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1 Introduction

It has been frequently documented that stock returns exhibit non-normality, stochastic volatility

and jumps, which contrasts with standard assumptions of the Black and Scholes (1973) option
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pricing model. For instance, Bakshi et al. (1997) report pricing biases for out-of-the-money put

and call options, which are referred to as the “volatility smile.”A related moneyness bias is the

“volatility smirk,” which represents a volatility smile that is skewed towards one side. In each

of these biases of the Black-Scholes model, the implied volatility varies across the range of

strike prices of otherwise identical options, thereby violating the model assumption of constant

volatility. Less frequently noted pricing biases include biases across maturities. Black (1975)

reports that options with less than three months to expiration tend to be overpriced by the Black-

Scholes formula. On the other hand, Bakshi et al. (1997) find thatout-of-sample pricing errors

for the Black-Scholes model increase sharply with maturity, regardless of the moneyness. This

phenomenon is more pronounced for the deepest out-of-the-money options.

To alleviate the biases of the Black-Scholes model, two strands of research have emerged in

empirical option pricing literature: parametric and non-parametricmodels.1 Bakshi et al. (1997)

and Gençay and Gibson (2009) demonstrate the superiority of thestochastic volatility (SV),

stochastic volatility random jump (SVJ) and stochastic interest rate (SI) parametric models over

the Black-Scholes model in out-of-sample pricing and hedging exercises. More specifically, the

evidence indicates that the SV characterization is of first-orderimportance in improving upon

the Black-Scholes model. Extending the SV model to the SVJ model further improves the

pricing of short term options. Finally, the SI feature improves thepricing and hedging of long-

term options. However, the pricing improvements produced by these parametric models are

not robust and exhibit some moneyness-related biases for short-term options. Therefore, the

challenge of how to deal with the smile effects for short-term options still remains. Despite the

theoretical appeal of parametric models, non-parametric models have been more effective in

relaxing the assumptions of the Black-Scholes model (Gençay and Gibson, 2009; Gradojevic et

al., 2009). For this reason, the largest part of this article focuses on non-parametric aspects of

option pricing, sometimes called data-driven approaches.

The superiority of non-parametric models can be explained by their adaptive learning capa-

bilities (e.g., artificial neural networks) and the fact that they do not constrain the distribution of

the underlying returns. In particular, non-parametric models involve flexible functional forms

that have the advantages of effectively dealing with jumps, non-stationarity, and negativeskew-

ness and kurtosis relative to their parametric counterparts. It is worthwhile to mention that

non-parametric methods are generally based on a trade-off between smoothness and goodness-

of-fit. This trade-off is usually controlled by the choice of a parameter in the estimation pro-

cedure, which is a difficult task. It may result in the lack of stability that is detrimental to the

out-of-sample performance of non-parametric methods. This is the keyreason why one may

prefer a parsimonious parametric model. In addition, parametric models exhibit parametric

transparency that non-parametric (‘black-box’) models are typicallylacking. Notwithstanding

the validity of this view, parametric models may also suffer from similar drawbacks. For exam-

1For some excellent recent surveys of option pricing literature see Garcia et al. (2010) and Renault (2010).
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ple, certain parametric specifications of SV or SVJ may not be easily interpreted.

Overall, with respect to model implementation and interpretation, both approaches pose

substantial difficulties. First, finding the initial values for local non-linearestimators of the SV

and SVJ models emerges as a challenging task. The problem is that the optimization routines

often arrive at inappropriate local solutions. Without substantial amount of time spent studying

the data, ensuring convergence becomes a daunting process. Studies by Bakshi et al. (1997)

and Gençay and Gibson (2009) point out these important issuesthat are frequently overlooked

in the literature. Similarly, the pricing performance of non-parametric models such as neural

networks (NN) heavily depends on the choice of the initial parameter values. In addition, the

model structure, the types of non-linearities used in model’s computational elements (nodes)

and the selection of an appropriate estimation (training) set areequally important modeling

decisions that have to be made. Without sufficient care, overfitting or data snooping biases

might arise and deteriorate the out-of-sample performance or result infalse inference.

It is also noteworthy that by relaxing the assumption of log-normality of the underlying price

process or other assumptions of the Black-Scholes model, one can produce different parametric

variants of the benchmark model.2 This offers a possibility of exploiting more general cumu-

lative distributions as well as more flexible functional forms. Some important papers along

these lines are the mixture of distributions model by Melick andThomas (1997) and the semi-

parametric estimator by Äıt-Sahalia and Lo (1998). These models have been shown to allow

sizable improvements in option pricing accuracy compared to theBlack-Scholes model, but

Gradojevic et al. (2009) reveal their out-of-sample pricing inferiority against non-parametric

modular neural network (MNN) models. Some recent non-parametric approaches also include

the affine jump-diffusion models (Carr and Wu, 2004) and the normal inverse Gaussian models

(Erikkson et al., 2009). Finally, Wu (2005) argues that fuzzy logic can be very useful for option

pricing. Similar approaches can be found in Agliardi and Agliardi(2009) and Yoshida (2003).

The goal of this paper is, first, to review the relevant literature on empirical parametric and

non-parametric option pricing. Sections 2 and 3 are dedicated, respectively, to those modeling

strands. In Section 4, we present the fuzzy learning vector quantization (FLVQ) algorithm

that is used to improve the pricing performance of the MNN model (Gradojevic et al., 2009).

Specifically, as Gradojevic et al. (2009) rely on ad-hoc option data classification from Garcia

and Gençay (2000), we refine the classification through the FLVQ algorithm that combines

a Kohonen unsupervised NN and fuzzy logic c-means clustering. In contrast to the pre-set

boundaries between clusters (i.e., modules), this methodologyproduces a set of ‘intelligent’

boundaries and improves data classification in each sample year (1987-1993). In turn, these

improvements enhance the learning capabilities of the NNs in MNN’s modules and result in

an increased pricing accuracy. Section 5 discusses in detail the results of our pricing exercises.

2For example, Bates (2000), Bakshi et al. (1997) and Pan (2002) utilize stochastic volatility and jump
diffusion processes.
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Section 6 concludes and suggests directions for future research.

2 Parametric Option Pricing Models

In a risk neutral economy, the underlying non-dividend-paying stock priceS(t) and its compo-

nents are, for anyt, given by (Bakshi et al., 1997):

dS(t)
S(t)

= [R(t) − λµJ] +
√

V(t)dwS(t) + J(t)dq(t) (1)

dV(t) = [θv − κvV(t)]dt+ σv

√

V(t)dwv(t) (2)

ln[1 + J(t)] ∼ N(ln[1 + µJ] − 1/2 σ2
J, σ

2
J) (3)

whereR(t) is the time-t instantaneous spot interest rate;λ is the frequency of jumps per year;

V(t) is the diffusion component of stock return variance (conditional on no jumpoccuring);

ws(t) andwv(t) are each a standard Brownian motion, with Covt[dwS(t), dwv(t)] ≡ ρdt; J(s) is

the percentage jump size (conditional on a jump occuring) that is lognormally, identically, and

independently distributed over time, with unconditional mean µJ. The standard deviation of

ln[1 + J(t)] is σJ, q(t) is a Poisson jump counter with intensityλ where Pr(dq(t) = 1) = λdt

and Pr(dq(t) = 0) = 1− λdt. κv, θv/κv andσv are respectively the speed of adjustment, long-run

mean, and variation coefficient of the diffusion volatility V(t). q(t) and J(t) are uncorrelated

with each other or withws(t) andwv(t).

Under the assumed framework, the total return variance can be decomposed into two com-

ponents

1
dt

Vart

(

dS(t)
S(t)

)

= V(t) + VJ(t) (4)

whereVJ(t) ≡ (1/dt)Vart[J(t)dq(t)] = λ[µ2
J + (eσ

2
J − 1)(1+ µJ)2] is the instantaneous variance

of the jump component. The discounting of future cash flows is according to the single-factor

term structure model (Cox et al., 1985)

dR(t) = [θR − κRR(t)]dt+ σR

√

R(t)dwR(t) (5)

whereκR, θR/κR andσR are respectively the speed of adjustment, long-run mean, and variation

coefficient of theR(t) process.wR(t) is the standard Brownian motion, uncorrelated with any

other process in the model.

For a European call option written on the stock with strike priceK and term-to-expirationτ,

its time-t priceC(t, τ) must solve
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1
2

VS2∂
2C
∂S2

+ [R− λµJ]S
∂C
∂S
+ ρσvVS

∂2C
∂S∂V

+
1
2
σ2

vV
∂2C
∂V2
+ [θv − κvV]

∂C
∂V

+
1
2
σ2

RR
∂2C
∂R2
+ [θR − κRR]

∂C
∂R
− ∂C
∂τ
− RC

+ λE{C(t, τ, S(1+ J), R, V) −C(t, τ, S, R, V)} = 0.

(6)

subject toC(t + τ, 0) = max{S(t + τ) − K, 0}. Bakshi et al. (1997) have shown that

C(t, τ) = S(t)Π1(t, τ; S, R, V) − KB(t, τ)Π2(t, τ; S, R, V) (7)

whereB(t, τ) is the current price of a zero-coupon bond that pays $1 inτ periods from timet.

The risk-neutral probabilities,Π1 andΠ2, are recovered from inverting the respective charac-

teristic functions:

Π j(t, τ; S(t), R(t), V(t))

=
1
2
+

1
π

∫ ∞

0
Re

[
e−iφln[K] f j(t, τ, S(t), R(t), V(t); φ)

iφ

]

dφ (8)

for j = 1, 2 with the characteristic functionsf j defined in the Appendix.

The European option pricing model in Equation 7 encompasses several of the most studied

cases. For example, the Black-Scholes model is obtained whenλ = θR = κR = σR = θv = κv =

σv = 0; the stochastic volatility (SV) model whenλ = θR = κR = σR = 0; the stochastic interest

rate (SIR) model whenλ = θv = κv = σv = 0; the stochastic volatility jump (SVJ) model when

θR = κR = σR = 0 and stochastic volatility & stochastic interest rate model (SVSI) whenλ = 0.

As Gençay and Gibson (2009) demonstrate that in terms of their out-of-sample pricing per-

formance NN models dominate the above parametric models, in the next section, we turn our

attention to non-parametric option pricing. In general, there are two possible explanations for

the superiority of NN models: their ability to capture non-normality of return distributions and

adaptive learning.

3 Non-parametric Option Pricing

The Black-Scholes formula has been mostly criticized for its distributional assumptions of the

underlying security. Non-parametric valuation models are a natural extension, as it is easier

to relax the distributional assumptions. A natural non-parametric function for pricing a Euro-

pean call option on a non-dividend paying asset will relate theprice of the option to the set of

variables which characterize the option

Ct = f (St,K, σt, rt, τ) (9)
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whereSt is the price of the underlying asset,K is the strike price,σt is the volatility of the

underlying asset,rt is the interest rate andτ is the time-to-maturity.

To facilitate clustering and classification, we reduce our option pricing formula as in Hutchin-

son et al. (1994) and Garcia and Gençay (2000):

Ct = f (St,K, τ) (10)

Assuming the homogeneity of degree one of the pricing functionf with respect toSt and

K, one can write the option pricing function as follows:

Ct

K
︸︷︷︸

ct

= f (
St

K
︸︷︷︸

x1

, 1, τ
︸︷︷︸

x2

) = φ(x1, x2). (11)

The pricing functionf is approximated by an MNN with the number of modules and their

location determined by the FLVQ algorithm (described in Section4).

In contrast to parametric models such as the Black-Scholes that assume cumulative normal

shapes, non-parametric models such as MNNs make minimal assumptions about the shape or

the properties of the underlying price process. In addition, non-parametric pricing functions are

convenient for estimating state price densities (SPDs) and itspartial derivatives (the “Greeks”).

For instance, the MNN estimator can be directly differentiated numerically (or analytically) to

extract the SPD or option delta. Since the partial derivatives of an option pricing formula are

risk pricing tools, an accurate estimation of the unknown option pricing function is essential for

pricing and hedging.

Similar to linear regression models, NNs map a set of explanatory variables (xi , for ex-

ample,i = 1, 2) into a dependent variable (ct). The major difference between NNs and other

non-parametric estimators is that NNs are based on a layered structure where each layer trans-

forms time seriesxi ’s using special functions known as sigmoid logistic or hyperbolic tangent

functions. The number of layers and the structure of each layer have to be determined before

estimation, like the bandwidth in kernel regression methodologies. In the case of NNs, this is

typically performed through a cross-validation method on the validation part of the data (Garcia

and Gençay, 2000). Then, the parameters of an NN are estimated byminimizing the loss func-

tion defined as the sum of squared differences between the observedct and the one predicted by

an NN. The NN-based approaches in option pricing were used by Garcia and Gençay (2000),

Hutchinson et al. (1994), Gençay and Gibson (2009), Gradojevic et al. (2009) and Gençay and

Altay-Salih (2003).

A popular non-parametric alternative to NNs to estimate the pricing function is kernel re-

gression (Äıt-Sahalia and Lo, 1998). In contrast to NNs, where observational errors are reduced

by averaging the data based on a recursive error minimization procedure, for kernel regression

this is achieved by local averaging (smoothing). The kernel method estimates the price based
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on the weighted sum of the information from the in-sample data. Morespecifically, given some

time series of explanatory variables (e.g.,x1 andx2), to estimate the price, more weight is as-

signed to the observations at locations that are closer to the vector. For instance, our option

pricing model has two regressors and the appropriate kernel pricing function would be con-

structed as a product of two univariate kernels. The usual trade-off between smoothness and

goodness-of-fit is achieved by the choice of the bandwidth of thekernel function. Äıt-Sahalia

and Lo (1998) show that the Nadaraya-Watson kernel estimator’s errors for the SPD and option

delta lie within one per cent of the theoretical values. The out-of-sample pricing performance of

their model is also impressive and superior over the NN model. Itis noteworthy that the kernel

pricing function from Äıt-Sahalia and Lo (1998) that is used for forecasting is semi-parametric.

It is informed by dividend yield,τ, K, St, risk-free interest rate, and non-parametrically esti-

mated volatility. In contrast, the variables in the MNN model arethe ratio of the asset price

to the strike price and the time to maturity. Nevertheless, Gradojevic et al. (2009) find that the

MNN model outperforms the kernel estimator from Aı̈t-Sahalia and Lo (1998) in out-of-sample

pricing exercises.

A novel approach to option pricing pioneered by Barndorff-Nielsen (1998) and Barndorff-

Nielsen and Shephard (2001), and extended by Erikkson et al. (2009), employs the normal

inverse Gaussian model to approximate an unknown distributionrisk-neutral density. This

model’s pricing errors are smaller than the errors of several option pricing models with known

densities. The benefit of using the normal inverse Gaussian family of distributions is that they

are characterized by the first four moments, which are important for derivative pricing. Another

relatively recent theoretical research direction is the affine jump-diffusion models. These mod-

els rely on the compound Poisson processes to model jumps whichmay be a finite or an infinite

number of jumps within a finite time interval. An advanced application of such models can be

found in Carr and Wu (2004). It uses a generalization of the affine Poisson jump diffusions, i.e.,

time-changed Ĺevy processes that relax the affine structure and allow more general specifica-

tions of the jump structure. The empirical results of applying time-changed Ĺevy processes to

the S&P-500 options signify the role of jumps and stochastic volatility in option pricing (Carr

et al., 2003; Huang and Wu, 2004). However, the results also illustrate the importance of choos-

ing the right jump structure and the appropriate stochastic volatility specification. Specifically,

a good option pricing model should include a high-frequency jumpcomponent and should al-

low stochastic volatility to be generated separately from the diffusion component and the jump

component.

Other non-parametric and semi-parametric estimators that can be employed for option pric-

ing include nearest-neighbour estimators (Yakowitz, 1987), constrained splines (Bates, 2000),

average derivative estimators (Hardle and Stoker, 1989), local polynomial regression (Äıt-

Sahalia and Duarte, 2003), and orthogonal series expansion (Chiarella et al., 1999).
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4 Fuzzy learning vector quantization (FLVQ)

Fuzzy learning vector quantization (FLVQ) algorithm belongs to the class of batch unsupervised

learning methods (Bezdek and Pal, 1995). The FLVQ algorithm represents a combination of

the weight adaptation rule used in the Kohonen unsupervised neural network and the fuzzy set

membership function proposed by the batch clustering fuzzy c-means (FCM) algorithm. In

comparison to similar clustering methods, the main advantages of the FLVQ algorithm are:

1) smaller number of input (user-defined) parameters is required, 2) less frequently trapped in

local minima, and 3) final solution is not affected by the order of the input data sequence. The

clustering process of the FLVQ algorithm is based on the assumption that each data class may

contain several clusters defined by their representative pointscalledprototypes. In general, the

algorithm contains two phases: the initialization of the prototype coordinates of the clusters

(prototype generation) and the improvement of classification error by adapting the prototypes’

coordinates (prototype adaptation).

4.1 Prototype generation

The FLVQ is a self-organizational, non-sequential and competitive clustering algorithm. Using

the training data, after the initial number of classes and prototypes are defined, for each input

observation from the training set, the density of distribution ofother input data in its neigh-

borhood is determined from the FCM algorithm.3 The output of this algorithm represents the

coordinates of the data with the highest density, which are adopted as the initial values of the

prototypes.

Classes that should be extended with new prototypes are identified in an iterative process.

Those classes are considered to have the largest number of misclassified data. In other words,

if an input pattern has the nearest prototype from the same class itis correctly classified and

vice-versa. In each iteration, a partition matrixU of the current prototypes is calculated by:

U = ui, j =

( 1
d(x j (e),Ci (e))

) 1
m(e)−1

∑K
k=1

( 1
d(x j (e),Ck(e))

) 1
m(e)−1

, i = 1, . . . ,K, j = 1, . . . ,N. (12)

whereN is the number of observations in the training data,K is total number of prototypes,

x j is the jth input pattern from the training set,C is the matrix of prototypes coordinates,

d(x j(e),Ck(e)) is the Euclidean distance betweenjth input pattern and thekth prototype in each

training (iteration) epocheand the weighting exponentm(e) is called the “degree of fuzziness”

in epoche.

3We experimented with training data from the first two quarters of each year and the validation data from
the third quarter representing the trial testing data. The most accurate pricing for the third quarter data
was obtained by using eight classes and thirty prototypes (i.e., on average, about 3-4 prototypes per class).
These input parameters are then used in pricing the fourth quarter options (true out-of-sample data).
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The degree of fuzzinessm= m(e) is monotonically decreasing with respect to the processing

time e, i.e., the number of training epochs:

m= m0 −
e(m0 −mf )

emax
(13)

wherem0 andmf are the initial and final values of the degree of fuzzinessm, whose values

are limited by the heuristically determined constraint: 7> m0 > mf > 1.1.4 Parameteremax

determines the maximum number of epochs.

The coordinates of prototypes are modified using FLVQ learning rule given by following

expression:

Ci(e+ 1) =
N∑

j=1

αi, j(e)x j(e), i = 1, . . . ,K. (14)

whereαi, j(e) is the learning rate of theith prototype in epoche. This learning factor is set by:

αi, j(e) =
(ui, j(e))m(e)

∑N
j=1(ui, j(e))m(e)

(15)

Equations 12 - 15 are repeated until the given number of prototypesK is reached.

4.2 Prototype adaptation

This phase of the algorithm involves modifications of the prototypes’ coordinates. The key

parts of the algorithm are equations 14 and 15, where the elementsof the partition matrix

U and the coordinates of the prototypesCi are updated. Based on the distances among all

input patterns and the current position of the prototypes, new coordinates of the prototypes are

calculated in each iteration. The parameterm(e) and current epoche determine the prototype’s

neighborhood, while only patterns belonging to same class are considered. After this step, the

total number of prototypes, as well as their number per each class are not changed. In the end,

afteremax iterations, the best prototype coordinates, i.e., the prototypes with the highest number

of correctly classified patterns are recorded and assigned to the classes.

5 Results

5.1 Data

The data are daily S&P-500 index European call option prices taken from the Chicago Board

Options Exchange. For each available complete year, over the period from January 1987 to

October 1994, options across different strike prices and maturities are considered. Being one

4Bezdek and Pal (1995) show that this range is appropriate fora monotonically decreasing FLVQ algo-
rithm. More specifically, these limits prevent numerical instability that may arise when values ofm are
close to 1 or are very large (i.e., whenm tends to infinity).
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of the deepest and the most efficient option markets in the United States, the S&P-500 index

option market is an adequate choice for our investigation. This also makes our study directly

comparable to Garcia and Gençay (2000) and Gradojevic et al. (2009).

Options with zero volume are not used in the estimation. For NN estimation purposes, the

data for each year are divided into three parts: first two quarters (training set), third quarter

(validation set) and fourth quarter (out-of-sample, testing set). This produced the following

non-overlapping sub-samples:

• 1987:Training sample: 3610, Validation sample: 2010, Testing sample: 2239

• 1988:Training sample: 3434, Validation sample: 1642, Testing sample: 1479

• 1989:Training sample: 3052, Validation sample: 1565, Testing sample: 1515

• 1990:Training sample: 3605, Validation sample: 2075, Testing sample: 2166

• 1991:Training sample: 4481, Validation sample: 1922, Testing sample: 2061

• 1992:Training sample: 4374, Validation sample: 1922, Testing sample: 1848

• 1993:Training sample: 4214, Validation sample: 1973, Testing sample: 2030

The optimal NN architecture for each module is determined from the out-of-sample per-

formance on the validation set with respect to the mean-squared prediction error (MSPE). To

keep the complexity of the NNs close to Garcia and Gençay (2000), the modules are single hid-

den layer NNs with either sigmoid logistic or hyperbolic tangent activation functions. Hence,

the search for an optimal NN architecture involves specifying thenumber of hidden nodes (we

choose from 1-15 hidden nodes) and their activation functions. The parameters are estimated

using the standard Levenberg-Marquardt algorithm. Overfitting isprevented by early stopping,

i.e., stopping the training process when the validation set error starts to increase. To control

for the possible sensitivity of the NNs to the initial parameter values, the training is performed

from ten different random seeds and the average MSPE values are reported. The predictive

performance on the testing part of the sample is finally assessed with the MSPE criterion.

The out-of-sample pricing performance of an MNN model is compared to the Black-Scholes

model. The Black-Scholes call prices (Ct) are computed using the standard formula:

Ct = StN(d) − Ke−rτN(d − σ
√
τ) where d =

ln(St/K) + (r + 0.5σ2)τ

σ
√
τ

(16)

whereN is the cumulative normal distribution,St is the price of the underlying asset,K is

the strike price,τ is the time to maturity,r is the risk-free interest rate, andσ is the volatility

of the underlying assets’ continuously-compounded returns estimated from the last sixty days
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preceding the first day of the last quarter. The risk-free rate is approximated by the monthly

yield of the U.S. Treasury bills.

The statistical significance of the prediction performance is assessed with the Diebold-

Mariano statistic (Diebold and Mariano, 1995), distributed as standard normal in large sam-

ples.5 When the calculated values of the Diebold-Mariano statistic are large and positive, our

model is viewed as being able to significantly improve upon thecompeting models.

5.2 Pricing performance

NN with hint MNN model MNN-FLVQ model BS model DM

MS PE

1987 16.7 4.1204 3.0880 4.38 20.66

1988 0.7114 0.6107 0.5277 2.07 6.63

1989 0.4138 0.4008 0.3954 1.42 3.11

1990 0.6761 0.5579 0.4859 2.62 4.10

1991 0.3498 0.3293 0.3107 1.73 3.15

1992 0.1511 0.1285 0.1176 1.36 4.28

1993 0.1054 0.0546 0.0475 0.74 4.43

Table 1: Prediction performance of the option pricing models.

Notes: This table reports the out-of-sample average mean-squared prediction errors (MS PE) for the following option pricing

models: Garcia and Gençay (2000)’s feedforward neural network model with the hint (NN with hint), Gradojevic et al.

(2009)’s modular neural network (MNN) model with nine modules,the MNN model with eight modules determined by the

FLVQ algorithm (MNN-FLVQ model), and the Black-Scholes model(BS model). The average MSPEs for the MNN models

have been obtained as averages across ten different random training seeds. DM denotes the Diebold and Mariano (1995) test

statistic. This test is used to assess the statistical significance of the model’s forecast gains relative to the NN with hint model.

All MS PEfigures have been multiplied by 104.

Table 1 compares the out-of-sample pricing performance of the NN model with the hint

(Garcia and Gençay, 2000), the MNN model with nine modules from Gradojevic et al. (2009),

the MNN model with eight modules determined by the FLVQ algorithm and the Black-Scholes

model (in terms of the MSPE performance measure). The MNN models are estimated ten times

from ten different sets of starting values and the average MSPEs are reported. Clearly, both

5We compute the test statistic as the average of the forecast error differences for the ten estimations of the
optimal NN architectures.
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MNN models outperform the NN model with the hint as well as the Black-Scholes model in

all years. Further, the MNN-FLVQ model represents a robust pricing improvement relative to

the basic MNN model from Gradojevic et al. (2009) and it demonstrates that an adequate (i.e.,

intelligent) classification can benefit option pricing. In general, the pricing improvements over

the NN with hint model are statistically significant accordingto the Diebold-Mariano statistic

for all sample years. The improvements are particularly sizeable in 1987 and 1988 (about 25%

and 15% reductions in the average MSPE, respectively), which weremore volatile than the

other years. Such findings emphasize the importance of classification and clustering in risk

management.

Next, by comparing the module-by-module performance of the basic MNN model (Grado-

jevic et al., 2009) and the MNN-FLVQ model, we will investigate the underpinnings of the

observed pricing improvements. Figure 1 displays the clusters obtained by classifying the op-

tions with the FLVQ algorithm in 1988 and 1993. The optimal classification is based on eight

modules (clusters) marked with ordinal numbers 1-8. The FLVQ algorithm classifies the options

into the following types: out-of-the-money, short term options (1), near-the-money, short term

options (2), in-the-money, short-medium term options (3), out-of-the-money, medium term op-

tions (4), near-the-money, medium term options (5), in-the-money, medium-long term options

(6), out-of-the-money, long term options (7), and near-the-money, longterm options (8). Note

that the FLVQ-determined boundaries between the clusters are notgiven by straight lines. In

contrast, the option types selected by the so-called “hard” boundaries in the Gradojevic et al.

(2009)’s MNN model are set as follows:6

• Type 1: Out-of-the-money, short term options: (St/K) < 0.97 andτ < 0.1;

• Type 2: Near-the-money, short term options: 0.97≤ (St/K) ≤ 1.05 andτ < 0.1;

• Type 3: In-the-money, short term options: (St/K) > 1.05 andτ < 0.1;

• Type 4: Out-of-the-money, medium term options: (St/K) < 0.97 and 0.1≤ τ ≤ 0.2;

• Type 5: Near-the-money, medium term options: 0.97≤ (St/K) ≤ 1.05 and 0.1≤ τ ≤ 0.2;

• Type 6: In-the-money, medium term options: (St/K) > 1.05 and 0.1≤ τ ≤ 0.2;

• Type 7: Out-of-the-money, long term options: (St/K) < 0.97 andτ > 0.2;

• Type 8: Near-the-money, long term options: 0.97≤ (St/K) ≤ 1.05 andτ > 0.2;

• Type 9: In-the-money, long term options: (St/K) > 1.05 andτ > 0.2.

6The same pre-determined boundaries are used in Garcia and Gençay (2000).
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Figure 1: FLVQ option classification
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The moneyness (St/K) of the S&P-500 call options is plotted on the x-axis and theirtime-to-expiration (τ) in years on the

y-axis. Top panel: Eight modules (clusters; marked with ordinal numbers 1-8) received by the FLVQ classification

algorithm of all available call options (3610 observations) in the training sample of 1988. Bottom panel: Eight modules

(clusters; marked with ordinal numbers 1-8) received by the FLVQ classification algorithm of all available call options

(4214 observations) in the training sample of 1993.

The above results show that pre-determining boundaries deteriorate the MNN model’s pric-

ing performance relative to the MNN-FLVQ model. It can be observed that the FLVQ-generated

clusters correspond to merging type 3 and a subset of type 6 options into cluster 3. In addition,

cluster 6 roughly combines the remaining type 6 and also type 9 options. Table 2 lists the aver-

age MSPE figures for all modules of the MNN models across all years.We find that both MNN

models produce on average the highest pricing errors for modules 3, 6, 8 and 9 i.e., for the
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Year Cluster→ 1 2 3 4 5 6 7 8 9

Model:

1987 MNN 3.53 2.01 5.69 1.15 4.69 6.87 5.17 10.17 8.87

MNN-FLVQ 1.32 1.91 6.44 2.19 5.03 8.22 2.96 10

1988 MNN 0.06 0.35 0.35 0.49 1.18 0.68 0.49 1.49 0.56

MNN-FLVQ 0.11 0.33 0.36 0.10 0.11 0.86 0.10 0.69

1989 MNN 0.13 0.33 0.58 0.17 0.48 1.85 0.23 0.51 0.42

MNN-FLVQ 0.05 0.34 0.10 0.17 0.48 0.60 0.19 0.56

1990 MNN 0.05 0.19 0.47 0.30 0.97 0.76 1.08 0.87 0.70

MNN-FLVQ 0.09 0.20 0.49 0.42 0.10 0.78 0.55 0.77

1991 MNN 0.02 0.09 0.54 0.14 0.34 0.39 0.18 0.50 1.53

MNN-FLVQ 0.02 0.11 0.52 0.14 0.25 1.41 0.14 0.45

1992 MNN 0.00 0.05 0.17 0.03 0.11 0.20 0.12 0.23 0.46

MNN-FLVQ 0.00 0.05 0.15 0.04 0.11 0.45 0.07 0.20

1993 MNN 0.00 0.03 0.10 0.01 0.04 0.19 0.02 0.08 0.12

MNN-FLVQ 0.00 0.03 0.12 0.01 0.03 0.12 0.03 0.04

Average MNN 0.55 0.44 1.13 0.33 1.12 1.57 1.05 1.98 1.81

MNN-FLVQ 0.23 0.43 1.18 0.44 0.88 1.78 0.58 1.82

Table 2: Prediction performance of the MNN model modules.

Notes: Each cell of this table contains the out-of-sample average mean-squared prediction errors (MS PE) for the modules

(clusters) of the following option pricing models: Gradojevic et al. (2009)’s modular neural network (MNN) model with nine

modules (marked with ordinal numbers 1-9) and the MNN model with eight modules (marked with ordinal numbers 1-8)

determined by the FLVQ algorithm (MNN-FLVQ). The MNN-FLVQ model’s cluster 3 corresponds to merged clusters 3 and

(part of) 6 of the MNN model. The MNN-FLVQ model’s cluster 6 corresponds to merged clusters 9 and (part of) 6 of the

MNN model. In addition, cluster 6 combines the remaining type 6 and also type 9 options. The average MSPEs for the MNN

models have been obtained as averages across ten different random training seeds. All figures have been multipliedby 104.
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in-the-money (3, 6, 9) and long term (8, 9) options. Overall, near-the-money, long term options

appear to be the most difficult to price, while pricing the short term options is the most accurate.

The fact that the MSPE figures are the smallest for the out-of-the-money, short term options is

generally in accord with Bakshi et al. (1997) and their evidencefor the Black-Scholes and the

competing parametric models (SVJ, SI and SV). Figure 2 also indicates that the pricing biases

increase with both the time to expiration and the moneyness of the options. As noted before, the

errors are more pronounced in modules 3 (in-the-money options), 6 and 8 (long term options).

This is visible as more scatter in the corresponding panels of Figure 2.7

Figure 2: Error plots for the modules in the MNN-FLVQ model (1991)
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Notes:

Out-of-sample squared errors ((ct − ĉt)2, t = 1, . . . ,2061) for 1991 are plotted for each observation classified inmodules 1-8.

The observation number of the S&P-500 call options is plotted on the x-axis and out-of-sample squared errors on the y-axis.

All call options in 1991 are classified using the FLVQ algorithm into the following types (modules): 217 out-of-the-money,

short term options (module 1), 406 near-the-money, short termoptions (module 2), 217 in-the-money, short-medium term

options (module 3), 203 out-of-the-money, medium term options(module 4), 284 near-the-money, medium term options

(module 5), 141 in-the-money, medium-long term options (module 6), 306 out-of-the-money, long term options (module 7),

and 287 near-the-money, long term options (module 8).

7The shapes of the plots for all other years resemble the ones for 1991 and can be available upon request
from the authors.
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The MNN-FLVQ model consistently improves the pricing accuracy of the MNN model in

modules 7 and 8, which represent long term options. As long term options are difficult to

price and they also represent a good indicator of model’s accuracy (Bakshi et al., 2000), this in

turn emphasizes the effectiveness of our approach. Module 5 (near-the-money, medium term

options) also exhibits substantial pricing improvements, while the large reduction in MSPE in

module 1 is driven by 1987, the year of the stock market crash. In all, we attribute the success

of the MNN-FLVQ model to its ‘intelligent’ option classification that results in a better fit of

the non-linearities in the NN modules.

6 Conclusions

The goal of this study is to propose a new research direction in option pricing that is based on

the clustering and classification of the S&P-500 European call options over the 1987-1993 data

span. The method we utilize for such purpose is the FLVQ algorithm that provides sensible

and ‘intelligent’ boundaries between option classes. The optimal classification consists of eight

clusters that are used as modules in an MNN model. The resulting model is called the MNN-

FLVQ model and it represents a methodological improvement of the Gradojevic et al. (2009)’s

MNN architecture. Empirical pricing exercises show that the MNN-FLVQ model outperforms

both the standard MNN and the NN with the hint models. As the latter two non-parametric

models dominate their parametric counterparts including the Black-Scholes model, the MNN-

FLVQ model proves to be an effective option pricing tool. More precisely, the success of the

MNN-FLVQ model mainly lies in its accurate classification of long term option. Also, the

model exhibits remarkable pricing ability in volatile years - 1987 and 1988.

Our approach can also be understood as a generalization and extension of the methodologies

such as the Markov switching model or the threshold regression model. Similarly, the FLVQ

algorithm involves splitting and sorting the data based on certain criteria. However, it does not

make use of any special threshold or state variables to classifythe data, but, rather relies on its

clustering (learning) algorithm applied on the input space. In addition, it generates more than

two regimes that characterize the relationship between the variables of interest. In this context,

our approach could also be applied to other non-linear problemsin time series financial econo-

metrics. For example, financial models that are potentially susceptible to regime switching

include foreign exchange rate, interest rate and derivative pricing models.

In closing, we conclude that the MNN-FLVQ model is a promising future research avenue

in option pricing. Furthermore, the current approach can be extended to the notion of ‘soft’

boundaries where data points could belong to any cluster with agiven probability. An example

of this approach are Gaussian mixture models (Behr and Pötter, 2009). This class of models

employs all data points in the input space and allows for interaction between clusters when

predicting the output variable.
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Appendix

The characteristic functions are:

f1(t, τ) = exp

{

− θR
σ2

R

[

2 ln

(

1− [ξR − κR](1 − e−ξRτ)
2ξR

)

+ [ξR − κR]τ

]

− θv
σ2

v

[

2 ln

(

1− [ξv − κv + (1+ i φ) ρσv](1 − e−ξvτ)
2ξv

)]

− θv
σ2

v
[ξv − κv + (1+ i φ) ρσv] τ + i φ ln[S(t)]

+
2 i φ (1− e−ξRτ)

2ξR − [ξR − κR](1 − e−ξRτ)
R(t)

+λ(1+ µJ)τ[(1 + µJ)i φe(i φ/2)(1+i φ)σ2
J − 1] − λ i φ µJ τ

+
i φ (i φ + 1)(1− e−ξvτ)

2ξv − [ξv − κv + (1+ i φ) ρσv](1 − e−ξvτ)
V(t)

}
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(A1)

f2(t, τ) = exp
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(A2)

where

ξR =

√

κ2R − 2σ2
R i φ, ξv =

√

[κv − (1+ i φ)ρσv]2 − i φ (i φ + 1)σ2
v,

ξ∗R =

√

κ2R − 2σ2
R (i φ − 1), and ξ∗v =

√

[κv − i φρσv]2 − i φ (i φ − 1)σ2
v.

The stochastic interest rate (SI), the stochastic volatility (SV),stochastic volatility and stochastic

interest rate (SVSI) and the stochastic volatility random jump (SVJ) models are all nested within

the general formula in Equation 7. In the case of SVJ,R(t) = R is a constant,B(t, τ) = e−Rτ and

the characteristic functions are:
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f̂1 = exp
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The characteristic functions for the SV model can be obtained by settingλ = 0 in Equations

A3-A4.
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