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The issue of market efficiency attracted the attention of academicians since the existence 
of financial markets. Over time, two schools of thoughts were established: the efficient 
markets school and the behavioral finance school. Proponents of the former believed in 
the Efficient Markets Hypothesis whereas the latter brought evidence from behavioral 
finance and psychology to demonstrate that financial markets are inefficient and this 
inefficiency is attributed to irrational behavior of investors in making financial choices 
regarding asset allocation and portfolio construction. Recently, an adaptive reconciliation 
was suggested, which posits that investors’ adaptability is what brings back inefficient 
markets to efficiency. The purpose of this paper is to test empirically the validity of the 
Adaptive Markets Hypothesis via a smooth transition regression model with market-to-
book ratio as exogenous threshold variable. The results support the reconciliation and 
show that markets are indeed efficient sometimes and inefficient most of the time. 
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1  Introduction 

Academicians have had interests in studying and understanding the behavior of financial time 

series data since the existence of financial markets. Over time, two schools of thoughts were 

established: the efficient markets school and the behavioral finance school. Proponents of the 

former believed in the Efficient Markets Hypothesis (EMH), which posits that capital markets 

are ideal in the sense that, at any point in time, asset prices in any market fully reflect all 

available information. The latter school, on the other hand, brought evidence from behavioral 

finance and psychology showing that investors, especially retail traders, exhibit irrational 

behavior in making investment decisions, i.e., asset allocation and portfolio construction, which 

can explain the observed violations of the EMH in capital markets. Andrew Lo (2004) surveyed 
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the literature on the debate between the advocates of the EMH and behavioral finance and 

suggested a reconciliation between both approaches. His reconciliation hypothesis, which he 

called "the Adaptive Markets Hypothesis (AMH)," posits that market inefficiency is due to 

irrational behavior of investors. But since investors adapt to the changing environment, their 

adaptability over time brings the market back to efficiency. Basically, Lo’s AMH posits that 

financial markets transition between episodes of inefficiencies, but the adaptability of its 

participants continuously forces them to revert back to efficiency. The objective of this paper 

is to test the empirical validity of the AMH via regime switching models. In particular, we 

employ the logistic smooth transition regression model of order 1 (LSTR(1)) pioneered by 

Granger and Teräsvirta (1993) and Teräsvirta (1994). The LSTR(1) model is best suited here 

for it is capable of describing processes that can move from one regime to another such that the 

transition is smooth. Since the AMH suggests a switching behavior between episodes of 

efficiencies and inefficiencies in capital markets, then by applying such a model to a rate of 

return of a market price index, denoted by ݎ௧  in the text, one can capture the switching behavior, 

if it exists, of ݎ௧ between these episodes. Moreover, the degree of smoothness of this switching 

behavior can be taken to reflect the speed of the adaptability process, i.e., how fast investors 

react to financial news; a smooth transition reflects a slower steady adaptability whereas an 

abrupt transition from one regime to another is indicative of a faster and more swift adaptability 

to financial news or shocks. 
The selection of the transition variable in the LSTR(1) model is crucial as it explains the 

dynamics of ݎ௧, i.e., it explains how the market rate of return moves from one regime to another. 

The convention in the regime switching literature is to use a lag order autoregressive component 

of the dependent variable, i.e., ݎ௧ିௗ, where ݀ is a delay parameter, as the transition variable. 

However, the AMH suggests that the transition variable that governs the regime switching 

behavior of ݎ௧ ought to be an exogenous variable that captures investors’ reactions to financial 

news. It turns out that the best exogenous variable that captures the dynamic of ݎ௧ is the one 

period lag of the first difference of the market-to-book (M/B) ratio, denoted by Δ ቀெቁ௧ିଵ in the 

text. This makes sense intuitively since all available market information are reflected in the 

price of the market index, which in turn, is captured by the M/B ratio. Thus, changes in M/B 

ratio in period ݐ − 1 have an impact on the market rate of return in period ݐ. Our statistical 

analysis confirms that Δ ቀெቁ௧ିଵis indeed the best transition variable in the fitted STR model 

that is capable of capturing the dynamic of ݎ௧. 
The paper is organized as follows: Section 2 describes the data set, introduces the STR 

model, and explains the rationale behind using Δ ቀெቁ௧ିଵ as an exogenous threshold variable. 

Section 3 summarizes the empirical results, and Section 4 concludes. 
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2  Regime Switching in the S&P500 

The market rate of return studied in this paper is the Standard and Poor (S&P500) index over 

the period between the fourth quarter of 1969 and the second quarter of 2014. A plot of the 

index rate of return, ݎ௧, which is defined as ݎ௧ = శభି࢚  , where ௧ܲ is the end-of-quarter closing 

price of the S&P500 composite index taken from Compustat and Center of Research on 

Security Prices (CRSP) merged file data base, is depicted in the top panel of Figure 1. The 

transition variable is the first difference of the one-period lag of the market-to-book ratio, Δ ቀெቁ௧ିଵ , which is defined as Δ ቀெቁ௧ିଵ = ቀெቁ௧ିଵ − ቀெቁ௧ିଶ , where ܯ௧, the market value in 

period ݐ, is computed as the sum of all shares outstanding for asset ݅ times the quarter closing 

price of asset ݅, for all assets included in the index in period ݐ, and ܤ௧, the book value in period ݐ, is the sum of shareholder's equity for all assets included in the index in period ݐ. The transition 

variable Δ ቀெቁ௧ିଵ is depicted in the bottom panel of Figure 1.1 

The rationale behind using the M/B ratio as an exogenous transition variable in the STR 

model is that it is determined by the closing prices of all stocks in its composition. And since 

stock prices reflect all market information, the M/B ratio is an excellent candidate that can 

capture investors’ reactions to financial news as reflected in the continuous changes in stock 

prices. A quick survey of the literature confirms this rationale: financial ratios that have market 

prices in their definitions seem to have explanatory power in explaining the variation of the 

expected rate of return on a market portfolio. For instance, in the context of the Capital Asset 

Pricing Model (CAPM), Basu (1977) discovered an earning-to-price (E/P) ratio effect. In 

particular, Basu showed that when common stocks are sorted on E/P, future returns on high E/P 

stocks are higher than predicted by CAPM. Banz (1981) reported a size effect; when stocks are 

sorted on market capitalization, average returns on small stocks are higher than predicted by 

CAPM. Bhandari (1988) reported a leverage effect; high debt-to-equity ratios are associated 

with returns that are too high relative to their market betas. Statman (1980) and Rosenberg, 

Reid, and Lanstein (1985) showed that stocks with high book-to-market equity ratios have high 

average returns than the returns suggested by their beta coefficients. Recently Fama and French 

(1992, 1993) and Pontiff and Schall (1998) confirmed the ability of the M/B ratio to predict 

market returns. These authors also acknowledged the predictive ability of other factors such as 

dividend yields or bond variables, e.g., default spread and yield to default. After experimenting 

with all the pervious suggested ratios, the statistical and empirical analysis showed that the M/B 

ratio is the best exogenous transition variable that is capable of capturing the nonlinear (regime 

                                                 
1 The quarterly data on closing prices, shares outstanding, and shareholder’s equity of all underlying 

constituents of the S&P500 since 1969 was used to construct the M/B ratio using the following two 
guidelines: (1) any asset that was not included in the S&P500 in period ݐ, i.e., quarter ݐ, was dropped 
from the data set. (2) Any asset that showed no value for either its stock price or the shareholder’s equity 
or the number of shares outstanding was also dropped from the computations. 
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switching) dynamic of the S&P500 rate of return. In particular, the statistical analysis either 

didn’t reject the null hypothesis of linearity in market return when one of these factors was used 

as an exogenous threshold variable or rejected the null hypothesis of linearity, but the estimated 

model didn’t pass the diagnostic tests. The model against which the rejection, measured in p-

value, was the strongest was the STR model with M/B ratio as threshold variable. 

Figure 1: The quarterly rates of return on the S&P500 and the first difference of the one-
period lag of the market-to-book ratio between 1969:Q4 and 2014:Q2. 

 
 
A quick look at Figure 1, one can notice that the transition variable is capable of capturing every 

bear and bull episode of the S&P500 over the given period. For instance, the crash of 1969-

1970 that resulted from the drop in consumer confidence as a result of the high inflation and 

the increased deficits from the Vietnam War is reflected in the two swings in the transition 

variable, i.e., Δ ቀெቁ௧ିଵ, during the few quarters between 1969 and 1970. The financial crash of 

1974 that followed the OPEC oil embargo in 1973 is well noticed in the downfall of the S&P500 

returns as shown in the upper panel of Figure 1. This swing is also captured by the transition 

variable in the lower panel. The crash of 1987, which followed the contractionary monetary 

policy adopted by the Federal Reserve in 1986 to combat inflation, is also picked up by the 

Quarterly rates of return of S&P500 from 1969:Q4 to 2014:Q2 as dependent variable
1968 1971 1974 1977 1980 1983 1986 1989 1992 1995 1998 2001 2004 2007 2010 2013

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3
RETURNS

Quarterly first difference of the lag of M/B from 1969:Q4 to 2014:Q2 as transition variable
1969 1972 1975 1978 1981 1984 1987 1990 1993 1996 1999 2002 2005 2008 2011 2014

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

1.25
MTB_LAG_D1



FAHMY     Testing the Adaptive Market Hypothesis 
 

 173

transition variable. The so-called "Dot-Com bubble" effect that caused the clear downfall of the 

S&P500 in the second half of 2002 as shown in the upper panel of Figure 1 was also captured 

by the M/B ratio as shown from the down spike in 2001. The recent Housing Bubble that 

bursted in 2008 is also clearly captured by the transition variable. The M/B ratio also seems to 

capture the bull episodes in the S&P500 quite well, and thus, acts as a good transition variable 

in the STR model. 

Before we proceed to the empirical analysis, a few words regarding the STR model 

employed in this paper are in order. STR models have been used extensively in the regime 

switching literature. For a recent review, see Fahmy (2014) and the references therein.2 

In a compact notation, the standard STR model of order  is expressed as follows. ݎ௧ = ᇱ࢘௧ + દᇱ࢘௧G(ݏ௧; ,ߛ (ࢉ + ε௧, ݐ = 1, … , ܶ,																																					(1)	
where ݎ௧ is the market rate of return at time ࢘ ,ݐ௧ᇱ = ൫1, ,௧ିଵݎ … , ௧ି൯,  ᇱݎ = ൫ߚ, ,ଵߚ … ,  ,൯ߚ
and દᇱ = ൫ߠ, ,ଵߠ … , ൯ߠ , are parameter vectors, ε௧ ∼ ݅. ݅. ݀. (0, (ଶߪ , and G(ݏ௧; ,ߛ (ࢉ  is a 

bounded (between 0 and 1) transition function of the continuous transition variable ݏ௧, which 

will be taken to be Δ ቀெቁ௧ିଵ, and continuous everywhere in the parameter space for any value 

of ݏ௧. The transition function G(∙) is a logistic function defined in general as 

G(ݏ௧; ,ߛ (ࢉ = ቌ1 + exp ൝−ߛෑ(ݏ௧ − ܿ)
ୀଵ ൡቍିଵ , ߛ > 0,																						(2)	

where γ is the slope of the function, and ࢉ = (cଵ, … , c)ᇱ is a vector of location parameters such 

that cଵ ≤ cଶ ≤ ⋯ ≤ c. Given such definition, the STR model defined in (1) is then referred to 

as the logistic smooth transition regression (LSTR) model. 

The transition function in (2)  is a monotonically increasing function of the transition 

variable s௧ . The restrictions ߛ > 0  and cଵ ≤ cଶ ≤ ⋯ ≤ c  are identifying restrictions. The 

choice of ݇ determines the behavior of the logistic transition function. Two common choices 

for ݇ are used in the literature: ݇ = 1 and ݇ = 2. In the LSTR model with ݇ = 1 (LSTR(1)), 

the parameters vectors change monotonically as a function of s௧ from  to  + દ. This reflects 

the capability of the LSTR(1) model to characterize processes whose dynamic properties are 

different in an upper regime from what they are in a lower regime such that the transition 

                                                 
2 It is worth mentioning that regime switching can also be modelled in the variance of ݎ௧ ; threshold 

(G)ARCH and STR-(G)ARCH models are good candidates for capturing the asymmetric response of 
asset returns to external shocks. In the preliminary stage of writing this paper, we experimented with 
such models. They, however, didn’t yield significant estimates. Modelling nonlinearity in the mean 
equation of ݎ௧ via STR models was found to be a better alternative. 
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between the two regimes is smooth. The LSTR model with ݇ = 2 give rise to three regimes; 

two outer regimes and a middle one. Our results show, as we will see shortly, that the logistic 

function in the fitted STR model to the market rate of return is of order 1. This means that the 

market rate of return displays two distinct inefficient regimes; a lower inefficient regime where 

market price is below its book value (undervalued) and an upper inefficient regime where 

market price is above its book value (overvalued). But, since the transition from one inefficient 

regime to another as entailed by the LSTR(1) model suggests that the market index passes 

briefly by an episode of efficiency where market price is close to its book value, then one can 

also take this swift transition as indicative of a third efficient regime in between. The market 

price doesn’t, however, persist in this efficient regime due to irrational behavior of market 

participants (especially retail investors) in response to financial news and other exogenous 

shocks. This is consistent with the adaptability process entailed by the AMH. 

The logistic function of order 1 takes the form G(ݏ௧; ,ߛ ܿ) = (1 + expሼ−ݏ)ߛ௧ − ܿ)ሽ)ିଵ, ߛ > 0.																																					(3)	
Notice that when ݏ௧ ⟶ −∞, G(⋅) = 0; this defines the lower regime, whereas when ݏ௧ ⟶ +∞, G(⋅) = 1 and the time series is said to be in an upper regime.  

In order for the series under consideration to be able to fluctuate between the two upper and 

lower (inefficient) regimes, they need to have some sort of mean reversion mechanism, and 

hence, they ought to be stationary. The stationarity of ݎ௧ and Δ ቀெቁ௧ିଵ is confirmed at the 5% 

level of significance by the ADF, PP, and KPSS tests as shown from Table 1. This is consistent 

with our hypothesis that the market rate of return is pushed by changes in its market-to-book 

value from one inefficient regime to another passing by a brief episode of efficiency. 

3  Empirical Results 

Following the modelling framework proposed by Granger and Teräsvirta (1993), Teräsvirta 

(1994), and Eitrheim and Teräsvirta (1996), which consists of three stages, we begin by 

specifying an adequate linear ܴܣ(݉) model for ݎ௧, where m is the value that minimizes the 

Akaike (1974) information criterion (AIC). Before accepting the suggested ܴܣ(݉) model as 

the starting point of the regime switching analysis, preliminary diagnostic tests should be 

applied to the preliminary model in order to ensure its adequacy as a starting linear model. In 

particular, the Ljung-Box (1978) test of no serial correlation of order ݍ = 1 up ݍ = 4 in the 

residuals and Engle’s (1982) Lagrange multiplier (LM) test of no autoregressive conditional 

heteroskedasticity (ARCH) of order ݒ = 1 up to ݒ = 4 in the residuals are considered. 
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Table 1: The stationarity of the Standard and Poor returns and the first difference of the 
market-to-book ratio over the period between 1969 and 2014. 

Time Series ADF(k) PP KPSS ݎ௧ -10.56(1) -15.51 0.08 Δ ൬ܤܯ൰௧ -9.66(1) -12.42 0.09 

The AIC for ݎ௧ was minimized at a lag order ݉ = 1, and therefore, the preliminary linear model 

for the nonlinearity analysis was an (1)ܴܣ model. The results of the estimated preliminary (1)ܴܣ model and the previous misspecification tests are summarized as follows: ݎ௧ = 0.02(.) + 0.087(.) ௧ିଵݕ + ොܽ௧,	
ܳ(1) 		= 0.96, ܳ(8) = ோு(ଵ)ܯܮ	,0.76 	= ோு(ସ)ܯܮ						,0.21 	= 		ܤܬ	,0.09 = 0.08,									݇ଷ = −0.46,												݇ସ = 3.64,	

where ොܽ௧ is the series of residuals, ݇ଷ and ݇ସ are skewness and kurtosis respectively,	ܳ(ݍ) is 

the p-value of the Ljung-Box (1978) test, ܤܬ is the p-value of the Jarque-Bera (1987) test of 

normality, and the figures in parentheses beneath the estimated parameters are the standard 

errors. Judging by the p-value of the Ljung-Box (1978) test, the null hypothesis of no serial 

correlation of order ݍ = 1 up to ݍ = 8 in the residuals series was not rejected at the 5% level 

of significance. Also, judging by the p-value of Engle's (1982) test, the null hypothesis of no 

ARCH of order ݒ = 1 up to ݒ = 4 was not rejected at the 5% level of significance. Finally, the 

null hypothesis of normality of errors was not rejected at the 5% level of significance as seen 

from the p-value of the ܤܬ test. Judging by the previous tests, the (1)ܴܣ model passes all 

preliminary diagnostic tests and can act as a good starting model for the nonlinearity analysis. 

The next step in the specification stage is nonlinearity testing. The null hypothesis of 

linearity, denoted by ܪ in the text, is tested against the alternative of a nonlinear STR model. 

We shall adopt the nonlinearity test suggested by Teräsvirta (1994) and Luukkonen et al (1988), 

which is basically an LM test with an asymptotic F distribution when ܪ is valid. The authors 

also suggested a sequence of F tests, denoted by ܨଶ ଷܨ , , and ܨସ  in the text, to choose an 

appropriate type of STR model, i.e., LSTR(1) or LSTR(2). In summary, the purpose of 

nonlinearity testing is twofold: First, it allows the researcher to identify which transition 
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variable, in a set of transition candidates, is suitable for the STR model. Second, the F-tests 

procedure identifies what type of STR model fits the data best, i.e., LSTR(1) or LSTR(2).3 

The convention in the regime switching literature is to specify a set of candidate transition 

variables, e.g., time trend, autoregressive lags of the dependent variable, or other sensible 

exogenous threshold variables, and repeat the nonlinearity test for each transition candidate in 

the transition set. If the null hypothesis of linearity, ܪ, using the F test, denoted by ܨ in the 

text, is rejected for at least one of the models, the model against which the rejection, measured 

in the p-value, is strongest is chosen to be the STR model to be estimated. Although, our earlier 

proposition suggested that Δ ቀெቁ௧ିଵ is the potential transition variable in the STR model, for 

the sake of completeness, we performed the nonlinearity test for a time trend, one period lag of ݎ௧, and for Δ ቀெቁ௧ିଵ . The model against which the rejection was strongest was the STR model 

with Δ ቀெቁ௧ିଵ as threshold variable and the selected STR model was the LSTR(1) model as 

shown from the nonlinearity tests results in Table 2. 

After determining the transition variable and the type of the STR model, the next step is 

estimation. The parameters of the STR model in (1) are estimated using conditional maximum 

likelihood. The log-likelihood function of the STR model is 

݈(, દ, ,ߪ ,ߛ ܿ) = −12 ln(2ߨ) − 12 ln(ߪଶ) − ൛ݎ௧ − ൫ᇱ + દᇱG(ݏ௧; ,ߛ ܿ)൯࢘௧ൟଶ2ߪଶ .																				(4) 
 

Conditional on starting values of the parameters, the log-likelihood function in (4) is maximized 

using the iterative Broyden-Fletcher-Goldfarb-shanno (BFGS) algorithm. Finding good starting 

values is important for the algorithm to work properly 
 
Table 2: P-values of the linearity F-tests sequence applied to the Standard and Poor one-

period lag rate of return, a time trend, and the first difference of the one-period lag 
market-to-book ratio as exogenous transition variables. ݏ௧ ܨ ₂ܨ ₃ܨ ₄ܨ Suggested 

Model ݎ௧ିଵ 9.51 × 10ିଶ 4.24 × 10ିଵ 5.71 × 10ିଵ 1.97 × 10ିଶ Linear Trend 9.78 × 10ିଵ 6.92 × 10ିଵ 8.27 × 10ିଵ 9.76 × 10ିଵ Linear Δ ൬ܤܯ൰௧ିଵ 
9.67 × 10ିଷ 1.81 × 10ିଶ 3.64 × 10ିଶ 3.37 × 10ିଵ LSTR(1) 

                                                 
3 The nonlinearity test for the STR model and the selection criterion are described in detail in Teräsvirta 

(1994). 
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 Starting values are obtained by constructing a grid in ߛ and ܿ, estimating the parameter vectors  and દ conditionally on (ߛ, ܿ) for ݇ = 1 (LSTR(1) model), and computing the sum of squared 

residuals. The parameter values that correspond to the minimum of that sum are taken as the 

starting values.4 

The last stage in the modelling cycle is the diagnostic stage, where the adequacy of the fitted 

model is considered. The misspecification tests for the STR models that have been considered 

in Eitrheim and Teräsvirta (1996) and Teräsvirta (1998) will be considered in this paper. In 

particular, three tests will be considered. The first test is an LM-type test of no error 
autocorrelation of order ݒ . The p-value of the test is denoted by ܯܮ்ை(௩) . The second 

diagnostic test is Engle’s (1982) Lagrange multiplier (LM) test of no autoregressive conditional 

heteroskedasticity (ARCH) of order ݍ = 1 up to ݍ = 4 in the residuals. The last diagnostic test 

is a parameter constancy test, where the null hypothesis of parameter constancy in the STR 

model is tested against non-monotonic change, non-monotonic symmetrical change, and non-

monotonic and non-symmetrical change with p-values denoted by ܲ1ܥ 2ܥܲ , , and ܲ3ܥ 

respectively. 

The fitted LSTR(1) model and the results of Eitrheim and Teräsvirta (1996) and Teräsvirta’s 

(1988) misspecification tests are reported as follows: 

௧ݎ = 0.32(.ଽ଼)ݎ௧ିଵ + ൬0.034(.ଽ) − 0.54(.ଵହ)ݎ௧ିଵ൰൮1 + exp൞−241(ଶ) ൮Δ ቀܤܯቁ௧ିଵ − 0.03(.ଷସ)0.18 ൲ൢ൲ିଵ + 	,௧̂ߝ
ො/ߪ		 	= 0.18, ොߪ = ோு(ଵ)ܯܮ	,0.08 	= ோு(ସ)ܯܮ						,0.16 	= ்ை(ଵ)ܯܮ	,0.06 	= ்ை(ସ)ܯܮ						,0.72 	= (଼)்ைܯܮ						,0.94 	= 		ܤܬ	,0.89 = ₃ܭ								,0.051 = ₄ܭ												,0.34− = (1)ܥܲ	,3.58 	= (2)ܥܲ									,0.10 = (3)ܥܲ							,0.05 = 0.06,																											(5)								

where ߪො/ is the sample standard deviation of the transition variable ݏ௧ = Δ ቀெቁ௧ିଵ and ߪො is 

the residual standard deviation. The figures in parentheses beneath the parameter values are 

                                                 
4 To facilitate the construction of an effective grid, we follow Teräsvirta’s (1998) suggestion to 

standardize the exponent of the transition function ݏ)ܩ௧; ,ߛ ܿ) by dividing it by the ݇௧ power of the 
sample standard deviation of the transition variable. This is done mainly to render the parameter ߛ scale-
free. 
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standard errors. ܯܮ்ை(௩) is the p-value for the ݒth order autocorrelation. ܯܮோு() is the p-

value of the ݍth order ARCH. ܲ2ܥܲ ,1ܥ, and ܲ3ܥ are p-values for parameter constancy tests 

against monotonic change, non-monotonic symmetrical change, and non-monotonic and non-

symmetrical change respectively. The original and fitted series from the STR model of ݎ௧ are 

plotted in Figure 2. 

Perhaps the most noticeable detail of equation (5) is the large standard deviation of the 

estimated slope of the logistic transition function ߛ = 241. It is common for LSTR models that 

the estimated standard deviation of ߛ tends to be large for large values of ߛ. This is not crucial, 

however, as it does not affect either the shape of the logistic function G ቀΔ ቀெቁ௧ିଵ 	; ,ߛ ܿቁ or the 

other estimates of the model. Teräsvirta (1994) gave an example of this exact case and provided 

a discussion on the estimation issues of ߛ. The large slope of the transition function, as depicted 

from the dot plot in Figure 3, where each dot corresponds to one observation, is indicative of a 

fast transition of ݎ௧ from one inefficient regime to another. This is consistent with the AMH, 

which posits that market participants adapt to changing market conditions. The results also hint 

to a swift adaptability process; that is, the S&P500 returns series continuously fluctuates from 

an upper inefficient regime to a lower inefficient regime passing quickly by an efficient regime. 

Hence, the market is efficient sometimes but inefficient most of the times. 

Figure 2: Original and fitted values of ݎ௧ between 1969:Q4 and 2014:Q2 with the first 
difference of the one-period lag of the market-to-book ratio as transition variable. 
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Figure 3: The transition function GቀΔ ቀெቁ௧ିଵ 	; ,ߛ ܿቁ as a function of observations. Each 

dot corresponds to an observation. The transition variable is the first difference of the 
one-period lag market-to-book ratio. 

 

 
Other than the large slope of the transition function, the estimated coefficients are all significant 

and the model passes the misspecification tests. One exception is the almost rejection of the 

null-hypothesis of normality of errors at the 5% level of significance as seen from the p-value 

of the JB test statistic. But, this is due to the large outlier of the 1987 crash, where the absolute 

of the standardized residuals is greater than three as seen from the plot of the standardized 

residuals in Figure 4. 

The dynamic behavior of the market rate of return can be detected by examining the 

transition function and the behavior of the transition variable above and below the estimated 

threshold value ܿ̂ = 0.03, which is approximately equal to zero. This means that if the transition 

variable Δ ቀெቁ௧ିଵ > 0.03, or equivalently, if approximately ቀெቁ௧ିଵ > ቀெቁ௧ିଶ; that is, if asset 

prices are overvalued, then the transition function ܩ(∙) will approach 1 and the market rate of 

return will move to an upper stationary inefficient (1)ܴܣ regime such that ݎ௧ = 0.034 − ௧ିଵݎ0.22 + 	௧̂ߝ
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Figure 4: The standardized residuals of the LSTR(1) model in the period between 1969 
and 2014 with the first difference of the one-period lag market-to-book ratio. 

 
 
as demonstrated in Figure 5 where the estimated threshold value of 0.03 is the doted line in the 

upper panel of the figure. On the other hand, if the transition variable is below 0.03, or 

approximately, if ቀெቁ௧ିଵ < ቀெቁ௧ିଶ; that is, if asset prices are undervalued, then the transition 

function ܩ(∙) will approach 0 and the market rate of return will move to a lower stationary 

inefficient (1)ܴܣ regime such that ݎ௧ = ௧ିଵݎ0.32 + 	௧̂ߝ
The behavior of the S&P500 rate of return in both inefficient regimes is summarized in Table 

3. A simulation of both regimes is also given in Figure 6. Notice that the market rate of return 

times series wanders in both regimes but always revert back to the mean because the series is 

stationary. Notice also that the efficient regime is embedded in between the upper and lower 

inefficient regimes because of the swift swings from one inefficient regime to the other. 
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Figure 5: A plot of the transition variable Δ(ܤ/ܯ)௧ିଵ and the transition function G(Δ(ܤ/ܯ)௧ିଵ	; ,ߛ ܿ) between 1969 and 2014. 

 

Table 3: The upper and lower regimes of the LSTR(1) model fitted to the rates of return 
of the Standard and Poor with the first difference of the one-period lag market-to-book 

ratio as exogenous transition variable. 

௧ݏ = Δ ൬ܤܯ൰௧ିଵ 
Upper regime: ܩ(⋅) = 1 Lower regime: ܩ(⋅) = 0 

Threshold: ܿ̂ 0.03 0.03 

Model ݎ௧ = 0.034 − ௧ିଵݎ0.22 + ௧ݎ ௧̂ߝ = ௧ିଵݎ0.32 +  ௧̂ߝ
Behavior of ݎ௧ Stationary AR(1) Stationary AR(1) 
Mean  ܧ(ݎ௧) = (௧ݎ)ܧ 0.0278 = 0 
Variance ݎܽݒ(ݎ௧) = (௧ݎ)ݎܽݒ  0.0036 = 0.007 

 

 

Transition variable: First difference of the lag of market-to-Book value from 1969:Q4 to 2014:Q2
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Figure 6: Simulation of the upper (1)ܴܣ stationary regime of the quarterly S&P returns, ݎ௧ = 0.034 − ௧ିଵݎ0.22 + ௧ݎ ,stationary regime(1)ܴܣ ௧̂, and the lowerߝ = ௧ିଵݎ0.32 +  ,௧̂ߝ
based on 250 random realizations. 

 

4  Concluding Remarks 

In this paper, we test empirically the validity of the AMH using a logistic smooth transition 

regression model of order 1. The fitted model shows that the rate of return on the S&P500 index 

continuously switches from a lower inefficient regime where asset prices are undervalued to an 

upper inefficient regime where asset prices are overvalued, and in between these two inefficient 

regimes the market rate of return passes briefly by an episode of efficiency, where its market 

value is equal to its book value. In summary, the empirical analysis confirms four main 

implications of the AMH: (1) The adaptability process as suggested by the AMH implies that 

the two inefficient regimes are both stationary. Otherwise, the market rate of return can wander 

in one regime without ever returning back to the other. According to our results, both upper and 

lower (inefficient) regimes were stationary. (2) The adaptability process entails a switching 

behavior between inefficient regimes. This implies that the market rate of return time series is 

non-linear and is best modelled by a regime switching model. Our nonlinearity test and the 
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regime switching framework confirm that. (3) The transition of the market rate of return from 

one inefficient regime to another over time is the result of an observed exogenous and stationary 

factor that is capable of capturing the irrational behavior of market participants; namely, the 

first difference of the one-period lag market-to-book ratio. The nonlinearity tests sequence and 

the stationary tests, respectively, confirm that. (4) Finally, the transition between the two 

inefficient regimes could be smooth or swift depending on the adaptability process of investors. 

This is also consistent with Lo’s AMH, which posits that financial markets witness episodes of 

inefficiencies, but the adaptability of its participants forces them to revert back to efficiency. 
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