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Bayesian econometric methods are increasingly popular in empirical macroeconomics. 
They have been particularly popular among macroeconomists working with Big Data 
(where the number of variables under study is large relative to the number of observations). 
This paper, which is based on a keynote address at the Rimini Centre for Economic 
Analysis' 2016 Money-Macro-Finance Workshop, explains why this is so. It discusses the 
problems that arise with conventional econometric methods and how Bayesian methods 
can successfully overcome them either through use of prior shrinkage or through model 
averaging. The discussion is kept at a relatively non-technical level, providing the main 
ideas underlying and motivation for the models and methods used. It begins with single-
equation models (such as regression) with many explanatory variables, then moves on to 
multiple equation models (such as Vector Autoregressive, VAR, models) before tacking 
the challenge caused by parameter change (e.g. changes in VAR coefficients or volatility). 
It concludes with an example of how the Bayesian can address all these challenges in a 
large multi-country VAR involving 133 variables: 7 variables for each of 19 countries. 
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1   Introduction 

Big Data 1  has the potential to revolutionize empirical macroeconomics. The information 

contained in large data sets could improve our forecasts and our understanding of the 

macroeconomy. Big Data is available in many macroeconomic contexts. In most countries, 

government statistical agencies collect data on a wide range of macroeconomic variables (e.g. 

measures of output, capacity, employment and unemployment, prices, wages, housing, 
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1  Big Data can come in two forms which Varian (2014) calls Tall and Fat. Tall Data arises when the 

number of observations becomes huge. Fat Data arises when the number of variables becomes huge. 
This paper is about Fat Data. 
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inventories and orders, stock prices, interest rates, exchange rates and monetary aggregates). In 

the US, the Federal Reserve Bank of St. Louis maintains the FRED-MD monthly data base for 

well over 100 macroeconomic variables from 1960 to the present (see McCracken and Ng, 

2015). Many other countries have similar data sets. And, in an increasingly globalized world 

where economic developments in one country can affect others, the researcher may wish to 

work with data for several countries. Big Data can also arise through the wish to bring more 

and more financial variables, often at different frequencies, into a macroeconomic model. 

In macroeconomics, the challenges which arise in the presence of Big Data are magnified 

by the fact that our models typically must include parameter change. For instance, the reduction 

of the volatilities of many macroeconomic variables for many countries, often known as the 

Great Moderation of the business cycle, which began in the early 1980s before being reversed 

by the Great Recession, means that econometric models should have time-varying error 

variances. There are often reasons for thinking coefficients in a regression or a Vector 

Autoregression (VAR) should also be time-varying. For instance, differences in the monetary 

policy transmission mechanism over the business cycle (e.g. printing money at the height of an 

expansion can have a very different impact on inflation than at the depth of a recession) imply 

coefficients in a VAR should be time-varying. Stories like this abound in macroeconomics to a 

greater extent than in other fields of economics and justify careful building of parameter change 

into models. 

The interaction of Big Data with parameter change in macroeconomics raises challenges. In 

this paper I will elaborate on the nature of these challenges, why new methods are called for 

and describe some of them. I will adopt a largely non-technical approach, describing only the 

main ideas and providing references which point the reader in the direction of additional details. 

In this literature, Bayesian methods have proved particularly popular for reasons that will be 

made clear. Hence, I will focus on Bayesian methods in this paper. But it is worthwhile 

emphasizing that some of the methods I will discuss, such as the Least absolute shrinkage and 

selection operator (LASSO), can be interpreted either in a Bayesian or frequentist2 fashion. And 

there do exist non-Bayesian methods for addressing the issues concerned (see, e.g., Hendry and 

Doornik, 2014). 

Macroeconomists are interested in building econometric models for macroeconomic 

variables for many reasons including forecasting, estimating fully structural models (e.g. 

Dynamic Stochastic General Equilibrium or DSGE models) or calculating features of interest 

                                                 
2  Frequentist econometrics is the formal name given for conventional, non-Bayesian econometric 

methods based on the frequency theory of probability. 
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(e.g. impulse responses or variance decompositions) involving models such as structural VARs. 

But, in this paper, I will draw out the main ideas using the multivariate regression model:  

ttt xy εβ += ′
 

where  ty   contains  N   dependent variables and  tx   contains  K   explanatory variables. 

Note that this equation allows for many dependent variables and, if the explanatory variables 

are lags of the dependent variables, defines a VAR. For much of this paper, the errors,  tε  , are 

assumed to have a covariance matrix  Σ  . However, more flexible, heteroskedastic, error 

structures will also be considered. 

I will organize my discussion of the challenges faced in modern empirical macroeconomics 

in three main sections: i) those which occur due to  K   being large, ii) those which occur due 

to  N   being large and iii)  those which occur due to  β   and/or  Σ   changing over time. 

Following these three sections, I present a brief overview of a Big Data empirical application 

which gives a concrete example of how these challenges arise and how they can be met using 

Bayesian methods. 

This paper is not intended to be a survey paper, providing a complete listing of all relevant 

citations. Nor is it intended to be a technical paper providing complete details of the 

econometric methodologies. I have tried to organize it around various themes, giving an 

intuitive description of what researchers are doing in the field and why. In this spirit, in many 

places where I could cite many papers, I only cite a relevant paper or two which illustrate these 

themes and showing the reader where to go for further study and technical details. Apologies 

to the many fine papers that use Bayesian methods with large macroeconomic data sets that I 

am not citing. 

2   Challenges 

2.1   Challenge 1: Many Explanatory Variables 

The macroeconomist often faces the case where many potential explanatory variables are 

available. Most of these variables are probably unimportant but the macroeconomist does not 

know which ones. A leading example of where this occurs is the cross-country growth 

regression literature. A common data set used by (among many others) Fernandez, Ley and 

Steel (2001) contains data on average per capita GDP growth for  72=T   different countries 

along with  41   potential explanatory variables on a wide range of factors (e.g. educational 

attainment, investment, openness, political institutions, initial level of GDP per capita, religion, 

language, etc.). Data sets similar to this have been used in numerous papers which investigate 

the determinants of economic growth. Even with a single dependent variable, GDP growth per 
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capita, the researcher has many coefficients to estimate with a relatively small number of 

observations. Cases like this abound. In time series models, where the researcher may wish to 

include several lags of each of several explanatory variables, the opportunities for cases where  

K   is almost as large, or even larger, than  T   can also easily occur. 

Why not use conventional econometric methods (e.g. non-informative prior Bayesian 

methods, least squares or maximum likelihood) in such a context? There is simply not enough 

information in the data to provide precise estimates of the parameters. Intuitively,  T    (sample 

size) reflects the amount of information in the data whereas  K   (the number of explanatory 

variables) reflects the dimension of things the researcher is trying to estimate with that data. If  

K   is large relative to  T  , the researcher is trying to do too much with too little information. 

This will typically lead to very imprecise inference. In the case where the number of 

explanatory variables is greater than the number of observations, conventional methods may 

simply be infeasible (e.g. in the standard formula for the ordinary least squares estimator,  

( ) yXXX ′′ −1
 , the matrix  XX ′   will be be singular and its inverse cannot be taken). If  TK <   

a method such as least squares or maximum likelihood will produce numbers, but the Bayesian 

researcher will obtain large posterior variances and the frequentist will obtain wide confidence 

intervals. Bayesian prior information (if the researcher has it) provides more information to 

surmount this problem. For instance, the formula for the point estimate of  β   in the Normal 

linear regression model using a standard (natural conjugate) prior is  

( ) ( )yXVXXV ′+′+ −−− β111
  where  β   and  V   are the prior mean and covariance matrix. 

Unlike the OLS estimator, this Bayesian point estimate will exist regardless of how large  K   

is relative to  T  , provided  V   is a positive definite matrix. So use of Bayesian prior 

information can correct the problems caused by a shortage of data information. However, when  

K   is large relative to  T   the role of prior information becomes increasingly important. Hence, 

it becomes essential to think carefully about what sensible priors are. One can interpret much 

of the recent Bayesian literature as developing such priors, often using hierarchical priors (a 

term which I will define below) which allow for simple and automatic selection of  β   and  V   

(or analogous hyperparameters in more complicated models). 

Related to these problems are over-parameterization and over-fitting concerns. With so 

many dimensions to fit, somewhere a conventional method such as OLS will fit the noise in the 

data rather than the pattern. A frequent consequence is apparently good in-sample fit (e.g. one 

might find a high  2R  ), but poor forecasting performance as the spurious patterns in the noise 

that have been fit in-sample do not hold out-of-sample. 

At this stage, the reader may be wondering as to why all the variables should be used in the 

first place. Why not just focus on  Kk <<   variables of interest and omit the rest? E.g. why 

should the researcher interested in the impact of education levels on economic growth not 
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simply include the three or four variables reflecting educational attainment and ignore the rest. 

In the regression context, this strategy can be easily dismissed on the grounds of omitted 

variables bias. Using OLS methods, if important predictors for economic growth are excluded 

and they are correlated with education, then OLS estimates of the coefficients on the education 

variables will be biased. More generally, omitting important predictors for economic growth 

will lead to mis-specification. There are additional reasons for not focussing solely on a small 

number of variables of interest and discarding the rest. For instance, the forecaster typically 

takes the view that more information is better than less, so if more variables containing more 

relevant information are available, they should be used. In the structural VAR literature, where 

concerns about the fundamentalness of representations abound (see, e.g., Forni and Gambetti, 

2014), there is often a need to include as many variables as possible in a VAR. 

Another possible solution to the problems caused by a plethora of explanatory variables 

might be to select a more parsimonious model using hypothesis testing methods. But, this, too, 

runs into problems. Such an approach ignores model uncertainty since it assumes the model 

selected on the basis of hypothesis tests is the true one which generated the data. If we have a 

regression with  K   potential explanatory variables, then there are  K2   possible restricted 

models which include some sub-set of the  K   variables. In the cross-country growth regression 

example the  41=K   potential explanatory variables imply  552,255,023,199,22 =K   

possible regressions that could be run. When  K   is large, treating one model as if it were true 

and ignoring the huge number of remaining models is problematic. No model selection 

procedure is perfect, and the researcher is always uncertain about any chosen model. We want 

a statistical methodology that reflects this uncertainty. The fact that the selected model has been 

chosen using hypothesis testing procedures adds weight to the preceding criticism due to the 

pre-test problem. That is, conventional p-values used for deciding whether to accept or reject a 

hypothesis are derived assuming a single hypothesis test has been done. If a sequence of 

hypothesis tests is done (e.g. an initial hypothesis test suggests a variable can be omitted and 

then additional hypothesis tests are done on a model which omits this variable), then 

significance levels require adjustment. If you do one t-test using the 5% level of significance, 

you are correct if you take the critical value from the Student-t distribution in the standard way. 

If you then do a second t-test conditional on the result from a first test, this is no longer true. 

With  K2   potential models and, thus, a huge number of possible tests, the necessary 

adjustments to critical values can be large and the pre-test problem can be serious in Big Data 

problems. 

A point to highlight at this point is computation. In the cross-country growth example, with  

552,255,023,199,2   possible models to consider, it may simply be computationally 

infeasible to estimate them all. Computational issues are important in Big Data problems and 

sometimes place constraints on what the researcher can do or require the need for the 
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development of clever algorithms. The recent Bayesian literature is replete with various 

algorithms, usually involving simulation (either of the parameters or of the models) to get over 

computational hurdles. 

It is also worth mentioning another problem with conventional hypothesis testing that we 

will return to in a subsequent section. If parameter change exists, an explanatory variable might 

be important at some points in time but not others. In such a case, testing whether a variable is 

important or not is not addressing the right question. We may not be interested in testing 

whether a variable is important, but when it is. For instance, a Phillips curve relationship might 

hold in some time periods (and, thus, a measure of the output gap is a good predictor for 

inflation) but not in other time periods (and, thus, a measure of the output gap would not be a 

good predictor in these time periods). 

Thus far, we have highlighted the problems which occur with regression modelling with Big 

Data. It is these problems which have led many Bayesian researchers to, in the words of Hal 

Varian (Varian, 2014), try to develop new tricks for econometrics. In regression, many new 

methods are being developed. A popular strategy, particularly in the economic growth 

literature, is to use Bayesian model averaging (BMA). Instead of aiming to select a single model 

and presenting estimates or forecasts based on it, BMA involves taking a weighted average of 

estimates or forecasts from all models. The weights are the posterior model probabilities that 

are provided in a Bayesian analysis.3 The theoretical justification for BMA can be described 

very simply. Let  rM   for  Rr ,..,1=   denote  R   different models and  φ   be a parameter to 

be estimated (or a function of parameters) or a variable to be forecast. Also let  )|( DataMp r   

denote the posterior model probability and  ( )rMDatap ,|φ   be the posterior of  φ   in a 

particular model. Then the rules of probability imply: 

( ) ( ) ( )yMpMypyp rr

R

r

|,||
1

φφ 
=

=  

Thus, the posterior for  φ   is a weighted average of its posterior in each individual model with 

weights proportional to  ( )yMp r |  . Note that such a strategy allows for a formal treatment of 

model uncertainty. That is, unlike model selection procedures which choose a single model and 

proceed as though it were true, (BMA) explicitly incorporates the fact that we are only  

( )yMp r |   sure that  rM   generated the data. 

                                                 
3 For understanding the argument, it is not necessary to know precisely what posterior model probabilities 

or how they calculated. They are similar to information criteria. Indeed the popular Bayesian 
information (or Schwarz) criterion was developed as an approximation to the log of the posterior model 
probability. 
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How these general ideas are operationalized depends on the particular model set-up. Moral-

Benito (2015) is a recent survey paper that explains the most popular approaches (including 

extensions for working with panel data), provides details of several popular priors and lists 

some of the growing number of economic applications that use BMA methods with Big Data. 

In the present paper, it is only worth mentioning some of the issues that these methods address. 

Note first that, in the presence of  K2   models and the associated computational burden, with  

41=K   it is going to be impossible to estimate every single model. If each model could be 

estimated in  001.0   seconds, it would take hundreds of years to estimate  

552,255,023,199,2   models. Accordingly, simulation-based algorithms have been 

developed to do BMA in a computationally efficient manner (see chapter 11 of Koop, 2003). 

Furthermore, computation is simplified by only considering priors which lead to analytical 

formulae for the posterior and posterior model probabilities (in contrast to many Bayesian 

approaches which require the use of computationally-intensive Markov Chain Monte Carlo, 

MCMC, methods). Priors are also chosen so as to be automatic and objective. With so many 

models, the researcher cannot possibly hope to carefully choose a prior for each one. Instead, 

approaches such as the g-prior, which require no subjective prior input from the researcher 

other than the choice of a single parameter,  g  . This scalar controls the weight placed on prior 

information relative to data information. 

In practice, BMA typically ensures parsimony by putting most weight on many small 

models. In the cross-country growth example, the regression with 41 explanatory variables will 

be over-parameterized. BMA will often place most of the probability on, e.g., ten or a hundred 

models with only a few explanatory variables. It decides, in a data-based fashion, what weight 

should be attached to which variables and in which models. 

The basic algorithm used with BMA can also be used to do Bayesian model selection 

(BMS). That is, the researcher can simply choose the model with the highest posterior model 

probability and work with it. A drawback to this strategy is that it ignores model uncertainty. 

But it can be an attractive approach for the researcher who wishes to work with a single model, 

but does not wish to use hypothesis testing methods to select its variables. 

Another class of methods for dealing with Big Data problems in regression models involves 

ensuring parsimony through prior shrinkage. The idea is to shrink coefficients towards 

something sensible (usually zero) to mitigate over-fitting. Examples include De Mol, Giannone 

and Reichlin (2008) and Fruhwirth-Schnatter and Wagner (2010) with Korobilis (2013b) 

offering a comparison of several different approaches in the context of time series regression 

models. Recently, the LASSO (see Park and Casella, 2008) and a range of similar prior 

shrinkage algorithms with names like stochastic search variable selection (SSVS) and spike and 

slab priors have become popular. 
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I will use SSVS to demonstrate the basic ideas underlying this kind of approach. But first, I 

will briefly describe the general idea of how Bayesian priors can be used to do shrinkage. 

Suppose you have a Normally distributed prior for a single regression coefficient,  β  : 

( )VN ,ββ ∼  

Bayesian analysis involves combining prior with data information. With a natural conjugate 

prior, the Bayesian posterior estimate will be a combination of the OLS estimate and the prior 

mean,  β  . Thus, it can be interpreted as taking a data based quantity (such as OLS) and 

shrinking it towards  β  . The prior variance,  V  , controls the degree of shrinkage since it 

reflects the confidence the researcher has that  β   is near  β  . To put it another way, to the 

question: towards what should the coefficient be shrunk? the answer is  β  . To the question: 

by how much should the coefficient be shrunk? the answer is controlled by  V  . Small values 

of  V   are consistent with strong shrinkage and large values with little shrinkage. In the limit, 

as  ∞→V  , the prior becomes non-informative and no shrinkage is done at all (i.e. the OLS 

estimate is obtained). In a conventional, subjective, Bayesian analysis  β   and  V   are selected 

by the researcher to reflect prior beliefs about likely values for  β  . 

The modern methods used with Big Data regressions such as SSVS do shrinkage in a more 

objective fashion. By this I mean that the data decides how much shrinkage should be 

introduced in the prior for each coefficient. The SSVS prior for  β   can be written as: 

( ) ( ) ( )2
1

2
0 ,0,01 τγτγ NN +−  

where  0=γ   or  1  and  0τ   is small and  1τ   is large. It can be seen that, if  0=γ  ,  β   is 

shrunk towards zero whereas if  1=γ  ,  β   is freely estimated from the data with little 

shrinkage.  γ   is treated as an unknown parameter which is estimated from the data. Thus, the 

prior reflects only a belief that it is likely many of the potential explanatory variables are likely 

to be unimportant, but it does not reflect any belief about which ones these are. The data is used 

to decide which coefficients should be shrunk to be very close to zero (or, in the limit, to be 

shrunk to zero and thus deleting the variable from the regression model) and which variables 

should be freely estimated. This is an example of a hierarchical prior which is one where the 

prior for a parameter (here  β  ) depends on yet another parameter ( γ  ) which in turn requires 

a prior. Most of the Bayesian shrinkage methods (including the LASSO) can be expressed as 

hierarchical priors with similar motivation as the SSVS prior. 

This section has provided a small sample of the many Bayesian econometric methods which 

are used successfully with Big Data regressions. But regressions, involving only a single 
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dependent variable, are only one tool used by the macroeconomist. Multiple equation models 

such as VARs are even more popular and it is with them that the Big Data issues become even 

more important. 

2.2   Challenge 2: Many Dependent Variables 

There has been an explosion of recent work in many fields of macroeconomics involving large 

VARs. In terms of the notation given in (regression), this means  ty   is a vector of  N   

dependent variables. The VAR is obtained by suitably formatting  tx   so as to contain lags of 

the dependent variables, deterministic terms and exogenous variables. For many years, VARs 

have been extensively used for small values of  N   (e.g.  N   between 2 and 10). But recently 

researchers have begun working with VARs where  N   is large. Values for  N   of about  20   

are quite common, but ambitious researchers are pushing into the region where  100>N  . A 

pioneering paper in this literature is  Bańbura, Giannone and Reichlin (2010) which uses a 

standard set of over 100 US macroeconomic variables similar to those now easily available at 

FRED-MD (see McCracken and Ng, 2015). Previously macroeconomists working with data 

sets of this magnitude had used factor-based methods. Why did the Bańbura, Giannone and 

Reichlin (2010) paper attract a great deal of attention? Put briefly, it showed large VAR 

methods worked. They tended to forecast better than factor methods. Furthermore, impulse 

responses were sensible and the large VAR revealed structural insights different from smaller 

VARs. Thus, two of major activities of the empirical macroeconomist, forecasting and 

structural analysis, benefitted from working with Big Data in a new way. 

In Bańbura, Giannone and Reichlin (2010) the Big Data aspect arose since the VAR 

involved many US macroeconomic variables. There are also large VAR applications using 

similar macroeconomic data sets for other countries. For instance, Bloor and Matheson (2010) 

work successfully with a large VAR using New Zealand data. There are also applications where 

the Big Data aspect arises since data for many countries is used. For instance, Carriero, 

Kapetanios and Marcellino (2010) use a large VAR to model exchange rates for many countries 

and Koop and Korobilis (2016) investigate the eurozone sovereign debt crisis using countries 

in the eurozone. In Carriero, Kapetanios and Marcellino (2012), Big Data occurs from a desire 

to model US government bond yields of different maturities. The wish to forecast the 

components of euro area inflation leads to the large VAR used in Giannone, Lenza, Momferatou 

and Onorante (2014). Large VARs have also been used for reasons other than pure forecasting 

or structural analysis in papers such as Bańbura, Giannone and Lenza (2015) and Jarociński 

and Maćkowiak (2016). The former of these does conditional forecasting and scenario analysis 

using a euro area data set whereas the latter develops methods for investigating Granger-

causality and Granger-causal-priority. This brief and very incomplete listing of large VAR 



Review of Economic Analysis 9 (2017) 33-56 

 42

empirical papers is intended to illustrate the range of applications in which they are being found 

useful. 

The wish to work with large VARs is based on their empirical success and a desire to include 

all available information. But the problems of overparameterization discussed above in the 

context of the single-equation regression model are greatly magnified in the multiple equation 

VAR. Each equation of the VAR contains lags of all of the dependent variables as well as any 

deterministic terms and exogenous variables. Even if we consider only the lagged dependent 

variables, the number of VAR coefficients can be huge. A large VAR with quarterly data might 

have  100=N   variables and  4=p   lags which leads to  000,40   coefficients. With 

monthly data, researchers often use longer lag lengths and thus a large VAR with monthly 

variables can have over  000,100   coefficients. The error covariance matrix,  ,Σ   is also 

parameter rich since it contains  ( )
2

1+NN   distinct parameters which is  050,5   for the  100=N   

example. 

The large VAR world is, thus, one where the number of parameters may far exceed the 

number of observations. As we have seen, in theory, this is no problem for Bayesian methods. 

These combine likelihood function with prior. Even if the parameters in the likelihood function 

are not identified, combining the likelihood with the prior will (under weak conditions) lead to 

valid posterior inference. However, the role of prior information becomes more important as 

the likelihood becomes less informative relative to the prior. In the large VAR literature, the 

Minnesota prior and some of its close relations are most commonly used. The Minnesota prior 

grew out of work done at the University of Minnesota and the Federal Reserve Bank of 

Minneapolis (see Doan, Litterman and Sims, 1984). Technical details about the Minnesota prior 

can be found in many places, including Koop and Korobilis (2010), Blake and Mumtaz (2012) 

and Karlsson (2013). Two points are worth noting here. First, Bayesian analysis using the 

Minnesota prior is computationally simple, involving only analytical results and with no need 

to use MCMC methods. This has made it ideal for scaling up to large VARs where other 

approaches which require MCMC methods are computationally infeasible. Second, it is a 

shrinkage prior where coefficients are pulled towards a set of prior beliefs that reflect the 

empirical wisdom of its developers. These beliefs include the ideas that own lags (e.g. lags of 

GDP in the equation where GDP is the dependent variable) are more important than other lags 

(e.g. lags of GDP in the inflation equation); that more distant lags are less important than more 

recent lags; and that the first own lag is likely to be important in each equation if the researcher 

is working with levels data (i.e. it shrinks towards individual random walks). These properties 

make the Minnesota prior popular and increasingly, computer software such as the BEAR 

toolbox of Dieppe, Legrand and van Roye (2016) make it simple to estimate large VARs with 

many different forms of the Minnesota prior or related variants. 

But the Minnesota prior and related priors are subjective in the sense that the decisions about 

which variables to shrink in which manner are made by the researcher. Although papers such 
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as Giannone, Lenza and Primiceri (2015) are developing methods for estimating the degree of 

shrinkage, the general nature of this shrinkage (e.g. that other lags are shrunk less than own 

lags) is chosen by the researcher. In the preceding section, methods such as SSVS and the 

LASSO were discussed. These involved hierarchical priors which were less subjective than 

conventional non-hierarchical priors in the sense that they only expressed a belief that many 

coefficients were probably unimportant and could be shrunk to zero. These hierarchical priors 

are agnostic about which ones should be shrunk. This kind of prior information can also be used 

with large VARs. For instance, SSVS methods were first introduced to the VAR literature by 

George, Sun and Ni (2008) but have since been used successfully with larger VARs in Koop 

(2013) and Korobilis (2013a). It is worth noting that SSVS methods can also be used on the 

error covariance matrix,  Σ  , thus helping ensure parsimony in the large VAR. Korobilis 

(2013a) also considers the use of LASSO methods in large VARs and these are further 

developed in Gefang (2014). At present, these approaches have only been used with VARs 

containing fewer than 50 dependent variables. Their need for computationally intensive MCMC 

methods has precluded their use in really large VARs with  100=N   or more. It will be 

interesting to see if these methods, which have worked so well with fairly large VARs, can be 

scaled up to the extremely large VARs in use today. 

One way that large VARs can emerge is through the use of data for multiple countries. If 

the macroeconomist has, say, 10 variables for each of 20 countries and wants to jointly model 

them in a VAR, this leads to  200=N  . In this regard, it is worth noting that priors adapted 

for the multi-country nature of the data have been developed. That is, instead of simply using a 

Minnesota prior or SSVS prior for the large VAR, priors developed for the panel structure of 

the data exist. Canova and Ciccarelli (2013) surveys the panel VAR literature. Koop and 

Korobilis (2016) adapt and extend earlier approaches to deal with a large panel VAR. In the 

final section of this paper, Bayesian estimation of a time-varying parameter panel VAR will be 

discussed as an illustration of the issues involved. 

Another category of approaches to large VAR estimation can be interpreted as compressing 

the data to produce a smaller VAR which is computationally manageable. To illustrate the basic 

ideas of these approaches, consider the VAR model with one lag and no deterministic terms or 

exogenous variables: 

ttt Ayy ε+= −1  

where all assumptions are as in (regression). The matrix of VAR coefficients,  A  , is  NN ×   

and, thus, there are a huge number of free parameters to be estimated in the large VAR. This 

number gets proportionally larger with longer lag lengths. There are several recent approaches 

that re-write (VAR) as 
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( ) ttt yBy ε+Φ= −1  

where  B   is  mN ×   and  Φ   is  Nm ×   where  Nm <<  .  1−Φ tY   can be interpreted as 

compressed data and there are various methods of doing this compression. Once the 

compression is done the macroeconomist can work with a much smaller model. Models of this 

form have gone by various names (e.g. reduced rank model, vector error correction model) and 

used in various contexts in macroeconomics. Under the name multivariate autoregressive index 

model, they are being successfully used in large VARs by Carriero, Kapetanios and Marcellino 

(2015). These authors interpret  Φ   as an unknown matrix of parameters to be estimated and 

develop MCMC methods for doing so. This looks like a very interesting avenue for working 

with large VARs, but it does still require computationally burdensome MCMC methods that 

may not be feasible when  100=N   or more. 

Compressed data methods are commonly used in fields such as machine learning and image 

recognition as a way of projecting information in data sets with a huge number of variables into 

a much lower dimension before analysis. Theoretical results show that, under weak conditions, 

the information lost through such compression may be small, but the computational gains may 

be huge. A lesson of this literature is that compression can be done randomly using simple 

schemes, without reference for the data. Such so-called data-oblivious schemes are 

computationally very efficient since the researcher only needs to work with the entire (huge) 

data set once (i.e. when the compression is being done and  1−Φ ty   is produced). Subsequently 

statistical analysis can be done only using this compressed data. These features are exploited in 

Koop, Korobilis and Pettenuzzo (2016) who develop random compression methods for the 

VAR and demonstrate their successful forecast performance. 

In the preceding discussion of Big Data methods for regression, BMA was mentioned. 

Instead of selecting a single regression, the researcher could average over all regressions with 

weights proportional to their posterior model probabilities. This often leads to the researcher 

placing most weight on many small parsimonious models, thus surmounting some of the 

problems caused by working with regressions where the number of explanatory variables is 

huge relative to the sample size. Similar schemes are used with large VARs, but in a time-

varying fashion leading to Dynamic Model Averaging (DMA). If the methods are used for 

model selection then Dynamic Model Selection (DMS) results. These methods are mostly used 

with forecasting (although they can be used for structural analysis as well). The idea underlying 

DMS is that the forecasting model can change over time. The idea underlying DMA is that the 

weights used in model averaging can change over time. 

We explain the general ideas underlying DMA and DMS where  rM   for  Rr ,...,1=   are 

a set of models under consideration and  1−tD   is the data available at time  1−t  . Interest 

centres on forecasting  ty   given  1−tD  . The key quantity of interest is  ( )1| −trMp D   which 

is the probability attached to to forecasts from  rM  . DMA takes forecasts from all models and 
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averages using these probabilities. DMS forecasts using the model with the highest  

( )1| −trMp D  . A problem with a formal Bayesian DMA or DMS approach is computation. 

There are  TR2   possible paths of models over time if we consider every possible combination 

of model and time period. This is too large unless  R   and  T   are both small. Raftery, Karny 

and Ettler (Tech, 2010) surmount this problem through the use of an approximation. They use 

so-called forgetting factor methods which allow for the calculation of  ( )1| −trMp D   in a fast, 

recursive manner, in the spirit of Kalman filtering. Since this pioneering paper, DMA methods 

have been used in many macroeconomic and financial applications and are just beginning to be 

used in Big Data problems. 

Bayesians define a model as involving a likelihood function and a prior. The models used 

in DMA can be any consistent with this definition. Raftery, Karny and Ettler (2010) considered 

a set of regression models which differed in their explanatory variables. But DMA can used 

with models which differ in other aspects (including having different priors). In the VAR 

context, Koop (2014) uses DMA methods with VARs of different dimensions. Thus, the 

algorithm can choose to forecast with the large VAR at some points in time and smaller more 

parsimonious VARs at other times. The decision as to which dimension to choose is made based 

on recent forecast performance. 

2.3   Challenge 3: Parameter Change 

There is evidence that the properties of most macroeconomic variables change over time (see, 

among many others, Stock and Watson, 1996). When these variables are put into an 

econometric model, it becomes important to allow for parameter change to accommodate this. 

This parameter change can be of various sorts. To illustrate this point, consider the discussions 

surrounding U.S. monetary policy and, in particular, the question of whether the high inflation 

and high unemployment rate of the 1970s were due to bad policy or bad luck. Some have argued 

that the way the Federal Reserve reacted to inflation has changed over time. After 1980, the 

Federal Reserve became more aggressive in fighting inflation pressures than before. This is the 

bad policy story. In the 1970s the Federal Reserve was pursuing inappropriate policies which 

were subsequently changed. Any econometric model should incorporate such a change in the 

monetary policy transmission mechanism. In terms of a multivariate time series model such as 

a VAR, this means the VAR coefficients change over time (e.g. some of the VAR coefficients 

will control how past values inflation impact on the interest rate decisions of the Federal 

Reserve and these will have been different in the 1970s than subsequently). 

However, there are other researchers who argue that the stagflation of the 1970s was due to 

exogenous shocks (e.g. the OPEC oil price shock) that the Federal Reserve had no control over. 

This is the bad luck story and it is fundamentally one involving error variances. It says that the 

1970s were a highly volatile time which was succeeded by the Great Moderation of the business 
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cycle in the 1980s and 1990s. If this is the case, then the error covariance matrix,  Σ  , in the 

VAR must become  tΣ   and be time-varying. 

The bad policy versus bad luck debate illustrates how, in order to shed light on an important 

macroeconomic issue using a VAR, it is essential to allow for both VAR coefficients and the 

error covariance matrix to change over time. Many other macroeconomic questions of interest 

involve similar considerations. Proper treatment of time-variation in parameters can be 

difficult, even with small data sets, but with Big Data the problems are magnified. Nevertheless, 

some promising methods are being developed as will be discussed in this section. 

There are many different approaches used to model time-variation in parameters. For 

instance, various models allow for regime change or structural breaks where the coefficients 

change abruptly according to the state of the business cycle or at a point in time. These include 

Markov switching models (see, e.g., Sims and Zha, 2006) and threshold or smooth transition 

threshold models of various sorts (e.g. Koop and Potter, 2006). But much recent work has used 

time-varying parameter (TVP) models which allow for gradual change in parameters. In terms 

of (regression), these models replace the assumption that  


  is constant by 

ttt u+= −1ββ  

In words, the researcher's best guess about what the current VAR coefficients are is that they 

will be the same last period's. However, there is some unpredictable error causing change over 

time. Examples of empirical macroeconomic papers which use TVP-VARs are too numerous 

to adequately cite here. A few prominent early citations are Cogley and Sargent (2001, 2005) 

and Primiceri (2005). TVP-VARs are particularly popular since they are state space models for 

which standard state space methods involving the Kalman filter and state smoother can be used. 

The preceding discussion was in terms of time-variation in VAR coefficients. However, 

allowing for time variation in error covariance matrices is also important and may even be more 

important in many applications. Indeed the best fitting model of Sims and Zha (2006) involves 

nine different regimes all of which differ only in the error covariance matrix. And the main 

difference in econometric specifications between Cogley and Sargent (2001) and Cogley and 

Sargent (2005) is that the former is homoskedastic while the latter is heteroskedastic, reflecting 

the increasing realization of the importance of allowing for volatilities to change over time. 

The papers I have just cited, as well as much of the related literature, is Bayesian. This 

reflects a desire to use prior shrinkage as a way of mitigating the over-parameterization 

concerns. That is, over-parameterization concerns already arise in constant-coefficient VAR 

models. Allowing for the VAR coefficients and/or error covariance matrices to change means 

more parameters to estimate and even more concerns about over-parameterization. It is also 

important to note that dealing with all these challenges raises the computational burden, 

sometimes massively. That is, with the constant coefficient VAR with Minnesota prior 
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analytical formulae are available for the posterior and one-step ahead predictive densities. 

However, as soon as we leave the constant-coefficient homoskedastic world, MCMC methods 

are typically required. These can be computationally daunting even in the context of estimating 

a small model. But in larger models or when carrying out a recursive pseudo out-of-sample 

forecasting exercise, which would require repeatedly running the MCMC algorithm on an 

expanding window of data (see, e.g., D'Agostino, Gambetti and Giannone, 2013), the 

computational burden can become prohibitive. 

I stress that all the statements and citations so far given in this section do not relate to Big 

Data. The applications cited involve TVP-VARs or Markov switching VARs with a small 

number of variables. For instance, the TVP-VAR with multivariate stochastic volatility of 

Primiceri (2005) has three dependent variables. The development of Bayesian methods which 

allow for time-variation in parameters in large VARs is in its infancy. The concerns regarding 

over-parameterization and computation, present with small VARs, become huge with large 

VARs. Koop and Korobilis (2013) develop methods for large TVP-VARs but these involved 

approximations, thus avoiding the need for MCMC methods but at the cost of not producing 

the exact posterior and predictive densities for the large TVP-VAR. Koop, Korobilis and 

Pettenuzzo (2016) adopt similar approximations when extending their compressed VAR 

approach to allow for time-varying parameters and error covariances. Very recently, 

Kapetanios, Marcellino and Venditti (2016) have developed an interesting way of estimating 

large TVP-VARs which, although not fully Bayesian, can be given a quasi-Bayesian 

interpretation. However, in general, there is a need for a fully Bayesian analysis of large TVP-

VARs. 

In terms of exact Bayesian posterior analysis with extensions of large VARs, most progress 

has been made with VARs where the VAR coefficients are constant over time, but the error 

covariance matrix is allowed to change. This reflects the common empirical finding that with 

many macroeconomic data sets, there is more parameter change in error variances than in the 

VAR coefficients. Without getting into too much complicated econometric theory, the basic 

idea in this new line of research can be explained by noting that the VAR error covariance 

matrix for the entire vector of  TN   errors can be written as  I⊗Σ   in the homoskedastic 

VAR where  Σ   is an  NN ×   matrix allowing for the errors in the different equations to be 

correlated with one another and  
I

  is the  TT ×   identity matrix embodying the assumption 

that the errors are uncorrelated over time. This Kronecker structure, along with a similar 

structure in the prior, is crucial for keeping computation manageable in large VARs. If we let  

β   be the vector of coefficients in the VAR(p) and  K   be the number of right hand side 

variables in each equation ( NpK =   in a VAR without deterministic terms or exogenous 

variables), then the posterior covariance matrix for  β   is an  NKNK ×   matrix. Working 

with it involves lots of matrix manipulations such as matrix inversion. Inverting an  NKNK ×   

matrix can be extremely difficult for the computer when, say,  100=N   and  1200=K   and, 
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thus, a  120000120000 ×   matrix must be inverted. But the Kronecker structure (roughly 

speaking) turns this into a problem of inverting an  NN ×   matrix and a  KK ×   matrix 

separately which is much more feasible in large VARs. To give the reader an idea of the order 

of magnitude of the computational savings, here is a quotation from a recent paper in relation 

to the posterior covariance matrix of the VAR coefficients: in a system of 20 variables and 4 

lags, the manipulation of this matrix would involve  000,528,251,4   elementary operations, 

but when the matrix has a Kronecker structure, the number of operations reduces to just  

441,539   ( Carriero, Clark and Marcellino, 2015, page 8). 

This basic idea -- that we must keep a particular Kronecker structure (or something close to 

it) in the error covariance matrix and prior in order to keep computation feasible -- has 

influenced several recent papers and allows the researcher to work with heteroskedastic large 

VARs using fully Bayesian methods. Carriero, Clark and Marcellino (2015) develop a model 

of common drifting volatility in large Bayesian VARs using the assumption that 

Σ=Σ tt f  

where  tf   is a univariate stochastic volatility process. In words, there is one common factor 

driving volatilities of all variables. In many applications, this assumption may be reasonable, 

but in others this may be too restrictive. Subsequently, Carriero, Clark and Marcellino (2016) 

develop Bayesian methods for estimating a more flexible version of this model that maintains 

the common drifting volatility process but also allows for the error variance in each equation 

to follow a different stochastic volatility process. 

Another recent paper worth noting is Chan (2015) who develops efficient computational 

methods for large VARs with error covariances having the form  Ω⊗Σ   for general  Ω  . The  

TT ×   matrix  Ω   allows for different types of error correlation over time. Different choices 

for  Ω   allow for different extensions including common stochastic volatility, moving average 

structures of certain types and fat-tailed errors. Since any or all of these may be present in the 

data and, thus, may be important to model, the ability to do fully Bayesian work with error 

covariances of the  Ω⊗Σ   form is a key step forward. 

Approaches such as Carriero, Clark and Marcellino (2015, 2016) and Chan (2015) have 

been show to work well in fairly large VARs (e.g. VARs involving  5020 −   variables) but 

not the  100   or more that are increasingly used in macroeconomic research. And, unlike papers 

such as Primiceri (2005) who use extremely flexible multivariate stochastic volatility processes 

for  tΣ  , they use specifications for  tΣ   which may be restrictive in some applications. Hence, 

there is much work to be done to develop Bayesian methods for large VARs with time-varying 

parameters. But, for homoskedastic VARs, the tools are there. And methods for allowing the 
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time-variation in parameters (both in VAR coefficients and in the error covariance matrix), 

tools exist for an analysis of fairly rich structures and more are being developed all the time. 

We are at a stage where the empirical macroeconomist working with Big Data can work with 

some very useful (and empirically necessary) Bayesian tools even with time-varying parameter 

models. 

3    A Large Time-Varying Panel VAR 

This paper has discussed three important challenges facing the empirical macroeconomist in 

the presence of Big Data and how Bayesian methods are increasingly used to address them. A 

major theme that has emerged in this discussion is that, since more information is often better, 

it is potentially important to work with Big Data. However, much of this information may be 

irrelevant or just be noise and, thus, methods for ensuring parsimony such as prior shrinkage 

are necessary. A second theme is that conventional statistical methods, designed for Small Data, 

may not work well with Big Data and that Bayesian methods offer a plausible and increasingly 

practically feasible alternative. The discussion was kept fairly general and non-technical. In this 

section, I will discuss a modelling strategy used in Koop and Korobilis (2015) as a way of 

showing how these themes infuse my work in practice. The hope is that the general ideas 

discussed previously will become clearer in a practical context. 

In an increasingly globalized world, macroeconomists are increasingly interested in jointly 

modelling data from several countries. That is, interlinkages between countries can be 

important in many macroeconomic and financial contexts (e.g. the eurozone crisis) and they 

can only be modelled using data from many countries. The wish to work with data for many 

countries is a prime example of how Big Data can arise. Even if you have a relatively small set 

of variables for an individual country (e.g. wish to work with 5-10 variable in a VAR), when 

working with many countries (e.g. the 19 countries in the eurozone), the researcher can easily 

end up with 100 or more variables of interest. In the multi-country VAR literature, problems 

caused with this profusion of variables are often addressed by placing restrictions on the way 

countries interact. For instance, the global VAR literature (see, e.g., Dees, Di Mauro, Pesaran 

and Smith, 2007) imposes restrictions that data from foreign countries can only affect a 

domestic economy through global averages. But what if global averages are not the correct 

specification? For instance, if a small country like Greece had a disproportionate effect on other 

countries at the time of the eurozone crisis this could be missed if subsumed in a global average. 

In such a case, the researcher may wish to work with an unrestricted model such as a VAR for 

all the variables. Such a VAR will be very large and, hence, the need for methods such as those 

discussed in this paper arise. 
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Koop and Korobilis (2015), in the context of a eurozone inflation forecasting exercise, work 

with  19=G   eurozone countries and  7=N   variables. If jointly modelled in an unrestricted 

VAR this would mean a large 133 variate VAR. Their data set runs from 1999M1-2014M12. 

Hence, this is a case where the data information is small relative to the number of parameters 

being estimated. Parsimony is achieved through a combination of various methods described 

earlier in this paper. 

Relative to an completely unrestricted multi-country VAR, the first way parsimony can be 

induced is through the assumption that the huge number of VAR coefficients are not completely 

unrelated to one another but reflect some underlying structure due to the nature of the problem. 

An influential early paper working with multi-country VARs is Canova and Ciccarelli (2009). 

If  β   is the vector of VAR coefficients, then they suggest a reasonable structure for it in a 

multi-country context is: 

e

eqq

+Ξ=

+Ξ++Ξ+Ξ=

θ
θθθβ ..2211

 

where  ( )qΞΞ=Ξ ,..,1   are known matrices and  ( )′′′= qθθθ ,..,1   is an  1×R   vector of 

unknown parameters with  R   being small. In their application, they define  Ξ   so as to imply 

the VAR coefficients are composed of a common factor, a factor specific to each country and 

a factor specific to each variable. That is,  1Ξ   is a vector of ones and  1θ   is a scalar (this 

defines the factor common to all coefficients).  2Ξ   is a matrix containing zeros and ones 

defined so as to pick out coefficients for each variable and  2θ   is an  1×N   vector. 3Ξ   is 

defined to pick out coefficients for each country and  3θ   is an  1×G   vector.  e   is an error 

which picks up remaining heterogeneity in coefficients. Note that (in the  1=p   case), instead 

of having to estimate the  22 GN ×   individual coefficients of the unrestricted VAR, the 

researcher only needs to estimate the  1++ GN   coefficients in  θ   along with the parameters 

in the distribution for  e  . A point worth noting is that this is an example of a prior designed to 

take into account the multi-country nature of the model. The popular Minnesota prior would 

not reflect this and, although it may be appropriate for a conventional macroeconomic VAR for 

a single country, it may not be appropriate here.4 In general, with Big Data prior information 

can be very important and it is important to have a prior that is appropriate for the data set at 

hand. 

                                                 
4 The BEAR software, reflecting this consideration, has a separate set of commands for the panel VAR. 
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Adapting (pvarrior) to allow for time-varying VAR coefficients, thus producing a time-

varying parameter panel VAR (TVP-PVAR) is done by Canova and Ciccarelli (2009) by 

allowing  tβ   to vary over time according to: 

ttt

ttt

u

e

+=
+Ξ=

−1θθ
θβ

 

Thus, all the VAR coefficients can change over time, but this change is driven by a lower 

dimensional vector  tθ   which contains only the common factor, the factor specific to each 

country and a factor specific to each variable. Thus, the extremely parameter-rich TVP-PVAR 

is made much more parsimonious through a hierarchical prior. 

Koop and Korobilis (2015) adopt the structure given in (pvarrior) and (tvppvarrior) and 

consider the common/country/variable component division suggested by Canova and Ciccarelli 

(2009). Such a division sounds, in theory, sensible and in practice seems to work well in many 

applications. But what if it does not? One can imagine applications where cross-country 

heterogeneity is large and the idea of having a common factor is unreasonable. Or the 

assumption that a single factor for each country is enough to model such heterogeneity is 

insufficient. Or many other sorts of reasons why the assumptions embedded in (pvarrior) and 

(tvppvarrior) might be too restrictive. Hence, Koop and Korobilis (2015) consider more than 

one choice for  Ξ  . This strategy is consistent with a theme emphasized previously: there are 

good theoretical reasons for thinking Bayesian model averaging methods (either using BMA or 

DMA) to be an attractive thing to do and in practice averaging over many simple models is a 

promising way to proceed in a Big Data world. That is, by working only with small models the 

benefit of parsimony is gained, but by considering many of them with different variables (or, 

in this case, different priors) data information is not excluded. 

There is much evidence that working with large VARs, involving a large number of 

variables, is a sensible thing to do. However, the question of whether large VARs really forecast 

better than small VARs is, in the end, an empirical one. Large VARs may be better than small 

VARs in some applications, but not others. There may be some periods where small VARs are 

good, other periods where large VARs win. In the case of Koop and Korobilis (2015), we might 

expect small VARs to do well. Forecasting inflation is hard. Often is it hard to beat simple 

forecasting models (see, e.g., Stock and Watson, 2007 or Faust and Wright, 2013). Hence, Koop 

and Korobilis (2015) acknowledge that it is possible that including  7=G   variables for each 

country into the TVP-PVAR and/or allowing for variables in one country to influence inflation 

in a different country is unnecessary. Perhaps simple forecasting models are adequate. Koop 

and Korobilis (2015) did not wish immediately go to a smaller, parsimonious model, but 

discover, in a data-based fashion whether simpler models sufficed. In this spirit, they chose a 
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set of  CG   core variables of interest (inflation, unemployment rate and industrial production) 

and worked with VARs of dimension  CG   or larger. 

They also reasoned that perhaps allowing for time-variation in parameters may be 

unnecessary but again, wanted to establish whether constant coefficient models were adequate 

in a data based fashion. Accordingly they considered models with and without time-variation 

in VAR coefficients. They also considered different specifications for the time-varying error 

covariance matrix. 

Koop and Korobilis (2015) thus ended up with a large set of models which differed in the 

choice of  Ξ  , the choice of VAR dimension, the choice of degree of time-variation in  β   and  

Σ   as well as some other specification choices. Faced with a large number of models with up 

to potentially 133 variables, use of MCMC methods was computationally infeasible and, 

instead, they reverted to approximate methods. They used DMA and DMS methods to navigate 

their way through the huge range of models in a dynamic fashion. Often they found small VARs 

to forecast well, but there were times when the large VARs forecast better. At times the 

structure for  Ξ   suggested by Canova and Ciccarelli (2009) was chosen by DMS, but there 

were also times it did not. Overall, the forecasting performance of the TVP-PVAR approach of 

Koop and Korobilis (2015) was as good or better than other competitors and it achieved this 

success by switching dynamically between different specifications. 

4    Summary and Conclusions 

In this paper, I have discussed how Big Data often arises in macroeconomics, why 

macroeconomists should often be interested in using it and the problems it poses for 

conventional econometric methods. I have discussed how Bayesian methods can be used to 

overcome these problems and given an illustration of how they can work in practice. Bayesians 

are not the only ones developing new methods to deal with these issues, but Bayesian methods 

have two features which make them attractive in this context. First, they allow for the use of 

prior information. Researchers in this field, regardless of whether they are Bayesian or 

frequentist, acknowledge the need for shrinkage methods so as to mitigate the effects of over-

parameterization and over-fitting that occur with noisy macroeconomic data. The Bayesian 

prior provides a formal route for the researcher to introduce such shrinkage. Hierarchical priors, 

such as those used by the SSVS and LASSO methods discussed in this paper, allow many key 

shrinkage choices to be made in a data-based fashion. Loosely speaking, they allow the 

researcher to express a prior belief that many or most coefficients are likely zero without 

expressing any beliefs about precisely which ones are zero. The data is used to make the latter 

choice. 

Second, Bayesians treat models as random variables and it is thus meaningful to attach 

probabilities to each. This makes it easy to work with many models and average over them -- 

and even to do so in a time-varying fashion. With Big Data, the ability to work with numerous 
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parsimonious models is often an attractive thing to do. Instead of selecting a single small model 

involving a tiny sub-set of all the potential variables, it is possible to have different models 

involving different sub-sets of the variables. For instance, the researcher may not want to work 

with all of the more than 100 variables available in the FRED-MD data base in a single model. 

But it is possible to work with many smaller models: each of the more than 100 variables can 

appear in one or more of these models and the econometric methodology can be used to decide 

which ones receive the most weight. 

I have organized the discussion around three main challenges: those which occur in single 

equation models such as regression models with many explanatory variables, those which occur 

in multiple-equation models such as VARs and those which occur when time-variation in 

parameters is allowed for. Of these three challenges, the first is the one we are closest to 

meeting. There are a range of methods, some discussed in this paper, which have been found 

to work well in regressions where the number of explanatory variables is large relative to (or 

even larger than) sample size. Great progress has been made with the second challenge, with 

large VAR methods enjoying great success in a variety of applications. However, there are still 

many interesting issues to address with large VARs. These arise partly because the large VAR 

has a commensurately large error covariance matrix and partly due to the computational 

challenges raised by the sheer magnitude of the number of parameters or models involved. But 

it is in the third challenge that most needs to be done. There is little doubt that, in many 

applications, VAR coefficients and/or error covariance matrices are changing over time. But 

faced with the enormous range of potential ways these parameters might change and the over-

parameterization and computational problems that must be addressed, there is much to do. But 

rising to this challenge will be necessary if macroeconomists are to benefit from the rich 

potential of Big Data. 
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