of
North Carolina at Chapel Hill Environmental Finance Center (EFC). EFC partners with
the Arizona Municipal Water Users Association, League of Arizona Cities and Towns,
Northern Arizona Municipal Water Users Association, and Water Resources Research
Center at the University of Arizona to collect these data. Since 2014, the EFC has surveyed
nearly all of the rate-charging water and wastewater utilities in Arizona. Total water fees
are reported for consumption quantities of 3000, 4000, 5000, 7000, 10000 and 15000 gallons,
including fixed charges. On average, 400 utilities are surveyed each year.

The data on water consumption levels for Arizona are obtained from the Arizona
Department of Water Resources. The department reports the annual amount of drinking
water demanded and supplied in acre-feet for each use (e.g., residential) for each of the
six active management areas (AMAs) in the state. Unfortunately, this aggregation of
the available consumption data prevents us from exploiting the variation in water fees
and quantities within an AMA. Thus, we calculate per-capita average monthly water
consumption for each year in each AMA by dividing total monthly usage by population.
This means that in Arizona, we use the same average per capita monthly consumption
for all water utilities in the same AMA. On average, there are 75 utilities in our Arizona
dataset each year.

4The state provides detailed reporting instructions for individual utilities at
https://www.waterboards.ca.gov/.

5See https://www.waterboards.ca.gov/.
6See https://www.tml.org/229/Water-Wastewater-Survey-Results/.

https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/docs/example_residential_rate_structure_table_a18.pdf
https://www.waterboards.ca.gov/water_issues/programs/conservation_portal/conservation_reporting.html
https://www.tml.org/229/Water-Wastewater-Survey-Results/
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2.1.4 Washington water fees and quantities

Water fees (including fixed charges) and consumption levels for Washington State are
obtained from the Tax and User Fee Survey of the Association of Washington Cities
(AWC).7 The survey is performed every two years, and it has a utility rates section which
includes average monthly consumption of drinking water for single-family residential
users in cubic feet, population served, number of connections, and total water fees at
consumption levels of 500, 1000, and 2000 cubic feet. This survey began in 2018. On
average, 63 municipal utilities are surveyed every two years.

2.1.5 Construction of average per capita monthly consumption for the dataset

Using each state’s data, we calculate average per capita monthly consumption, our main
dependent variable, which varies by utility-year. However, because the form of the raw
data differs across states, this calculation also differs across states.

For California utilities (2017-2020), the raw data report total water production, per-
centage of residential use, and population of the utility service area. Water production is
reported in varying units (hundred cubic feet (CCF), acre-feet, gallons, and millions of
gallons).8 The number of connections or households served is not available in the data,
so we calculate average per capita monthly consumption for each utility-year as follows:
Total water production × percentage of residential use × unit conversion rate to CCF /
population / 12.

For Texas water utilities (2015-2021), the raw data include average monthly usage per
residence in gallons, number of connections, and population of the utility service area. In
this case, we calculate average per capita monthly consumption for each utility-year as
follows: Average monthly usage per residence × number of connections × unit conversion
rate to CCF / population.

For Washington State (2018, 2020, 2022), the raw data include average monthly usage
per residence in CCF, number of connections, and population of the service area. The
Washington data are reported for municipal water utilities, so the utility names correspond
to cities. We calculate average per capita monthly consumption by utility-year as follows:
Average usage per month × number of connections / population.

For Arizona (2014, 2015, 2017, 2019), the raw data include total residential usage in
acre-feet and population of the utility service area, separated by small and large providers.
The number of connections is not available in the Arizona data. We sum large provider
and small provider demand to obtain total water usage in each year, and we sum large
provider population and small provider population to obtain total population. We then
calculate average per capita monthly consumption as follows: Total usage in a year in
acre-feet × conversion rate to CCF / population/12.

Given the nature of the residential water quantity data available from the states in our
sample, our final dataset is an unbalanced utility-year panel. Figure A1 in the Appendix
graphs average per capita monthly consumption by utility-year for our sample, and Table
2 provides summary statistics. In Table 2, we can see that average per capita monthly

7See https://wacities.org/data-resources/municipal-rates-and-fees/.
8The unit conversion rates we use are as follows: 1 CCF = 100 cubic feet; 1 acre-foot = 43560 cubic feet; 1

gallon = 0.133681 cubic feet; 1 million gallons = 133681 cubic feet.

https://wacities.org/data-resources/municipal-rates-and-fees/
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consumption ranges from about 2 CCF among Washington utilities, to about 5.75 CCF
among California utilities. Figure A1 shows the long right tail in per capita consumption
that is typical of water demand data. While our dependent variable is under 6 CCF, on
average, within each state, some utility-years have much higher average per capita monthly
consumption, especially in California and Texas.

2.1.6 Construction of standardized water fee tiers for the dataset

Table 1: Original and adjusted water fee tiers and quantity cutoffs by state

State Unit # tiers Q1 Q2 Q3 Q4 Q5 Q6
AZ GAL 6 3000 4000 5000 7000 10000 15000 original

CCF 6 4.01 5.34 6.68 9.35 13.36 20.05 adjusted
CA CCF 3 6 12 24 original

CCF 6 6 6 6 12 12 24 adjusted
TX GAL 2 5000 10000 original

CCF 2 6.68 13.36
CCF 6 6.68 6.68 6.68 13.36 13.36 13.36 adjusted

WA CCF 3 5 10 20 original
CCF 6 5 5 5 10 10 20 adjusted

Note: Table reports original number of water fee tiers with associated quantity cutoffs
by state, as well as the "adjusted" number of tiers and quantity cutoffs, created to
compile a dataset for estimating aggregate water demand functions. For the adjusted
parameters needed to merge the data, we convert each water utility’s quantity cutoffs
to a set of six tiers, the highest number of tiers in the dataset (reported for utilities in
Arizona), and we convert all the consumption quantities to CCF.

The utilities in our data have many different water fee structures. Some are uniform,
in which the same marginal volumetric water price is paid regardless of consumption,
and others are tiered, in which the marginal price increases with consumption. Utilities
with tiered prices have different quantity cutoffs for each tier, and different price levels. In
addition, water consumption levels and the consumption cutoffs of tiered price structures
are provided in several different units across states: CCF, cubic feet, acre-feet and gallons.
We convert all water consumption levels and cutoffs to CCF in order to merge and
collectively analyze the different state datasets. To overcome the problem of different
numbers of cutoffs, we expand each utility’s volumetric rate structure to include six tiers,
the number reported for utilities in Arizona, and the highest number of tiers in the data.
For example, California has 3 tiers, and its first tier threshold is below the third tier
threshold reported for Arizona utilities, thus we assign the first-tier price to the first three
consumption levels in California. The second consumption threshold in California is less
than 4th and 5th cutoffs in the Arizona data, thus we assign the second-tier price in each
California utility to the 4th and 5th consumption levels reported in California. The third
tier threshold reported in California is more than 6th cutoff reported for Arizona utilities,
thus we assign California utilities’ third-tier price to their 6th consumption level. We
expand the price structures of all states in the dataset in the same way. Utilities with
uniform volumetric prices are assigned the same water fee (inclusive of fixed charges)
for all six tiers. Table 1 presents the changes made to integrate the water pricing and
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consumption data across multiple states. Throughout the paper, we use P1-P6 to refer to
the volumetric water fees corresponding to consumption levels Q1-Q6.

The literature is mixed as to whether consumers respond to marginal or average prices
under increasing-block tariffs (Taylor et al., 2004; Olmstead et al., 2007; Olmstead, 2009;
Wichman, 2014; Clarke et al., 2017; Browne et al., 2021). Recall that the data we obtain from
the four states combine fixed charges and volumetric charges into a set of total water fee
estimates at different levels of consumption. Thus, the water fees in our demand functions
all reflect some aspects of an average price, because we cannot separate out the fixed from
the volumetric components of these charges. However, we accommodate the literature on
marginal vs. average prices in demand estimation by developing two different water fee
variables in our demand equations. In models using the marginal water fees, we simply
assign the marginal fee at the average observed level of consumption for each utility-year
(the fee for the tier at which average consumption takes place). Marginal water fees over
time for each state are graphed in Appendix Figure A2, showing that most such fees are
less than $200 per CCF, with some higher exceptions in California and Texas.

To create an average fee variable for each utility-year, we multiply the consumption
threshold for each tier by the fee for that tier (for all infra-marginal tiers of consumption),
add this to the actual average consumption in the marginal tier multiplied by the marginal
fee, and divide this total expenditure estimate by total consumption. We employ marginal
water fees in our main models and test robustness to the use of average water fees in the
Appendix. Note that given our data constraints, these marginal and average fee variables
likely vary less than true marginal and average prices, due to our inability to separate out
fixed charges from the marginal fees reported by utilities in each state. Figure 1 shows the
distributions of these two price variables, which overlap significantly.

Moreover, under increasing-block prices, marginal and average water fees are functions
of water consumption. As consumption rises, the volumetric fee also rises, so regressing
quantity on water fees will confound the upward-sloping supply function with downward-
sloping demand. Due to this endogeneity concern, we use instrumental variables (IV)
models in our main specifications. Following Olmstead et al. (2007) and Olmstead (2009),
we use the full set of tiered water fees in each utility-year as marginal and average water
fee instruments in the IV models.

Figure 2 shows the utility boundaries included in the collected dataset and where
they are located in the United States. Table 2 reports summary statistics for the raw
data separately for Arizona, California, Texas and Washington. Our dependent variable,
average per capita monthly consumption, varies from a mean of about 200 cubic feet among
utilities in Washington to almost 575 cubic feet in California. Average population served
is largest in California and Texas utilities (at 110,557 and 104,920 respectively) and much
smaller in Arizona (25,114) and Washington (15,115). The residential fees summarized
in Table 2 reflect total water fees at the reported volume tiers as they vary in the state
datasets. Nonetheless, if we look at the typical total monthly fees paid for 6.68 CCF in
Arizona, 6 CCF in California, 6.68 CCF in Texas, and 5 CCF in Washington, we see that
these amounts are quite similar (between $34 and $37) for Arizona, Texas and Washington,
and substantially higher (about $55) in California.
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Figure 1: Distribution of average and marginal fees
Notes: The figure presents the distributions of average water fees and marginal water fees ($/CCF) in our
sample.

Figure 2: Maps of water utility boundaries in dataset collected from individual states
Notes: The map depicts water utility service areas included in the dataset as yellow-shaded areas in Arizona,
California, and Washington State on the left, and in the State of Texas on the right.
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Table 2: Summary statistics by state

A: Arizona
Mean Std. dev. Min Max

Drought index (scPDSI) −3.53 0.96 −5.44 0.00
Consumption (CCF) 4.74 0.59 3.53 6.12
Residential Fees
4.01 CCF 28.05 14.44 4.36 92.35
5.34 CCF 30.75 15.17 4.36 107.10
6.68 CCF 33.65 16.14 5.00 121.85
9.35 CCF 39.68 18.55 5.00 151.35
13.36 CCF 49.49 23.30 5.00 195.60
20.05 CCF 70.09 35.02 5.00 269.35
Population served 25 113.89 127 015.9 37 1 579 000

B: California
Mean Std. dev. Min Max

Drought index (scPDSI) −1.75 1.08 −4.22 0.76
Consumption (CCF) 5.75 21.60 0.18 351.31
Residential Fees
6 CCF 55.45 26.18 1.11 156.09
12 CCF 77.06 40.09 2.22 242.65
24 CCF 130.70 114.62 1.06 893.91
Population served 110 556.8 154 129 459 1 017 795

C: Texas
Mean Std. dev. Min Max

Drought index (scPDSI) −0.17 1.57 −5.44 3.47
Consumption (CCF) 3.44 2.87 0.13 50.35
Residential Fees
6.68 CCF 36.99 15.13 2.98 138.75
13.36 CCF 59.18 25.32 4.3 363.00
Population served 104 920.10 433 133.50 47 2 325 502

D: Washington
Mean Std. dev. Min Max

Drought index (scPDSI) −2.04 0.74 −4.54 −0.56
Consumption (CCF) 1.99 10.27 0.10 67.25
Residential Fees
5 CCF 34.24 15.27 2.12 80
10 CCF 42.42 19.18 2.12 98.70
20 CCF 59.63 31.14 2.12 138.03
Population served 15 115.42 26 851.98 103 92 964

Notes: Summary statistics for PDSI, average per capita monthly consumption,
residential water fees, and population served, by state.
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2.2 Data characterizing drought conditions

The primary variable used to characterize drought conditions in our models is the Self-
calibrating Palmer Drought Severity Index (scPDSI) from the University of East Anglia’s
Climatic Research Unit.9 The scPDSI is calculated from time-series of precipitation and
temperature, together with fixed parameters related to the soil/surface characteristics at
each location (Wells et al. (2004); Van der Schrier et al. (2013)). Values of the index are
available monthly worldwide for the period 1901-2022 on a 0.5-degree grid, which we
aggregate to the utility, the spatial scale of the water demand models. The scPDSI is a
standardized index that generally spans -10 to +10, with [-0.5,0.5] reflecting near normal
conditions, values less than -0.5 reflecting drier than normal conditions, and values greater
than 0.5 reflecting wetter than normal conditions. The index classifies drought conditions
as follows: -1.00 to -1.99 is mild drought, -2.00 to -2.99 is moderate drought, -3.00 to -3.99
is severe drought, and -4.00 and less is extreme drought.

To aggregate the scPDSI data to a yearly level and merge them with our water demand
data, we define two new variables: (1) the count of months in each utility-year that
have an average scPDSI value less than or equal to -3.00 (in the severe or worse drought
range); and (2) an area-under-the-curve (AOC) measure that captures the duration and
severity of drought by utility-year. For this second measure, we graph the scPDSI for each
utility-year and calculate the area under the resulting curve where the scPDSI is less than
-3 (the utility’s service area is experiencing severe or worse drought). Figure 3 presents an
example of our AOC approach, plotting the monthly scPDSI values for Alpine Domestic
Water Improvement District, one of our sample water utilities in eastern Arizona near the
New Mexico border, for the year 2014. The shaded area in the figure is the value of the
AOC drought variable for that utility-year.

In Appendix Figure A1, which graphs average per capita monthly consumption by
utility-year for our sample, we indicate utility-years for which the AOC drought measure
is greater than zero (those with any months in which the scPDSI has a value less than
-3) with open circles, and utility-years for which AOC=0 with closed circles. There is no
obvious visual correlation between drought and consumption in this figure.

2.3 Additional data sources

We use water utility boundary maps to characterize drought conditions for each utility. For
this purpose, we obtain the California water utility boundary map from the California State
Geoportal, and the Texas water utility boundary map from the Public Utility Commission of
Texas. For the remaining two states, we download drinking water service area boundaries
from the Environmental Policy Innovation Center/SimpleLab’s comprehensive national
dataset of drinking water service area boundaries. 10 We first join cities to water utility
systems if the data on rates and consumption are collected at the city level (as they are in
Texas and Washington) by matching to the extent possible on location. Then, we join our
utility system boundaries to the various drought indices using ArcGIS Pro and GeoPandas.

9See https://crudata.uea.ac.uk/cru/data/drought/.
10See https://www.policyinnovation.org/technology/water-utility-service-area-boundaries.

https://crudata.uea.ac.uk/cru/data/drought/
https://www.policyinnovation.org/technology/water-utility-service-area-boundaries
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Figure 3: Example of area-under-the-scPDSI-curve calculation for one utility-year
Notes: The figure demonstrates how we calculate the AOC drought measure. The sample curve plotted is
for the Alpine Domestic Water Improvement District in Arizona in 2014. The x axis indicates the calendar
months in a year, and the y axis shows the value of the scPDSI drought severity index in each month. We
calculate the gray area between the scPDSI value and the horizontal line at -3 as the AOC, because -3 is the
scPDSI threshold for severe drought.

2.4 Data cleaning

After merging the data to construct an unbalanced utility-year panel, we sort the data by
public water system ID (PWSID, a unique identifier for each U.S. water utility), year, and
water consumption, and we drop observations missing consumption, with consumption
equal to zero, or with consumption less than 50 or greater than 4000 cubic feet, given that
the average U.S. monthly per capita consumption is about 300-400 cubic feet, according to
the U.S. Environmental Protection Agency.11 (Note that the summary statistics in Table 2
are for the raw data, which do include these high-consumption observations.)

3 Empirical Methods

We estimate aggregate water demand functions using a standard log-log form to understand
whether and how water demand and price elasticity respond to drought. Equation (1)
describes the basic model.

𝑙𝑛𝑄𝑢𝑡 = 𝛼 + 𝛽1𝑙𝑛𝑃𝑢𝑡 + 𝛽2𝐷𝑢𝑡 + 𝛽3𝑙𝑛𝑃𝑢𝑡 × 𝐷𝑢𝑡 + 𝛿𝑢 + 𝜆𝑡 + 𝜖𝑢𝑡 (1)
11See https://www.epa.gov/watersense/statistics-and-facts/.

https://www.epa.gov/watersense/statistics-and-facts/
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In Equation (1), 𝑙𝑛𝑄𝑢𝑡 is the natural log of average per capita monthly water consump-
tion in utility 𝑢 in year 𝑡, 𝑙𝑛𝑃𝑢𝑡 is the natural log of the water fee by utility-year, 𝐷𝑢𝑡 is a
drought severity measure by utility-year (using the two different approaches described in
Section 2.3), 𝛿𝑢 is a utility fixed effect, and 𝜆𝑡 is a year fixed effect. We include 𝛿𝑢 to control
for non-time-varying utility service area characteristics that may affect water demand and
be correlated with drought responses, and we include 𝜆𝑡 to account for water demand
shocks over time common to all utilities, such as those related to national macroeconomic
conditions. In some of the models discussed in Section 4, we add state x year fixed
effects to Equation (1), controlling for underlying state heterogeneity in water demand,
conservation policies and other factors. 𝜖𝑢𝑡 is a normally-distributed, idiosyncratic error
term. The coefficients of interest are the price elasticity of demand (𝛽1), the marginal effect
of drought conditions on water demand (𝛽2), and the marginal effect of the interaction
between drought and price (𝛽3), which captures the effect of drought on price elasticity.

As noted earlier, in some models 𝑃𝑢𝑡 represents an average water fee, and in others it is
a marginal fee. For water utilities with tiered prices, average and marginal water fees are
endogenous. Thus, we use IV to estimate the main demand models, using the full set of
tiered water fees for each utility-year as instruments. The first stage in the IV models is
Equation (2), and the second stage is Equation (3).

𝑙𝑛𝑃𝑢𝑡 = 𝜔 + 𝛾1𝑙𝑛𝑃1𝑢𝑡 + 𝛾2𝑙𝑛𝑃2𝑢𝑡 + ... + 𝛾6𝑙𝑛𝑃6𝑢𝑡 + 𝜈𝑢𝑡 (2)

𝑙𝑛𝑄𝑢𝑡 = 𝛼 + 𝛽1 �𝑙𝑛𝑃𝑢𝑡 + 𝛽2𝐷𝑢𝑡 + 𝛽3 �𝑙𝑛𝑃𝑢𝑡 × 𝐷𝑢𝑡 + 𝛿𝑢 + 𝜆𝑡 + 𝜖𝑢𝑡 (3)

Note that our research design does not allow us to differentiate between the impacts
of drought, itself, on water demand and price elasticity, and the impacts of time-varying
conservation and other drought mitigation policies. The utility fixed effect controls for any
underlying non-time-varying heterogeneity among utilities that may tend to differentially
implement such policies, and year effects control for changes in the tendency of all utilities
or states in the region to adopt drought policies over time. But to the extent that drought
policies change by utility-year, our estimates of 𝛽1, 𝛽2, and 𝛽3 will incorporate policy
responses, as well as direct drought responses.

To test our hypotheses regarding the drought shadow and demand hardening, we
add some lagged variables. Using both the OLS and IV approaches described above, our
basic demand equation with lags is Equation (4), which includes a set of four lagged
drought variables, as well as a set of four interactions between current water fees and
lagged drought.

𝑙𝑛𝑄𝑢𝑡 = 𝛼 + 𝛽1𝑙𝑛𝑃𝑢𝑡 +
4∑
𝑙=0

𝜔𝑙𝐷𝑢(𝑡−𝑙) +
4∑
𝑙=0

𝛾𝑙 𝑙𝑛𝑃𝑢𝑡 × 𝐷𝑢(𝑡−𝑙) + 𝛿𝑢 + 𝜆𝑡 + 𝜖𝑢𝑡 (4)

In Equation (4), estimates of 𝜔𝑙 will quantify the marginal effect of current and past
drought on current water demand, and estimates of 𝛾𝑙 will quantify the effect of current
and past drought on the price elasticity of demand. We choose four years of lags for these
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sets of variables because this is the maximum number possible, given the limited number
of years in our data.12

4 Results

Table 3 reports results from estimating Equation (1) in columns 1 and 2, and from our
IV approach (Equation (3)) in columns 3-6, using the marginal water fee at the observed
average level of water consumption as the price variable. In Table 3 we use the number of
months in a year in which the scPDSI value is less than or equal to -3 (severe or worse
drought) to characterize drought conditions by utility-year. Table 4 reports results from the
same set of models using the marginal fee, but instead employing our area-under-the-curve
approach to characterizing drought duration and severity by utility-year. In both tables,
the OLS models generate positive and significant price coefficients, reflecting the expected
endogeneity bias. Using the IV models in columns 3-6, in contrast, demand curves are
downward-sloping. For this reason, we interpret the IV coefficients, but not the OLS
coefficients.

In columns 3 and 4, we include both a drought variable and log price, and we vary
the time controls in the specification, using utility and year FEs individually in column
3, and a full set of state x year effects along with utility FEs in column 4. Across the
choice of controls, price elasticity in the IV models ranges from -0.11 to -0.31, and drought
in the current year reduces water consumption. In columns 5 and 6 of Tables 3 and 4,
we add an interaction between the marginal water fee and the drought variable, testing
for demand hardening, along with the contemporaneous drought effect. In both tables,
drought appears to make consumers less responsive to the marginal water fee, reducing
elasticity by about 25%. The price elasticity estimates when we use the AOC measure to
characterize drought in Table 4 are somewhat smaller in magnitude than when we use the
count of drought months by utility-year to do so in Table 3, but otherwise, the results are
similar across the two tables.

At the bottom of Tables 3 and 4, we report the results of tests for weak instruments
and the robustness of our estimates to weak instruments for all of the IV models (columns
3-6 in each table). The first-stage F-statistic is small in all of the IV models and never
greater than the Stock-Yogo rule-of-thumb critical value of 10, so we fail to reject the null
hypothesis that the instruments are weak. Regardless, post-estimation tests from the
2SLS models suggest that the coefficient estimates for the endogenous regressors (price
elasticity and the impact of drought on price elasticity) are robust to weak instruments.
The Conditional Likelihood Ratio test statistic (Moreira, 2003) and the Anderson-Rubin test

12We recognize that richer data would support better alternatives to this simple distributed lag model. Prior
papers examining the impacts of past drought on current water demand (or electricity demand in the case of
Costa and Gerard (2021)) typically exploit variation from a discrete drought shock and use experimental or
quasi-experimental approaches to estimate impacts. Our setting is obviously quite different, in that our data
include hundreds of water utilities, and we characterize drought on an annual basis for each location using
continuous measures derived from the scPDSI. The closest paper to ours in the literature may be Bernardo
et al. (2015), in which the authors estimate a pooled linear regression with a single lag using a panel-specific
AR-1 autocorrelation structure. While our use of robust standard errors should correct for any autocorrelation
in water consumption, we do not model an autocorrelated error structure directly, as we do not know of a way
to do so using instrumental variables.



Journal of Water Economics 53 (2026) Drought and residential water demand 72

statistic (Anderson and Rubin, 1949) both reject the null hypotheses that these parameter
estimates are equal to zero in columns 3-6 of Tables 3 and 4. We also use the CLR test
results to obtain weak-instrument-robust 95% confidence intervals for the endogenous
regressors, reported in the Table 3 and 4 notes, and while somewhat wider than those for
our reported estimates, they are qualitatively similar. Thus, despite weak instruments, we
proceed with our interpretation of the model results as described above.

Table 3: Water demand models using drought months

(1) (2) (3) (4) (5) (6)
OLS OLS IV IV IV IV

Drought Months 0.00 0.00 0.00 0.00 −0.45 −0.45
(0.01) (0.01) (0.01) (0.00) (0.04) (0.04)

Drought Months × lnP 0.11 0.11
(0.01) (0.01)

lnP 0.48 0.49 −0.12 −0.11 −0.31 −0.30
(0.04) (0.04) (0.05) (0.05) (0.06) (0.06)

Utility FE X X X X X X
Year FE X X X
State x year FE X X X

U (utilities) 1730 1730 1730 1730 1730 1730
T (years) 8 8 8 8 8 8
N (observations) 4872 4872 4872 4872 4872 4872
𝑅2(overall) 0.02 0.01 0.01 0.11 0.01 0.04
First-Stage F Stat. 3.91 3.87 3.82 3.77
Conditional LR Test Stat. 7.84 6.80 9.01 8.55
...p-value (0.00) (0.00) (0.00) (0.00)
Anderson-Rubin Test Stat. 78.88 87.97 92.72 102.70
...p-value (0.00) (0.00) (0.00) (0.00)

Note: Table reports coefficient estimates and standard errors (in parentheses) from regressing the
log of average monthly per capita water consumption on the annual number of severe or worse
drought months (scPDSI≤ −3), the log marginal water fee, and a (drought months × marginal fee)
interaction. Observations are utility-years. The weak-instrument-robust 95% confidence intervals
using the CLR test for lnP are [-0.23, -0.04], [-0.23, -0.03], [-0.42, -0.21], and [-0.43, -0.21] for columns
3, 4, 5, and 6, and for Drought Months × lnP they are [0.03, 0.22] and [0.03, 0.22] for columns 5 and
6.

We test the robustness of these primary results along a few different dimensions in
Appendix A. Tables A1 and A2 in Appendix A report results from estimating the same
models reported in Tables 3 and 4, but using the average water fee instead of the marginal
fee, given that the literature is mixed regarding which of the two is most salient under
tiered pricing. The marginal fee and average fee results are very similar.13 Note that the
first-stage F statistics are somewhat larger, indicating that the instruments may be better

13A meta-analysis by Marzano et al. (2018) suggests that elasticities estimated with marginal price may be
somewhat smaller than those estimated with average price. While our slightly smaller elasticity estimates for
the marginal fee models are consistent with this finding, the confidence intervals for these sets of estimates
overlap significantly, so we hesitate to draw any conclusions from marginal vs. average fee comparisons.
Recall, also that our marginal and average water fee variables are likely to differ from each other less than true
marginal and average prices, because both of these variables include fixed charges given our data constraints.
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Table 4: Water demand models using AOC drought measure

(1) (2) (3) (4) (5) (6)
OLS OLS IV IV IV IV

AOC 0.01 0.00 0.00 0.00 −0.31 −0.32
(0.01) (0.01) (0.01) (0.01) (0.03) (0.03)

AOC × lnP 0.08 0.08
(0.01) (0.01)

lnP 0.48 0.49 −0.12 −0.11 −0.20 −0.19
(0.03) (0.03) (0.05) (0.05) (0.05) (0.05)

Utility FE X X X X X X
Year FE X X X
State x year FE X X X

U (utilities) 1730 1730 1730 1730 1730 1730
T (years) 8 8 8 8 8 8
N (observations) 4872 4872 4872 4872 4872 4872
𝑅2(overall) 0.02 0.01 0.01 0.11 0.01 0.04
First Stage F Stat. 3.92 3.88 3.90 3.86
Conditional LR Test Stat. 7.87 6.81 24.30 23.88
...p-value (0.00) (0.00) (0.00) (0.00)
Anderson-Rubin Test Stat. 78.96 88.02 214.66 229.81
...p-value (0.00) (0.00) (0.00) (0.00)

Note: Table reports coefficient estimates and standard errors (in parentheses) from regressing
the log of average monthly per capita water consumption on the AOC drought measure, the
log marginal water fee, and an (AOC × price) interaction. Observations are utility-years. The
weak-instrument-robust 95% confidence intervals using the CLR test for lnP are [-0.23, -0.04],
[-0.23, -0.03], [-0.31, -0.11], and [-0.31, -0.11] for columns 3, 4, 5, and 6, and for Drought Months ×
lnP they are [0.02, 0.23] and [0.03, 0.23] for columns 5 and 6.

predictors of the average water fee than of the marginal fee. Post-estimation tests suggest
the estimates are robust to weak instruments, as they do in Tables 3 and 4.

In Tables A3 through A6, we drop all observations from each state in the sample, one
at a time, beginning with Arizona in Table A3. Recall that in Arizona, our consumption
data are estimated at the Active Management Area level, rather than the utility level,
introducing some measurement error in Q. The magnitudes of the price elasticity estimates,
the response of consumption to drought in the current year, and the effect of drought on
price elasticity are all smaller than those reported for the full sample in Tables 3 and 4.
The results are otherwise robust to dropping the Arizona observations, with the exception
that for the IV models that do not include a price-drought interaction (columns 3 and 4),
the Conditional Likelihood Ratio and Anderson-Rubin tests suggest that the coefficient
estimates for the endogenous regressors are not robust to weak instruments.

As is clear in Figure A1 in the Appendix, the majority of the utility-years experiencing
drought in our sample are in Arizona, which may explain the reduction in the magnitude
of the estimated demand parameters when we drop that state. When we perform the
same exercise for the other states, dropping California in Table A4, Texas in Table A5, and
Washington in Table A6, the coefficient estimates differ little from those in Table 4. As was
true when we dropped Arizona systems, when we drop observations from Texas and do
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not include the price-drought interaction (Table A5, cols. 3-4), the Conditional Likelihood
Ratio test indicates that the coefficient estimates for the endogenous regressors are not
robust to weak instruments.

Taken together, our baseline results and robustness checks suggest that drought reduces
contemporaneous demand and price elasticity in the residential sector in the western
United States. The fact that in a few cases the estimated coefficients from models without
the price-drought interaction are not robust to weak instruments is an important caveat.
Moreover, this also highlights the potential importance of controlling for drought and its
influence on households’ reaction to water prices in residential demand estimation, at
least in our study region.

In Figure 4, we report results from estimating Equation (4) in a series of tests for the
persistence of the effects of drought on demand over time, with results in panels (a) and
(b) using average water fees, and in panels (c) and (d) using marginal fees. Figure 4 also
reports the results of tests for lagged effects of drought on residential water demand using
both the AOC and “drought months” approach to characterizing drought conditions. We
estimate a small negative effect of drought two years prior on demand in the current year,
which is weakly significant in some of the specifications in Figure 4, and a positive and
significant effect of drought four years prior in all four panels. In none of the four panels
of Figure 4 does drought in prior years appear to have a systematic, negative effect on
current water demand that would be consistent with the “drought shadow” hypothesis.14

Our final set of models test for lagged effects of drought on price elasticity, with results
reported in Figure 5. Similar to Figure 4, in Figure 5 we graph coefficient estimates from
four different models – those using two different drought variables (AOC and drought
months) and two different water price variables (marginal and average water fees) – testing
for effects of drought up to four years prior to the current year on the price elasticity of
water demand in the current year. In this set of models, drought in all four prior years
reduces price elasticity, and these effects are larger than those of drought in the current year.
The results reported in Figure 5 are consistent with the “demand hardening” hypothesis.
Households may make some capital investments (for example, switching to water-efficient
appliances or landscaping) or behavioral changes that persist after a drought and reduce
their sensitivity to price increases going forward.

5 Conclusion

This paper explores the impact of exposure to drought on water demand and the price
elasticity of water demand in the United States, with a focus on the West. We compile a novel,
aggregate dataset to support this effort: a utility-year panel tracking average per capita
monthly residential water consumption and water fees in the states of Arizona, California,
Texas, and Washington. We add drought indicators to the dataset and econometrically
estimate water demand functions, using instrumental variables to deal with endogenous

14Appendix Table A7 reports the coefficient estimates and standard errors used to create Figures 4 and
5. As in the prior tables, we report the results of Conditional Likelihood Ratio and Anderson-Rubin tests
for robustness to weak instruments at the bottom, though the associated confidence intervals are reported
separately in Table A8. Both tests reject the null hypothesis that the coefficient estimates on the endogenous
regressors (prices and price-drought interactions) are equal to zero for all four models.
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(a) AOC - Average Fees (b) Drought Months - Average Fees

(c) AOC - Marginal Fees (d) Drought Months - Marginal Fees

Figure 4: Lagged effect of drought on water consumption
Notes: The figure plots coefficient estimates and 95% confidence intervals from IV models of contemporaneous
and lagged effects of drought (1-4 years) on water consumption. Panels (a) and (b) use average water fees in
the demand equations, and panels (c) and (d) use marginal fees. Drought is represented by the AOC measure
in panels (a) and (c), and by the count of months with scPDSI≤ −3 in panels (b) and (d). Coefficient estimates
are reported in Appendix Table A7.

prices, including both marginal and average water fees to accommodate the possibility
that households respond to either of these under tiered water prices, and controlling
comprehensively and flexibly for potential confounders.

Our results using data collected from the western United States suggest a likely causal
relationship between drought and the price elasticity of water demand; households exposed
to drought are less price-responsive in future years. This effect is commonly referred to as
“demand hardening” and is well-described theoretically (Howe and Goemans, 2007), but it
has been infrequently tested in the empirical literature (Brent, 2016).

In contrast, we do not find consistent empirical support for the hypothesis that exposure
to drought has a direct effect on water consumption in subsequent years, a phenomenon
known as the “drought shadow.” Empirical evidence of a drought shadow in the prior
literature, resulting either from exposure to drought, itself, or response to regulations and
behavioral nudges implemented to reduce demand during a drought, is mixed. While
hysteresis of conservation has been documented for electricity use in Brazil (Costa and
Gerard, 2021), as well as in some cases for water use in the United States (Bolorinos et al.,
2022), other prior work finds that water usage appears to return quickly to prior levels
after a drought (Soliman, 2022; Ferraro and Price, 2013; Jessoe et al., 2021). Our results
are consistent with this latter group of papers; at our broader regional scale and using
econometric approaches designed to obtain plausibly causal estimates, we find no lasting
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(a) AOC - Average Fees (b) Drought Months - Average Fees

(c) AOC - Marginal Fees (d) Drought Months - Marginal Fees

Figure 5: Lagged effect of drought on price elasticity
Notes: The figure plots coefficient estimates and 95% confidence intervals from IV models of contemporaneous
and lagged effects of drought (1-4 years) on price elasticity. Panels (a) and (b) use average water fees in the
demand equations, and panels (c) and (d) use marginal fees. Drought is represented by the AOC measure in
panels (a) and (c), and by the count of months with scPDSI≤ −3 in panels (b) and (d). Coefficient estimates are
reported in Appendix Table A7.

effects of drought on residential water consumption.
Our work is limited by the challenge of water demand data collection (prices and quan-

tities) at broad geographic scale in the United States. Future work on demand hardening,
the drought shadow, and other behavioral responses to this important hydrologic extreme
in countries where water prices and consumption data are collected systematically across
jurisdictions could provide richer insights.

In the face of increasing challenges for urban water demand management (Obringer
et al., 2024), information about the likely response of water demand to drought at broad
regional scale is a critical input to planning. This work contributes to a small but growing
literature on this issue, focusing on the western United States, where drought may be
increasing in frequency, intensity and duration. Because water pricing and demand
management are typically local and state matters, while infrastructure investments occur
at the state and even federal level, additional work on the likely response of water demand
behavior to extreme conditions provides important input to policymaking at many different
levels.
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Appendix A: Tables and Figures

Figure A1: Magnitude of water consumption (CCF) over time and by state
Notes: The filled markers represent utility-years in which our AOC drought measure is equal to zero (there
were no months in severe-or-worse drought), and open markers indicate utility-years in which the AOC is
positive.

Figure A2: Magnitude of marginal water fees (dollars per CCF) over time and by state
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Table A1: Water demand models using drought months with average water fees

(1) (2) (3) (4) (5) (6)
OLS OLS IV IV IV IV

Drought Months 0.00 0.00 0.00 0.00 −0.50 −0.49
(0.01) (0.01) (0.01) (0.01) (0.04) (0.04)

Drought Months × lnP 0.12 0.13
(0.01) (0.04)

lnP 0.55 0.57 −0.11 −0.10 −0.34 −0.35
(0.05) (0.05) (0.06) (0.06) (0.06) (0.06)

Utility FE X X X X X X
Year FE X X X
State x year FE X X X

U (utilities) 1730 1730 1730 1730 1730 1730
T (years) 8 8 8 8 8 8
N (observations) 4872 4872 4872 4872 4872 4872
𝑅2(overall) 0.03 0.01 0.01 0.11 0.01 0.01
First Stage F Statistics 8.54 8.34 8.48 8.17
Conditional LR Test Stat. 5.52 4.47 102.52 94.90
...p-value (0.01) (0.03) (0.00) (0.00)
Anderson-Rubin Test Stat. 78.88 87.97 538.19 546.02
...p-value (0.00) (0.00) (0.00) (0.00)

Note: Table reports coefficient estimates and standard errors (in parentheses) from regressing the
log of average monthly per capita water consumption on the annual number of severe or worse
drought months (scPDSI≤ −3), the log average water fee, and a (drought months × average fee)
interaction. Observations are utility-years. The weak-instrument-robust 95% confidence intervals
using the CLR test for lnP are [-0.23, -0.02], [-0.21, -0.01], [-0.43, -0.22], and [-0.45, -0.23] for columns
3, 4, 5, and 6, and for Drought Months × lnP they are [0.02, 0.23] and [0.03, 0.22] for columns 5 and
6.
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Table A2: Water demand models using AOC drought measure with average water
fees

(1) (2) (3) (4) (5) (6)
OLS OLS IV IV IV IV

AOC 0.01 0.00 0.00 0.00 −0.41 −0.37
(0.01) (0.01) (0.01) (0.01) (0.03) (0.03)

AOC × lnP 0.10 0.10
(0.01) (0.01)

lnP 0.55 0.57 −0.12 −0.10 −0.23 −0.21
(0.05) (0.05) (0.06) (0.06) (0.06) (0.06)

Utility FE X X X X X X
Year FE X X X
State x year FE X X X

U (utilities) 1730 1730 1730 1730 1730 1730
T (years) 8 8 8 8 8 8
N (observations) 4872 4872 4872 4872 4872 4872
𝑅2(overall) 0.03 0.01 0.01 0.11 0.01 0.01
First Stage F Statistics 8.55 8.36 8.92 8.62
Conditional LR Test Stat. 5.52 4.47 18.83 18.48
...p-value (0.01) (0.03) (0.00) (0.00)
Anderson-Rubin Test Stat. 78.96 88.02 214.66 229.81
...p-value (0.00) (0.00) (0.00) (0.00)

Notes: Table reports coefficient estimates and standard errors (in parentheses) from regressing
the log of average monthly per capita water consumption on the AOC drought measure, the log
average water fee, and a (AOC × average fee) interaction. Observations are utility-years. The
weak-instrument-robust 95% confidence intervals using the CLR test for lnP are [-0.23, -0.02],
[-0.21, -0.01], [-0.33, -0.12], and [-0.33, -0.12] for columns 3, 4, 5, and 6, and for Drought Months ×
lnP they are [0.03, 0.20] and [0.02, 0.20] for columns 5 and 6.
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Table A3: Water demand models using AOC results with marginal water fees,
dropping AZ

(1) (2) (3) (4) (5) (6)
OLS OLS IV IV IV IV

AOC 0.00 0.00 0.00 0.00 −0.13 −0.14
(0.01) (0.01) (0.01) (0.01) (0.04) (0.04)

AOC × lnP 0.03 0.03
(0.01) (0.01)

lnP 0.39 0.40 −0.07 −0.06 −0.09 −0.08
(0.00) (0.02) (0.03) (0.03) (0.04) (0.04)

Utility FE X X X X X X
Year FE X X X
State x year FE X X X

U (utilities) 1605 1605 1605 1605 1605 1605
T (years) 8 8 8 8 8 8
N (observations) 4571 4571 4571 4571 4571 4571
𝑅2(overall) 0.03 0.03 0.01 0.11 0.01 0.01
First Stage F Statistics 4.03 3.98 3.96 3.91
Conditional LR Test Stat. 3.29 2.24 6.22 5.86
...p-value (0.06) (0.13) (0.04) (0.05)
Anderson-Rubin Test Stat. 6.29 5.18 13.68 12.56
...p-value (0.09) (0.15) (0.03) (0.05)

Notes: Table reports coefficient estimates and standard errors (in parentheses) from regressing
the log of average monthly per capita water consumption on the AOC drought measure, the log
marginal water fee, and a (AOC × marginal fee) interaction. Arizona is dropped from the sample.
Observations are utility-years. The weak-instrument-robust 95% confidence intervals using the
CLR test for lnP are [-0.12, -0.00], [-0.11, -0.01], [-0.14, -0.01], and [-0.13, -0.00] for columns 3, 4, 5,
and 6, and for Drought Months × lnP they are [0.00, 0.10] and [0.00, 0.11] for columns 5 and 6.
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Table A4: Water demand models using AOC with marginal water fees, dropping
CA

(1) (2) (3) (4) (5) (6)
OLS OLS IV IV IV IV

AOC 0.01 −0.01 0.00 −0.02 −0.40 −0.40
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

AOC × lnP 0.11 0.11
(0.01) (0.01)

lnP 0.62 0.62 −0.14 −0.13 −0.22 −0.22
(0.01) (0.01) (0.06) (0.06) (0.06) (0.06)

Utility FE X X X X X X
Year FE X X X
State x year FE X X X

U (utilities) 1584 1584 1584 1584 1584 1584
T (years) 9 9 9 9 9 9
N (observations) 4551 4551 4551 4551 4551 4551
𝑅2(overall) 0.02 0.01 0.01 0.26 0.01 0.01
First Stage F Statistics 3.39 3.40 3.41 3.41
Conditional LR Test Stat. 8.59 8.85 38.67 46.93
...p-value (0.00) (0.00) (0.00) (0.00)
Anderson-Rubin Test Stat. 74.30 83.73 217.18 232.27
...p-value (0.00) (0.00) (0.00) (0.00)

Notes: Table reports coefficient estimates and standard errors (in parentheses) from regressing
the log of average monthly per capita water consumption on the AOC drought measure, the
log marginal water fee, and a (AOC × marginal fee) interaction. California is dropped from the
sample. Observations are utility-years. The weak-instrument-robust 95% confidence intervals
using the CLR test for lnP are [-0.30, -0.05], [-0.30, -0.06], [-0.40, -0.15], and [-0.40, -0.15] for columns
3, 4, 5, and 6, and for Drought Months × lnP they are [0.00, 0.22] and [0.00, 0.22] for columns 5 and
6.
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Table A5: Water demand models using AOC with marginal water fees, dropping
TX

(1) (2) (3) (4) (5) (6)
OLS OLS IV IV IV IV

AOC 0.01 0.00 0.00 0.00 −0.32 −0.32
(0.02) (0.02) (0.02) (0.02) (0.07) (0.07)

AOC × lnP 0.08 0.08
(0.02) (0.02)

lnP 0.40 0.44 −0.19 −0.15 −0.32 −0.29
(0.02) (0.03) (0.18) (0.18) (0.18) (0.17)

Utility FE X X X X X X
Year FE X X X
State x year FE X X X

U (utilities) 390 390 390 390 390 390
T (years) 7 7 7 7 7 7
N (observations) 812 812 812 812 812 812
𝑅2(overall) 0.02 0.01 0.01 0.01 0.01 0.01
First Stage F Statistics 3.92 3.88 3.90 3.86
Conditional LR Test Stat. 1.47 1.84 6.02 5.87
...p-value (0.22) (0.30) (0.04) (0.05)
Anderson-Rubin Test Stat. 16.97 17.76 44.42 46.81
...p-value (0.00) (0.00) (0.00) (0.00)

Notes: Table reports coefficient estimates and standard errors (in parentheses) from regressing
the log of average monthly per capita water consumption on the AOC drought measure, the log
marginal water fee, and a (AOC × marginal fee) interaction. Texas is dropped from the sample.
Observations are utility-years. The weak-instrument-robust 95% confidence intervals using the
CLR test for lnP are [-0.51, 0.11], [-0.48, 0.14], [-0.64, 0.00], and [-0.61, 0.03] for columns 3, 4, 5, and
6, and for Drought Months × lnP they are [0.00, 0.19] and [0.00, 0.18] for columns 5 and 6.
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Table A6: Water demand models using AOC with marginal water fees, dropping
WA

(1) (2) (3) (4) (5) (6)
OLS OLS IV IV IV IV

AOC 0.01 0.00 0.00 0.00 −0.31 −0.32
(0.01) (0.01) (0.01) (0.01) (0.03) (0.01)

AOC × lnP 0.07 0.08
(0.01) (0.01)

lnP 0.49 0.50 −0.14 −0.11 −0.21 −0.20
(0.04) (0.04) (0.15) (0.46) (0.04) (0.06)

Utility FE X X X X X X
Year FE X X X
State x year FE X X X

U (utilities) 1611 1611 1611 1611 1611 1611
T (years) 8 8 8 8 8 8
N (observations) 4682 4682 4682 4682 4682 4682
𝑅2(overall) 0.02 0.01 0.01 0.13 0.01 0.06
First Stage F Statistics 3.94 3.93 3.92 3.89
Conditional LR Test Stat. 8.06 6.97 27.43 27.07
...p-value (0.00) (0.00) (0.00) (0.00)
Anderson-Rubin Test Stat. 83.93 93.56 226.87 242.34
...p-value (0.00) (0.00) (0.00) (0.00)

Notes: Table reports coefficient estimates and standard errors (in parentheses) from regressing
the log of average monthly per capita water consumption on the AOC drought measure, the log
marginal water fee, and a (AOC × marginal fee) interaction. Washington is dropped from the
sample. Observations are utility-years. The weak-instrument-robust 95% confidence intervals
using the CLR test for lnP are [-0.23, -0.04], [-0.22, -0.03], [-0.31, -0.11], and [-0.31, -0.11] for columns
3, 4, 5, and 6, and for Drought Months × lnP they are [0.00, 0.15] and [0.00, 0.15] for columns 5 and
6.
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Table A7: Coefficient estimates graphed in Figures 4 & 5 using marginal water
fees

(1) (2) (3) (4)
AOC Drought Months AOC Drought Months

Price −0.13 −0.13 −0.31 −0.44
(0.06) (0.06) (0.06) (0.07)

Drought 0.00 0.00 −0.14 −0.24
(0.01) (0.00) (0.03) (0.04)

Drought last year 0.00 0.00 −0.22 −0.18
(0.00) (0.00) (0.03) (0.04)

Drought 2 years ago −0.01 0.00 −0.25 −0.23
(0.00) (0.00) (0.03) (0.04)

Drought 3 years ago 0.00 0.00 −0.13 −0.23
(0.00) (0.00) (0.03) (0.05)

Drought 4 years ago 0.02 0.03 −0.03 −0.09
(0.00) (0.00) (0.03) (0.04)

Drought × Price 0.03 0.06
(0.00) (0.01)

Drought last year × Price 0.06 0.04
(0.00) (0.01)

Drought 2 years ago × Price 0.06 0.06
(0.00) (0.01)

Drought 3 years ago × Price 0.03 0.05
(0.00) (0.01)

Drought 4 years ago × Price 0.01 0.03
(0.00) (0.01)

Utility FE X X X X
Year FE X X X X

U (utilities) 1656 1656 1656 1656
T (years) 6 6 6 6
N (observations) 4272 4272 4272 4272
𝑅2(overall) 0.01 0.01 0.01 0.01
First Stage F Statistics 3.65 3.82 3.73 3.80
Conditional LR Test Stat. 8.24 9.40 35.97 56.73
...p-value (0.00) (0.00) (0.00) (0.00)
Anderson-Rubin Test Stat. 77.57 79.63 111.40 142.86
...p-value (0.00) (0.00) (0.00) (0.00)

Notes: Table reports coefficient estimates and standard errors (in parentheses) for the marginal
water fee results graphed in panels c and d of Figure 4 (columns 1-2 above) and Figure 5
(columns 3-4 above) in the paper. Observations are utility-years.
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Table A8: Weak-instrument-robust 95% confidence intervals using Conditional LR test for
coefficient estimates graphed in Figures 4 and 5

(1) (2) (3) (4)
AOC Drought Months AOC Drought Months

Price [-0.23, -0.04] [-0.23, -0.03] [-0.39, -0.19] [-0.61, -0.34]
Drought × Price [0.00, 0.07] [0.00, 0.12]
Drought last year × Price [0.00, 0.13] [0.00, 0.09]
Drought 2 years ago × Price [0.00, 0.12] [0.00, 0.12]
Drought 3 years ago × Price [0.00, 0.06] [0.00, 0.11]
Drought 4 years ago × Price [0.00, 0.03] [0.00, 0.06]

Utility FE X X X X
Year FE X X X X

Notes: Table reports weak-instrument-robust 95% confidence intervals (using the Conditional Likelihood
Ratio test) for the coefficient estimates graphed in panels c and d of Figure 4 (columns 1-2 above) and Figure 5
(columns 3-4 above) in the paper.
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