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1   Introduction 

Study of the effects of oil price movements on economies dates back at least to the 1970s with 

the advent of global oil price shocks–recessions. Through the first generation of studies, 

researchers mainly analyzed the macroeconomic aspects of the oil price shocks, including their 

effect on major macroeconomic variables such as GDP, inflation and interest rates. The 

inflationary effects of global oil price shocks on recessions in particular have been a major 

subject of discussion, the preface to which is the 1973 recession and its possible relation to the 

first OPEC embargo.  
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Some proven hypotheses suggest that if consumers expect that oil price increases are 

transitory, they save less and borrow more. Thus, increasing demand leads to an increasing 

price level (the real balance effect). Monetary tightening in response will then contract GDP 

followed by recession (Cologni and Manera, 2008). However, others argue that there is 

insufficient evidence to support the argument for the inflationary effects of oil price shocks (see 

Bohi, 1989; Bohi, 1991; Keane and Prasad, 1996 and Rotemberg and Woodford, 1996). Such 

mixed outcomes motivate us to consider the consumer price index (CPI) as an indicator of the 

response of the consumer cost of living to global oil price movements.  

Possible reasons for the mixed evidence on this relationship to date are the various methods 

of estimation, differences in the identification of the oil price shocks, and changes in sample 

selection. In addition, it is possible that different countries depending on their pattern of oil use 

will also display differences. For instance, while an increase in oil prices is costly in oil-

importing countries, oil-exporting countries may benefit from the associated income effects. 

Thus, the question we have in mind is whether the effects of oil price variations on consumer 

costs of living are the same in net oil consuming and net oil producing countries.  

In this paper, we aim to respond to this question by applying the most powerful nonlinear 

parametric and nonparametric models available. We identify countries as net oil consuming and 

net oil producing rather than simply oil importing and oil exporting. In this way anything 

affecting net oil production or consumption will also influence the ability to export or import 

oil. Additionally, by defining countries as net oil consuming and producing, we are able to 

collect the highest frequency of data available. As a result, we expect to extend our findings to 

other oil consuming and producing countries not included in the analysis because of data 

limitations. Implementing both linear and nonlinear estimation methods using panel data and 

time series also enhances the validity of our findings.   

Our study differs in some respects from previous work in the area. First, as discussed, we 

use the categorization of net oil consumption and net oil production. This enables us to expand 

our sample beyond oil export and imports, which can be a rather simple approach to the impact 

of oil on economies and consumers. Second, we collect the highest frequency of data available, 

which enables us to obtain findings that are more precise. Finally, we run several econometric 

methods, which  reveal any possible causality between global oil prices and consumer prices. 

While most similar studies employ linear causality tests using time series, we estimate panel 

linear causality models. These yield the least bias in the estimated results. Additionally, 

estimation of nonlinear models enables us consider any nonlinear relationships between the 

variables.  

The remainder of this paper is structured as follows. Section 2 reviews the literature 

background and Section 3 describes our data set. Sections 4 and 5 detail the estimation method 

and estimation results, respectively. Section 6 provides some concluding remarks and policy 

recommendations.   
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2    Background 

While some studies consider that  oil prices influence other prices directly, others assume that 

such effects are indirect. A review of the existing literature reveals that other than these direct 

and indirect mechanisms, oil price shocks affect economies through both aggregate and 

disaggregate channels. In a seminal study, Jones and Kaul (1996) note that the aggregate 

channel includes those studies, which investigate traditional supply shocks and demand 

adjustments theoretically or by generally regressing GDP on oil price and other variables 

empirically. One of the main findings of these aggregate level studies is the significant effects 

of oil price shocks on economic activity (see Hamilton, 1983, 1996, 2003; Gisser and Goodwin, 

1986; Mork, 1989; Hooker, 1999; Burbidge and Harrison, 1984; Mork et al,. 1994; Jiménez-

Rodríguez and Sánchez, 2005, 2009 and Kilian, 2008). In contrast, disaggregate level studies 

mainly focus on the impact of oil price shocks on individual markets, sectors and industries.  

At the aggregate level, some studies support the existence of the significant effects of oil 

price changes on consumer price indexes. For instance, Burbidge and Harrison (1984) assess 

the dynamic relationship between oil prices and six other economic variables, including the 

aggregate price level, for five developed countries. Applying a vector auto regressive (VAR) 

model to a monthly data set covering the period January 1961 to June 1982, they find that oil 

prices have significant effects on both US and Canadian aggregate prices. However, such 

effects are found to be considerably weaker in Germany, Japan, and the UK. Likewise, using 

annual data over the period 1970 to 2006, Greenidge and DaCosta (2009) show that oil price 

changes exert significant effects on the inflation rate of four Caribbean countries (Barbados, 

Jamaica, Guyana, and Trinidad and Tobago). Finally, Cunado and Perez de Gracia (2005) prove 

that oil price shocks have rather significant influences on the inflation rate. Using quarterly data 

1975Q1 to 2002Q2 for a group of six Asian countries—Japan, Singapore, South Korea, 

Malaysia, Thailand and Philippines—in a bivariate VAR framework, they conclude that such 

influences are even stronger when the oil price is in the local currency.  

In contrast to the results of these studies, there is substantial evidence that oil price changes 

have only neutral or no effect on consumer prices (Hooker, 2002; LeBlanc and Chinn, 2004; 

Barsky and Kilian, 2004; Gregorio et al., 2007; Bachmeier et al., 2008 and Chen, 2009). 

Employing quarterly data in a Philips curve framework, Hooker (2002) shows that the 

inflationary effects of increasing oil prices have declined or even disappeared since 1980. Using 

a similar framework, LeBlanc and Chinn (2004) employ quarterly data for five developed 

countries over the period 1980 to 2001 to argue that the effects of oil prices on inflation across 

all the sample countries are only moderate, while Barsky and Kilian (2004) suggest that the 

effects of oil price shocks on inflation are not as significant as claimed. Employing US inflation 

rates from 1971 to 2004, they note that oil price shocks several spikes in US inflation rates. 
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Additionally, inflation in consumer prices does not follow major oil shocks. Likewise, Gregario 

et al. (2007) and Chen (2009) identify only minor effects of oil price shocks on the inflation 

rate, in most of 39 developing and developed sample countries in the former and 19 

industrialized countries in the latter. Finally, using US data from the late 1940s to 2004, 

Bachmeier et al. (2008) suggest that oil price changes do not have predictive power over either 

future inflation or output.   

Disaggregate level studies present findings concerning the possible channels that transfer 

the effects of oil price shocks to aggregate price levels, although the main emphasis is on 

disaggregate price levels. A review of the literature reveals little evidence these ever transfer to 

aggregate consumer prices. For instance, Zhang et al. (2010) conclude that the long-term 

relationship between energy prices—ethanol, gasoline, and oil—and a group of global 

commodities—corn, rice, soybeans, sugar, and wheat—is not evident in China. They also find 

that, at least in the short term, there is no causal relationship between energy prices and 

agricultural prices. In a similar study, Nazlioglu and Soytas (2011) find that oil prices have no 

significant effects on agricultural production. 

Elsewhere, Baffes (2007), Harri and Nalley (2009) and Chen et al. (2010) prove that 

movements in oil prices display a close relationship with tradable agricultural commodities, 

while Panagiotidis and Rutledge (2007) show that oil price shocks in the UK could exert linear 

short-term effects on gas prices. In other work, Alghalith (2010) and Ibrahim and Said (2012) 

evidence a significant linkage between oil price movements and general food prices. Most 

recently, Ibrahim and Chancharoenchai (2013) find that there are long-term relationships 

between oil prices, aggregate consumer price indexes, and sets of disaggregate price indices. 

Employing quarterly Thai data from 1993Q1–2010Q2, Ibrahim and Chancharoenchai (2013) 

note that aggregate consumer prices, nonfood and beverage prices, and housing and furnishing 

prices asymmetrically adjust their long-term equilibrium with oil price movements. They also 

show that oil price changes exert short-term effects on the inflation rates of all types of 

commodities.   

In sum, recent studies mainly address the oil price and consumer price relationship in either 

the US or Canada. Within the limited number of other studies, there is no comparative study of 

net oil consuming and producing countries. Further, the disaggregate level studies tend to 

concentrate on certain narrow groups of commodities. Finally, despite the importance of 

considering the effects of global oil price changes on consumer cost of living, there is no 

evidence of possible nonlinear causation between the two variables. Accordingly, this analysis 

sheds light on these issues using the most powerful nonlinear models, panel linear models, and 

selected groups of net oil consuming and producing countries.   
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3    Data Description and Overview 

Our data set consists of oil prices (OP) and consumer price indexes (CPI) in selected net oil 

consuming and producing countries during the period January 1986–August 2013. The sample 

selection criterion is the net oil production (consumption) share of GDP. Based on this criterion 

for a large number of oil exporting and oil importing countries and given data availability, we 

designate the US, Brazil, Denmark, Italy, Germany, Netherlands and Sweden as net oil 

consuming countries and Canada, Mexico and Norway as net oil producing countries. 

As a proxy for consumer cost of living, we employ consumer price indexes collected from 

the Organization for Economic Co-operation and Development (OECD). In addition, as a proxy 

for the global oil price (OP), we use the monthly oil price for West Texas Intermediate (WTI) 

crude oil. The WTI has widely been used in the literature as a benchmark for oil pricing. 

Moreover, it is highly correlated with the prices for the other major categories of crude oil, 

namely Brent and Dubai (Wang et al, 2013). We collect WTI statistics from the World Bank 

website. Then, using monthly US CPI from the OECD website, we calculate inflation-adjusted 

real oil prices. Finally, we index all data by their monthly-averaged 2010 values. 

Table 1 presents some statistics. As shown, the average CPI ranges between 40.4 

equivalents for Mexico to 70.9 equivalents for Germany. We also plot the time variation of 

growth rates of OP and CPI in Fig. 1.  

Table 1: Selected statistics 

Countries 
Mean  SD 

Level Difference  Level Difference 
CPI 
Brazil 
Denmark 
Germany 
Italy 
Netherlands 
Sweden 
US 
Canada 
Norway 
Mexico 
 
OP 

 
65.6484 
62.8376 
70.9101 
56.4595 
68.1223 
64.0492 
61.2652 
64.0492 
61.0389 
40.4424 

 
59.2783 

 
0.4723 
0.1757 

0.14282 
0.19464 
0.16003 
0.17284 
0.17189 
0.16883 
0.17342 
0.25203 

 
0.2042 

  
31.1679   
27.5755 
21.3249 
32.8547 
22.6615 
30.2663 
26.9451 
27.2263 
28.5041 
38.5547 

 
31.78851 

 
0.7451 
0.2762 
0.2325 
0.1520 
0.3144 
0.3476 
0.2439 
0.2583 
0.3112 
0.3052 

 
5.5322 

This table provides statistics for the period January 1986–August 2013. Both the consumer 
price indexes (CPI) and the oil price (OP) are monthly price and indexed to the constant 
inflation-adjusted year (2010). 

Source: OECD, World Bank.   
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Because of small fluctuations in CPI compared with OP levels, we plot the growth rates of the 

variables to highlight such fluctuations. As depicted in Fig 1, it is difficult to identify visually 

any relationship between the two time series, with the possible exception of the US where 

consumer prices appear to lag oil prices.   

Fig 1. Growth rates of global oil and national consumer prices.CPI × 10. 

 

 

 

-30

-10

10

30

50

1986 1990 1994 1998 2002 2006 2010

Pe
r c

en
t

Year

Brazil

-30

-10

10

30

50

1986 1990 1994 1998 2002 2006 2010

Pe
r c

en
t

Year

Denmark

-30

-10

10

30

50

1986 1990 1994 1998 2002 2006 2010

Pe
r c

en
t

Year

Germany

-30

-10

10

30

50

1986 1990 1994 1998 2002 2006 2010

Pe
r c

en
t

Year

Italy

––– Growth rate of consumer price index - - - Growth rate of global oil price 



SOTOUDEH, WORTHINGTON     Nonlinear Effects of Oil Prices 
 

 63

Figure 1 continued 
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Figure 1 continued 
 

 

Our preliminary investigation suggests a linear correlation between OP and CPI. The 

correlation coefficients reported in Table 2 vary between 0.62 equivalents for Sweden and 0.82 

equivalents for Brazil. However, correlation does not guarantee causation. 

 

Table 2: Correlation coefficients between global oil and consumer prices 

Countries 
Lag (months) 

No lag 1 2 3 
Brazil 
Denmark 
Germany 
Italy 
Netherlands 
Sweden 
US 
Canada 
Norway 
Mexico 

0.8174 
0.7744 
0.7163 
0.7111 
0.7656 
0.6289 
0.7809 
0.7701 
0.7377 
0.7409 

0.8161 
0.7728 
0.7141 
0.7093 
0.7623 
0.6293 
0.7796 
0.7694 
0.7374 
0.7374 

0.8226 
0.7705 
0.7114 
0.7072 
0.7586 
0.6290 
0.7766 
0.7675 
0.7365 
0.7340 

0.8255 
0.7686 
0.7091 
0.7051 
0.7553 
0.6287 
0.7732 
0.7653 
0.7355 
0.7309 

4    Empirical Methodology 

4.1    Stationarity tests 

There are several methods of estimating the order of integration. To select a proper test, the 

first criterion considered is sharing the parameters across panel units. Some tests such as the 

Levin–Lin–Chu (LLC), Harris–Tsavalis (HT) and Breitung assume that all panels share the 

same autoregressive parameter, while others such as Im–Pesaran–Shin (IPS), Fisher-type and 

Hadri LM tests assume an autoregressive parameter to be panel specific. In most of these cases, 

the assumption is too restrictive in practice (Maddala and Wu, 1999). 

The second criterion is the restrictions on the number of cross-sectional units and time 

dimensions. While microeconomic data usually overspread with an infinite number of cross-

sections during a fixed period, macroeconomic data are typically restricted to a limited number 
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of cross sections with infinite time dimension. Thus, the size of the sample and number of 

periods prescribes the type of unit root test (for further technical discussion about the size of N 

and T, see Moon and Phillips, 1999 and Phillips and Moon, 2000). As our unbalanced panel 

includes 10 cross-sectional units with more than 500 periods, we select the Fisher-type and (to 

some extent) IPS tests to measure the panel data order of integration.  

The Fisher unit root test employs Augmented Dickey Fuller (ADF) and Phillips–Perron (PP) 

tests. Using four methods proposed by Choi (2001), the Fisher unit root test combines p-values 

from panel-specific unit root tests. These methods apply inverse Chi-square, inverse normal, 

inverse logit and modified inverse chi-square transformations of p-values. Each method has 

different assumptions in the size of panel. While the majority of these test statistics apply to 

infinite samples, the reverse chi-square p-statistic is applicable for finite panels. The p-statistic 

has a chi-square distribution with 2N degree of freedom. We test the null hypothesis of the 

existence of a unit root across all of cross sections against the alternative hypothesis, which is 

at least one stationary panel. 

The second test we conduct is the IPS, which allows heterogeneity across panels with 

serially uncorrelated errors. This test is applicable to the unbalanced panel data and allows N to 

be finite or infinite and reports three statistics: t-bar, t-tiled-bar and z-t-tiled bar. Among all, the 

t-bar statistic delivers our desired stationary test results regarding the finite N. due to assumption 

of finite time dimension, we assign the IPS test following the Fisher-type ADF test. Finally, to 

test the order of integration for our country-specific and nonlinear models, we perform 

Augmented Dicky-Fuller (ADF), Elliot–Rothenberg–Stock (DF-GLS) and Philips–Perron (PP) 

tests using the time series. 

4.2   Panel linear causality tests 

One of the best available econometric methods to investigate possible dynamic relationships 

within panel data is the panel vector autoregressive (PVAR) approach. This method has least 

bias when the cross sections and time tend to infinity. However, given the finite cross sections 

in our data, the PVAR estimators are biased and hence, this method is not applicable. Juessen 

and Linnemann (2010) compared several panel estimation models using Monte-Carlo 

simulation. Because of biased estimations using instrumental variables and GMM estimators in 

models with a restricted number of cross-sectional units, Juessen and Linnemann (2010) 

recommend a bias-corrected least squares dummy variables (LSDV) model, which is easy to 

implement and suits samples with large time dimension. Consequently, we implement the bias-

corrected LSDV model modified by Bruno (2005), for panels with a small number of cross-

sectional units. Consider the following dynamic standard model: ݕ = ߟܦ ߜܹ+ + ߳																																																													(1) 
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where D is the matrix of individual dummies, ܹ = ଵିݕ) ⋮ ܺ)  is the matrix of stacked 

observations, ߟ is the vector of individual effects and ߜ is the vector of coefficients. To select 

the usable observations from within unbalanced panel data, we use a selection index as below: 

௜௧ݏ = ቄ1							݂݅	(ݎ௜௧, (௜௧ିଵݎ =  (2)																																																									݁ݏ݅ݓݎℎ݁ݐ݋								0(1,1)
where ݎ௜௧ = 1 if yit and xit are observed and ݎ௜௧ = 0 otherwise, ݅ denotes the size of the cross-

sectional series and t is the time dimension. We now rewrite Equation 1 as follows: ܵݕ = ߟܦܵ + ߜܹܵ + ܵ߳																																																			(3) 
In this equation, ߜ is the LSDV estimator that should be measured. Through the estimation 

procedure of ߜ, which has been explained in detail in Bun and Kiviet (2003) and Bruno (2005), 

one of the Anderson and Hsiao (1982), Arellano and Bond (1991) or Blundell (1998) estimators 

are employed to measure three types of bias approximations. Assuming Bi indicates estimated 

bias approximation extracted from formulations presented in Bruno (2005), the bias-corrected 

LSDV model (LSDVC) is estimated through the second stage of estimation as below: ܥܸܦܵܮ௜ = ܸܦܵܮ −  (4)																																																					෠௜ܤ
where i=1, 2, 3 denotes one of the bias approximations.  

The linear Granger causality tests suggest the predictability of a variable by its past values, 

and the current and past values of the cause variable. We use bias-corrected LSDV method to 

estimate the Granger linear causation between global oil price changes and consumers’ cost of 

living. Thus, in a regression of CPIt on lagged values of CPIt and OPt, OPt would not be 

Granger-cause of CPIt if the coefficients of OPt are jointly zero: 

௧ܫܲܥ =෍ܽ௜ܫܲܥ௧ି௜௠
௜ୀଵ +෍ ௝ܾ௡

௝ୀଵ ܱ ௧ܲି௝ + ௧ܦ + ݁௧																											(5) 
where  ܽ௜  and ௝ܾ  are coefficients, ܦ௧  is deterministic trend and ݁௧  is the random error term. 

Rejection of the null hypothesis of ܾଵ = ܾଶ = ܾଷ = ⋯ = ܾ௡ = 0  indicates that OPt is the 

Granger cause of CPIt. This model, as Guilkey and Salemi (1982) describe, rejects false null 

hypothesis by 3.26 per cent and 2.64 per cent more than Sims and Modified Sims causality 

tests, respectively. The direct Granger causality test as a powerful tool describes both the 

existence and direction of causality. Finally, we run bootstrapping simulation to see whether 

desired coefficients are statistically significant.  
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3.3    Nonlinear causality tests 

As the existence of nonlinear relationships between economic variables is a given in the existing 

literature, linear causality tests may cover only a portion of such existing relationships (Ajmi et 

al., 2013). Furthermore, linear Granger causality tests omit the possibility of higher order 

structure, such as conditional heteroscedasticity. Thus, in order to extend our estimations 

beyond linear methods, we perform nonlinear parametric and nonparametric causality models.  

In this paper, we employ Baek and Brock’s (1992) nonlinear nonparametric model, as 

modified by Hiemstra and Jones (1994). Denote that m-length lead vector of CPIt by ܫܲܥ௧௠ and 

the Lcpi-length and Lop-length lag vectors of CPIt and OPt by ܫܲܥ௧ି௅௖௣௜௅௖௣௜  and ܱ ௧ܲି௅௢௣௅௢௣ . As a 

result; 																																											ܫܲܥ௧௠ = ,௧ܫܲܥ) ,௧ାଵܫܲܥ … , ௧ି௅௖௣௜௅௖௣௜ܫܲܥ (௧ା௠ିଵܫܲܥ = ൫ܫܲܥ௧ି௅௖௣௜, ,௧ି௅௖௣௜ାଵܫܲܥ … , ܱ																																											 (6)																							௧ିଵ൯ܫܲܥ ௧ܲି௅௢௣௅௢௣ = (ܱ ௧ܲି௅௢௣, ܱ ௧ܲି௅௢௣ାଵ, … , ܱ ௧ܲିଵ) 
where ݉ = 1, 2, ݐ ;… = 1, 2, ݅݌ܿܮ ;… = 1, 2, … , ݌݋ܮ and ݐ = 1, 2, … , ݐ ,For CPI .ݐ = ݅݌ܿܮ + ݅݌ܿܮ,1 + 2,… and in case of OP, = ݌݋ܮ + 1, ݌݋ܮ + 2,… . For given values of  ݉, ,݅݌ܿܮ ݌݋ܮ ≥ 0 

and for ݁ > 0, OP does not strictly Granger cause CPI if: Pr൫‖ܫܲܥ௧௠ − ‖௦௠ܫܲܥ < ݁|	ฮܫܲܥ௧ି௅௖௣௜௅௖௣௜ − ௦ି௅௖௣௜௅௖௣௜ܫܲܥ ฮ < ݁, ฮܱ ௧ܲି௅௢௣௅௢௣ − ܱ ௦ܲି௅௢௣௅௢௣ ฮ < ݁൯= Pr൫‖ܫܲܥ௧௠ − ‖௦௠ܫܲܥ < ݁|	ฮܫܲܥ௧ି௅௖௣௜௅௖௣௜ − ௦ି௅௖௣௜௅௖௣௜ܫܲܥ ฮ < ݁൯																												(7) 
where Pr(.) denotes the probability and ∥∥ is the maximum norm. The conditional probability 

stated in the left side of equation 7 explains two arbitrary m-length lead vector of CPIt within a 

distance e of each other when corresponding Lcpi-length lag vectors of CPIt and Lop-length lag 

vectors of OPt are given. Likewise, the conditional probability given in the right side of 

equation 7 denote that two arbitrary m-length lead vectors of CPIt are within a distance e of 

each other where their corresponding Lcpi-length lag vectors within a distance e of each other 

are given. Hiemstra and Jones (1994) show that the following statistic has asymptotic normal 

distribution: 

√݊ ൬ܥଵ(݉ + ,݅݌ܿܮ ,݌݋ܮ ݁, ,݅݌ܿܮ)ଶܥ(݊ ,݌݋ܮ ݁, ݊) − ݉)ଷܥ + ,݅݌ܿܮ ݁, ,݅݌ܿܮ)ସܥ(݊ ݁, ݊) ൰~ܰ(0, ,݉)ଶߪ ,݅݌ܿܮ ,݌݋ܮ ݁)													(8) 
where ݊ = ܶ + 1 −݉ −max	(݅݌ܿܮ, (݌݋ܮ , and C1, C2, C3 and C4 are correlation integral 

estimators of the joint probabilities in equation 7. Also, ߪଶ is estimated using the theory of U-
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statistic for weakly dependent processes and has been measured by Denker and Keller (1983). 

This test statistic is applied to the estimated residuals of the bivariate VAR model using CPI 

and OP. The test statistic is used to examine the null hypothesis of nonlinearly and strictly 

Granger non-causation OP to CPI. As Hiemstra and Jones (1994) argue, this model has a very 

good power in estimating nonlinear Granger causal and non-causal relationships. 

Mackey and Glass (1977) first applied our parametric nonlinear model in describing a 

physiological control system using chaos theory, and since modified by Kyrtsou and Labys 

(2006). The test is similar to the linear Granger causality test. However, it contains the Mackey–

Glass model process with special parameters estimated using ordinary least squares method. In 

order to examine the existence of nonlinear causality between oil price changes and the CPI, 

we start with the following models:  ܫܲܥܦ௧ = ܱܦଵଵ൫ߙ ௧ܲିఛభ൯൫1 + ܱܦ ௧ܲିఛభϲభ ൯ିଵ − ܱܦଵଵߜ ௧ܲିଵ+ ௧ିఛమ൯൫1ܫܲܥܦଵଶ൫ߙ + ௧ିఛమϲమܫܲܥܦ ൯ିଵ − +௧ିଵܫܲܥܦଵଶߜ ܱܦ (9)																																																																																																											௧ݑ ௧ܲ = ܱܦଶଵ൫ߙ ௧ܲିఛభ൯൫1 + ܱܦ ௧ܲିఛభϲభ ൯ିଵ − ܱܦଶଵߜ ௧ܲିଵ+ ௧ିఛమ൯൫1ܫܲܥܦଶଶ൫ߙ + ௧ିఛమϲమܫܲܥܦ ൯ିଵ − +௧ିଵܫܲܥܦଶଶߜ  (10)																																																																																																									௧ߝ
 
where DCPIt and DOPt are the first differences of the CPI and OP, respectively, ߬ ,ଵ߬)ݔܽ݉	= ߬ଶ)  is the calculated integer delays, ϲ  is the constant and ݐ = ߬, ߬ + 1,… ,ܰ . The 

parameters ߙ and ߜ present the linear and nonlinear effects of the cause variables on dependent 

variables, respectively. Finally, the two error terms ut and εt are assumed to be N(0,1). We select 

the integer delays ߬௜ and constants ϲ௜ prior to the model estimation using the Schwarz criterion 

and likelihood ratio. If OP nonlinearly Granger-causes CPI, α11 should be significantly different 

from zero (the null hypothesis). Thus, we need to estimate Equation 9 first with no constraint 

and then with the constraint of zero value of α11. Assuming that ߴመ and ̂ߤ are the residuals of 

such unconstrained and constrained Mackey–Glass models, respectively. We then calculate a 

Fisher-distributed statistic as below: 

ܵி = (ܵ௖ − ܵ௨)/݊௖ܵ௨/(ܶ − ݊௨ − ,௖݊)ܨ~(1 ܶ − ݊௨ − 1)																																					(11) 
 

where ܵ௨ = ∑ መଶ௧்ୀଵߴ  , ܵ௖ = ∑ ଶ௧்ୀଵߤ̂ , nu=4 given the four parameters in the Mackey–Glass 

model and nc=1 as there is one parameter needed to be zero when estimating the constrained 

model. The parametric nonlinear causality test also applies to asymmetric cases. Thus, in order 
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to investigate the asymmetric nonlinear causation of OP to CPI, we can consider positive and 

negative values of OP, respectively. That is, (OPt, CPIt) is used as observation in the Mackey–

Glass process if ܱ ௧ܲିఛ ≥ 0 in case of studying nonlinear causation of positive OP’s to CPI. 

Conversely, negative changes of oil price may be used in studying the nonlinear causation of 

negative OP’s to CPI. It is worth noting that the whole mentioned symmetric and asymmetric 

procedure is repeated for Equation 10 to consider the nonlinear causation of CPI to OP.  

5   Empirical Results 

5.1   Panel linear causality tests 

Table 3 demonstrates the results of the Fisher-type ADF and IPS panel unit root tests. The test 

statistics reported in the first two rows of the table indicate that both the CPI and OP are 

integrated of order one. However, the IPS test statistic delivers stationary OP in trend while we 

justify Fisher-type ADF in preference to IPS. The second two rows of Table 3 outline such 

panel unit root tests for the first differences of the variables. The results reveal that the null 

hypothesis of no stationary existence is rejected in all of the cases with 99 percent level of 

confidence. Consequently, we employ the first difference of the variables. 

Now, we place the first difference of the variables in our bias-corrected LSDV model and 

simulate statistical significance of the coefficients by bootstrapping. It is worth noting that 

following Hamilton (2011), we primarily enter 24-month lags and choose the optimum lag 

order using Akaike Information Criterion (AIC). Table 4 details the results. As shown, it is 

evident that OP do not Granger-cause the CPI. Likewise, we cannot reject the null hypothesis 

of no causality running from the CPI to OP. This finding is consistent with Hooker (2002), 

LeBlanc and Chinn (2004), Barsky and Kilian (2004), Gregario et al. (2007), Bachmeier et al. 

(2008) and Chen (2009). 

5.2 Traditional linear causality tests 

Following our results in finding no evidence of panel linear causation between OP and the CPI, 

we now test such causation using a traditional country-specific causality test. As the test 

requires stationary data, we first consider the country-specific order of integration. Table 5 

indicates the results of the ADF, DF-GLS, and PP unit root tests. The results suggest that CPI 

and OP are integrated of order one. However, their first differences are stationary across all 

countries at the 99 percent level of confidence. Thus, we enter the first difference of the 

variables into the test.  

The results of the country-specific Granger causality tests, presented in Table 6, reveal that 

despite of rejecting the null hypothesis of no panel linear causation, OP fluctuations may affect 

the CPI in each country individually. However, while the test statistics are statistically 
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Table 3: Panel unit root test 

Variabl
e 

Fisher-type ADF IPS 
Constant Trend No trend Trend 

P-
statistic 

p-
value 

P-
statistic 

p-
value

t-bar 
p-

value
t-bar 

p-
value 

CPI 
OP 

DCPI 
DOP 

11.6928 
4.8110 

670.664
8 

720.873
1 

0.9262 
0.9998 

0.0000 
0.0000 

21.2389 
28.0935 

667.200
5 

720.873
1 

0.383
2 

0.107
2 

0.0000
0.0000

–
0.3102 

–
0.9054 

–
16.490

9 
–

12.851
8 

1.000
0 

0.989
8 

0.0000
0.0000

–
1.4195 

–
2.6777 

–
16.619

0 
–

12.839
6 

0.727
7 

0.000
0 

0.0000 
0.0000 

This table shows panel unit root test results. The null hypothesis is nonstationarity. The P-statistic 
has a chi-square distribution with 2N degrees of freedom and the t-bar statistic has a normal 
distribution.  

Table 4: Panel linear causality test 

 Net oil consuming countries Net oil producing countries 

Causality 

Test 
statistic 
(Chi-

square) 

p-
value 

Result 

Test 
statistic 
(Chi-

square) 

p-
value 

Result 

∆ܱܲ→ →ܫܲܥ∆ ܫܲܥ∆ ∆ܱܲ 

0.51 
0.86 

0.9730 
0.9299 

Non-
causality 

Non-
causality 

4.38 
1.94 

0.3569 
0.7471 

Non-
causality 

Non-
causality 

This table provides the results of panel linear causality tests. The null hypothesis is 
noncausality. P-values extracted from bootstrapping simulation. 

significant in all net oil-consuming countries, they are not in net oil producing countries. 

Furthermore, the results reported for the US, Italy and Canada are statistically significant at the 

99 percent level of confidence. Finally, other than Netherlands and Canada, the causation 

direction is unilateral across the other sample countries.  

To conduct further investigation of the subject and due to heterogeneous outcomes within 

panel and country-specific linear causality tests, we apply nonlinear causality tests in the next 

section. 
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5.3 Nonparametric nonlinear causality tests 

To implement our nonparametric nonlinear test, we first need assurance that the data are 

stationary. Table 5 reports the results, indicating that the first difference of the variables is 

integrated of order zero. Monte-Carlo simulations as conducted by Hiemstra and Jones (1994) 

suggest that the lead lengths = 1, the lag lengths = 1, …, 8, and ݁	 =  Estimating the model .ߪ1.5	

by entering such predetermined values, our nonparametric nonlinear test results are displayed 

in Table 7. The results indicate that OP have significant nonlinear causal effects on the CPI of 

three of the seven net oil-consuming countries and the three net oil-producing countries.  

The summary results for net oil-consuming countries are as follows. First, Germany and 

Sweden exhibit a strong nonlinear unilateral causation running from OP to the CPI. The test 

statistics are significant at the 99 percent level of confidence. Second, the nonlinear causation 

in the US is bilateral and statistically significant. Finally, there is a unilateral causation running 

from the CPI to OP, which is statistically significant at the 90 percent level of confidence in 

Denmark.  

In contrast, our net oil-producing sample countries display strong causal effects running 

from OP to the CPI. Canada exhibits a unilateral causation from the OP to the CPI at the 99 

percent level of confidence. Norway and Mexico display bilateral causality between the OP 

and the CPI at the 95 and 99 percent level of confidence, respectively. In short, our nonlinear 

 

Table 5: Time series unit root test 

Country 
ADF DF-GLS PP 

Level 
Fist 

difference
Level 

Fist 
difference

Level 
First 

difference 
Unit root test for CPI 
Brazil 
Denmark 
Germany 
Italy 
Netherlands 
Sweden 
US 
Canada 
Norway 
Mexico 
 
Unit root test for OP 

 
–2.099 
–1.647 
–1.556 

0.341 
–1.125 
–2.232 

0.548 
–1.488 
–1.108 

7.265 
 

–0.905 

–6.367*
–19.358*
–24.421*
–16.028*
–17.041*
–19.007*
–13.726*
–19.564*
–20.943*
–8.453*

–12.852*

 
–1.823 
–0.698 
–0.824 
–0.475 
–1.380 
–0.062 
–2.365 
–0.614 
–0.727 
–0.112 

 
–2.550** 

–5.977*
–16.697*
–13.203*
–7.635*

–17.815*
–15.154*
–13.863*
–12.414*
–15.091*
–8.322*

–4.422*

 
–1.426 
–1.750 
–1.545 

0.157 
–1.376 
–2.058 

0.363 
–1.309 
–1.123 

3.883 
 

–1.563 

 
–6.378* 

–19.098* 
–24.368* 
–17.147* 
–16.596* 
–18.862* 
–13.206* 
–19.665* 
–20.862* 
–8.417* 

 
–12.833*

This table provides country-specific unit root test results. The null hypothesis is nonstationarity. * and ** 
denote significance at the 1% and 10% levels, respectively. 
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Table 6: Traditional country-specific linear causality tests 

Causality 
∆ܱܲ →  ܫܲܥ∆

 

ܫܲܥ∆ → ∆ܱܲ 

Test statistic 
Test statistic (chi-

square) 

Brazil 
Denmark 
Germany 
Italy 
Netherlands 
Sweden 
US 
Canada 
Norway 
Mexico 

1.92*** 
2.78** 
1.95*** 
4.20* 
2.38** 
1.96*** 
3.92* 
4.14* 
1.23 
1.01 

0.81 
0.88 
1.52 
1.05 
1.87** 
0.99 
1.15 
1.85*** 
1.40 
0.80 

This table provides the results of country-specific linear Granger causality 
tests. The test statistic is F-distributed. The null hypothesis is noncausality. *, 
** and *** indicate significance at 1%, 5% and 10% levels, respectively. 

nonparametric causality test reveals that OP have statistically significant nonlinear effects on 

the CPI of some net oil-consuming countries and all net oil-producing countries. 

5.4 Parametric nonlinear causality tests 

To estimate the parametric nonlinear Mackey–Glass model, we first select the model 

parameters using the Schwarz criterion and likelihood ratio. The first and second columns of 

the results reported in Table 8 show that the lag-length periods from OP to the CPI vary from 

1 to 10 months for all countries. However, the CPI affects OP after only a month across all 

countries. The lag orders in Table 8 supply guidelines to policy decision makers regarding the 

time needed for the appearance of OP on the CPI. 

Now, we use the symmetric modified Mackey–Glass model to test whether OP cause the 

CPI nonlinearly. The test results presented in Table 9 display very weak evidence on the 

unidirectional nonlinear causation of OP to CPI. We reject the null hypothesis of no causation 

of OP to CPI in just two cases: Denmark (a net oil consumer) and Canada (a net oil  producer). 

Furthermore, there is no evidence to prove that the CPI causes oil price changes nonlinearly. 

This finding is in conjunction with Hooker (2002), LeBlanc and Chinn (2004), Barsky and 

Kilian (2004), Gregario et al. (2007), Bachmeier et al. (2008) and Chen (2009). 
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Table 7: Hiemstra–Jones nonlinear causality test 

 OP →CPI CPI →OP  OP →CPI CPI →OP 
Lags CS TVAL CS TVAL Lags CS TVAL CS TVAL 
Brazil 
1 
2 
3 
4 
5 
6 
7 
8 
 
Denmark 
1 
2 
3 
4 
5 
6 
7 
8 
 
Germany 
1 
2 
3 
4 
5 
6 
7 
8 
 
Italy 
1 
2 
3 
4 
5 
6 
7 
8 
 
Netherlands 
1 
2 
3 
4 
5 
6 
7 
8 

 
0.0001 

–0.0040 
–0.0215 
–0.0374 
–0.0668 
–0.0675 
–0.0675 
–0.0632 

 
 

0.0274 
0.0485 
0.0685 
0.0631 
0.0560 
0.0531 
0.0435 
0.0440 

 
 

0.0293 
0.0603 
0.0923 
0.1144 
0.1409 
0.1632 
0.1675 
0.1528 

 
 

0.0224 
0.0525 
0.0549 
0.0528 
0.0431 
0.0480 
0.0412 
0.0424 

 
 

0.0336 
0.0320 
0.0404 
0.0385 
0.0394 
0.0388 
0.0285 
0.0238 

 
0.0020 

–0.0625 
–0.3361 
–0.5830 
–1.0394 
–1.0473 
–1.0451 
–0.9768 

 
 

0.4896 
0.8643 
1.2186 
1.1209 
0.9928 
0.9404 
0.7681 
0.7754 

 
 

0.5225 
1.0743 

1.6414* 
2.0314*** 
2.4977*** 
2.8875*** 
2.9585*** 
2.6944*** 

 
 

0.3987 
0.9356 
0.9757 
0.9364 
0.7631 
0.8497 
0.7277 
0.7478 

 
 

0.5999 
0.5701 
0.7178 
0.6834 
0.6981 
0.6865 
0.5038 
0.4197 

 
–0.0113 
–0.0160 
–0.0161 
–0.0176 
–0.0250 
–0.0297 
–0.0297 
–0.0345 

 
 

0.0242 
0.0359 
0.0485 
0.0561 
0.0593 
0.0681 
0.0868 
0.0906 

 
 

0.0124 
0.0220 
0.0175 

–0.0051 
–0.0422 
–0.0734 
–0.0882 
–0.1034 

 
 

0.0231 
0.0292 
0.0213 
0.0041 
–0.014 

–0.0209 
–0.0078 
0.0062 

 
 

0.0052 
0.0092 
0.0083 

–0.0014 
–0.0042 
–0.0170 
–0.0292 
–0.0466 

 
–0.1782 
–0.2509 
–0.2518 
–0.2752 
–0.3889 
–0.4612 
–0.4603 
–0.5341 

 
 

0.4323 
0.6399 
0.8624 
0.9963 
1.0520 
1.2059 

1.5334* 
1.5984* 

 
 

0.2218 
0.3929 
0.3120 

–0.0911 
–0.7486 
–1.3000 
–1.5591 
–1.8250 

 
 

0.4120 
0.5202 
0.3802 
0.0742 

–0.2609 
–0.3713 
–0.1378 
0.1105 

 
 

0.0942 
0.1654 
0.1480 

–0.0256 
–0.0745 
–0.3016 
–0.5164 
–0.8233 

Sweden 
1 
2 
3 
4 
5 
6 
7 
8 
 
US 
1 
2 
3 
4 
5 
6 
7 
8 
 
Canada 
1 
2 
3 
4 
5 
6 
7 
8 
 
Norway 
1 
2 
3 
4 
5 
6 
7 
8 
 
Mexico 
1 
2 
3 
4 
5 
6 
7 
8 

 
0.0250 
0.0412 
0.0606 
0.0833 
0.0957 
0.1107 
0.1231 
0.1262 
 
 
0.0662 
0.0915 
0.0997 
0.0949 
0.0791 
0.0562 
0.0365 
0.0196 
 
 
0.0424 
0.0605 
0.0991 
0.1186 
0.1235 
0.1135 
0.0923 
0.0785 
 
 
0.0457 
0.0783 
0.0966 
0.0883 
0.0759 
0.0564 
0.0340 
0.0309 
 
 
0.0254 
0.0625 
0.0977 
0.1102 
0.1070 
0.1012 
0.1058 
0.1165 

0.4457 
0.7337 
1.0765 
1.4777*** 
1.6965** 
1.9583** 
2.1738*** 
2.2251*** 

1.1813 
1.6298* 
1.7722** 
1.6846** 
1.4018* 
0.9949 
0.6456 
0.3462 

0.7567 
1.0774 
1.7615** 
2.1047*** 
2.1895*** 
2.0089*** 
1.6310** 
1.3849* 

0.8155 
1.3937 
1.7182** 
1.5680* 
1.3455* 
0.9977 
0.6006 
0.5450 

0.4538 
1.1135 
1.7378** 
1.9566*** 
1.8970** 
1.7898** 
1.8682** 
2.0552*** 

 
–0.0023 
  0.00334 
  0.0228 
  0.0250 
  0.0139 
–0.0090 
–0.0276 
–0.0357 
 
 
0.0409 
0.0822 
0.0979 
0.1109 
0.1177 
0.1184 
0.1062 
0.0991 
 
 
0.0148 
0.0275 
0.0524 
0.0652 
0.0484 
0.0310 
0.0233 
0.0264 
 
 
0.0202 
0.0633 
0.1004 
0.1121 
0.1097 
0.1119 
0.1054 
0.0976 
 
 
0.0033 
0.0225 
0.0361 
0.0490 
0.0543 
0.0870 
0.1257 
0.1670 

 
–0.0418 
  0.0595 
  0.4054 
  0.4452 
  0.2478 
–0.1609 
–0.4887 
–0.6305 
 
 
0.7295 
1.4644* 
1.7418** 
1.9698*** 
2.0873*** 
2.0952*** 
1.8775*** 
1.7477** 
 
 
0.2640 
0.4904 
0.9315 
1.1574 
0.8578 
0.5490 
0.4132 
0.4669 
 
 
0.3605 
1.1280 
1.7854** 
1.9908*** 
1.9441** 
1.9800*** 
1.8626** 
1.7228** 
 
 
0.0602 
0.4010 
0.6419 
0.8709 
0.9627 
1.5405** 
2.2207*** 
2.9465*** 

CS and TVAL denote the difference between the two conditional probabilities and the standardized test 
statistic, respectively. *, ** and *** denote significance at the 1%, 5% and 10% levels, respectively. Canada, 
Norway, and Mexico are net oil producing countries and the remainder are net oil consuming countries. 
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Table 8: Parameter-prior selection in the Mackey−Glass model 

Country ߬ଵ ߬ଶ ϲ1 ϲ2 
Brazil 
Denmark 
Germany 
Italy 
Netherlands 
Sweden 
US 
Canada 
Norway 
Mexico 

1 
10 
1 
2 
9 
6 
2 
1 
8 
1 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

2 
1 
1 
1 
1 
1 
1 
1 
1 
2 

1 
1 
1 
1 
3 
1 
2 
1 
1 
2 ߬ଵ and ߬ଶ are the optimal integer delay variables for causality from OP to CPI 

and for causality from CPI to OP, respectively. ϲ1 and ϲ2 are the powers of the 
lagged values of OP and CPI, respectively. 

 

Table 9: Symmetric nonlinear causality test 

Country 
H0: OP does not cause CPI H0: CPI does not cause OP 
F-statistic Probability F-statistic Probability 

Brazil 
Denmark 
Germany 
Italy 
Netherlands 
Sweden 
US 
Canada 
Norway 
Mexico 

0.6180 
–11.9473 

1.6002 
2.2219 
1.9388 
2.0887 

–0.0616 
3.8751 
1.6377 
0.0121 

0.4325 
0.0006 
0.2067 
0.1370 
0.1647 
0.1493 
0.8040 
0.0498 
0.2015 
0.9123 

0.2420 
–0.6238 

0.1330 
–0.7420 

0.8106 
0.1125 

–0.7957 
1.0860 
0.1022 
0.2106 

0.6231 
0.9801 
0.7155 
0.3896 
0.3685 
0.7374 
0.3730 
0.2981 
0.7493 
0.6465 

This table provides the results of symmetric nonlinear Mackey–Glass causality test. The 
null hypothesis is noncausality. F-statistic is Fisher-distributed with N–4 and N–1 degrees 
of freedom.  

To test the assumption of asymmetric nonlinear effects of OP on CPI, we run the asymmetric 

version of the Mackey–Glass model. Tables 10 and 11 display the results. The tables indicate 

that unidirectional causation of OP to CPI is asymmetric in the case of Denmark and Canada. 

That is, only positive changes in OP cause movements in the CPI of these two countries. In 

short, the results of the parametric nonlinear causality test supplies only very weak evidence on 

OP causing changes in the CPI.  
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Table 10: Asymmetric nonlinear causality test for negative changes of the 
causing variable 

Country 
H0: OP does not cause CPI H0: CPI does not cause OP 
F-statistic Probability F-statistic Probability 

Brazil 
Denmark 
Germany 
Italy 
Netherlands 
Sweden 
US 
Canada 
Norway 
Mexico 

0.3421 
–0.9473 
–0.2022 
–0.5081 

0.3744 
0.4780 

–0.9760 
0.8972 

–1.6051 
0.2038 

0.5599 
0.3397 
0.6564 
0.4820 
0.5457 
0.4951 
0.3248 
0.3519 
0.2159 
0.6523 

NA 
–0.1335 
–0.0521 

0.1780 
0.0679 

–1.0342 
–0.3397 
–0.8839 

0.3488 
–0.3647 

NA 
0.7158 
0.8200 
0.6947 
0.7949 
0.3122 
0.5637 
0.3511 
0.5567 
0.5593 

This table provides the results of Mackey–Glass nonlinear causation of negative changes 
of OP to CPI. Fisher-statistic is F-distributed with N–4 and N–1degree of freedom. 

  

Table 11: Asymmetric nonlinear causality test for positive changes in the causing 
variable 

Country 
H0: OP does not cause CPI H0: CPI does not cause OP 
F-statistic Probability F-statistic Probability 

Brazil 
Denmark 
Germany 
Italy 
Netherlands 
Sweden 
US 
Canada 
Norway 
Mexico 

–0.5849 
–11.7646 

1.9928 
1.7840 
0.4141 
2.0311 
0.6457 
6.2296 
1.6441 

–0.2130 

0.4456 
0.0006 
0.1591 
0.1827 
0.5203 
0.1551 
0.4227 
0.0131 
0.2007 
0.6449 

0.2506 
–0.4070 

0.3308 
–0.4052 

0.9672 
1.1013 
3.0407 
1.5443 
0.7199 
0.2194 

0.6171 
0.5240 
0.5657 
0.5249 
0.3264 
0.2950 
0.0823 
0.2151 
0.3970 
0.6398 

This table provides the results of Mackey–Glass nonlinear causation of positive changes of 
OP to CPI. F-statistic is Fisher-distributed with N–4 and N–1 degrees of freedom. 

6   Conclusions 

In this paper, we compare the causal relationships between oil price movements and consumer 

costs of living in net oil-consuming and net oil-producing countries. First, we specify countries 

as net oil-consumers or producers so that we reflect the interrelationship between domestic oil 
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production and consumption and international oil exports and imports. Second, we implement 

two types of linear Granger causality tests including panel and country-specific. Our bias-

corrected panel linear causality test supplies no evidence on the causal effects of oil price 

changes on consumers’ cost of living. Following the assumption of country-specific effects of 

global oil price changes, we conduct country-specific linear causality tests. As opposed to the 

panel test results, we find evidence that country-specific linear causality running from oil prices 

to consumer prices in net oil-consuming countries is stronger than in net oil-producing 

countries.  

Finally, due to weakness of linear models in finding all possible linkages within economic 

and financial variables, we employ two powerful nonlinear causality tests. Whereas the 

parametric test rejects the existence of any nonlinear causal effects of oil prices on consumer 

prices across the sample countries with the exception of Denmark and Canada, the 

nonparametric test displays evidence of strong causality in all net oil producing and three of the 

seven net oil-consuming countries. The significant test results using the parametric model are 

also asymmetric.  

Consequently, the results of our comparative study show that oil prices affect consumer 

prices in both net oil-consuming and net oil-producing countries. The nature of these effects is 

mostly linear in net oil-consuming countries and generally nonlinear in net oil-producing 

countries. The shorter lag lengths in net oil-producing countries also indicate that efficient 

policy decisions have a shorter deadline in these countries in avoiding the unwanted effects of 

increasing oil prices.  

Although we find significant nonlinear causation, mainly running from oil prices to 

consumer prices, we note two important points. Firstly, the nonlinear models we apply provide 

no guidance on the source of these nonlinearities. For this, we may need specific parameterized 

structural models. Second, b it is not possible to determine whether the significant nonlinear 

predictive power is evidence of positive or negative nonlinear causality. Beside the evidence 

that nonlinear models supply, linear causality tests may provide an incorrect assessment of the 

true relationship between oil prices and monetary aggregates, which are of nonlinear nature 

with respect to our results, and may suggest misleading policy actions.  

For further study, we recommend an even more powerful statistical test, which accounts for 

not only nonlinearity, asymmetry and time-variations, but also the conditional 

heteroscedasticity in the VAR model’s variances. Additionally, consideration of domestic oil 

prices is highly recommended. Finally, it would be interesting to consider the effects of oil price 

changes on the components of general consumer prices. 
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