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This paper reviews the recent option pricing literature iamdstigates how clustering and
classification can assist option pricing models. Speclficale consider non-parametric
modular neural network (MNN) models to price the S&P-500dp@an call options. The
focus is on decomposing and classifying options data intomakrer of sub-models across
moneyness and maturity ranges that are processed indiyidUiae fuzzy learning vector
guantization (FLVQ) algorithm we propose generates degistgions (i.e., option classes)
divided by ‘intelligent’ classification boundaries. Suahapproach improves generaliza-
tion properties of the MNN model and thereby increases itsmy accuracy.
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1 Introduction

It has been frequently documented that stock returns exhibit nomality, stochastic volatility
and jumps, which contrasts with standard assumptions of thekeind Scholes (1973) option
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pricing model. For instance, Bakshi et al. (1997) report priciiagéds for out-of-the-money put
and call options, which are referred to as the “volatility smik felated moneyness bias is the
“volatility smirk,” which represents a volatility smile thag skewed towards one side. In each
of these biases of the Black-Scholes model, the implied Nibfataries across the range of
strike prices of otherwise identical options, thereby violgtine model assumption of constant
volatility. Less frequently noted pricing biases include bmacross maturities. Black (1975)
reports that options with less than three months to expiratimhtiebe overpriced by the Black-
Scholes formula. On the other hand, Bakshi et al. (1997) findaiabf-sample pricing errors
for the Black-Scholes model increase sharply with maturity, régasdf the moneyness. This
phenomenon is more pronounced for the deepest out-of-the-moriepapt

To alleviate the biases of the Black-Scholes model, two strafdesearch have emerged in
empirical option pricing literature: parametric and non-parametddels! Bakshi et al. (1997)
and Gencay and Gibson (2009) demonstrate the superiority cftttehastic volatility (SV),
stochastic volatility random jump (SVJ) and stochastic irgerate (S1) parametric models over
the Black-Scholes model in out-of-sample pricing and hedgingeeses. More specifically, the
evidence indicates that the SV characterization is of first-drdportance in improving upon
the Black-Scholes model. Extending the SV model to the SVJenhdther improves the
pricing of short term options. Finally, the Sl feature improvesytieing and hedging of long-
term options. However, the pricing improvements produced bgettparametric models are
not robust and exhibit some moneyness-related biases for shorbfgions. Therefore, the
challenge of how to deal with the smil&ects for short-term options still remains. Despite the
theoretical appeal of parametric models, non-parametric mo@wks bheen morefective in
relaxing the assumptions of the Black-Scholes model (Gengasébson, 2009; Gradojevic et
al., 2009). For this reason, the largest part of this article fesws non-parametric aspects of
option pricing, sometimes called data-driven approaches.

The superiority of non-parametric models can be explained by dldeiptive learning capa-
bilities (e.g., artificial neural networks) and the fact thayttle not constrain the distribution of
the underlying returns. In particular, non-parametric models wevéiexible functional forms
that have the advantages dfextively dealing with jumps, non-stationarity, and negasikew-
ness and kurtosis relative to their parametric counterparts. Ibithwhile to mention that
non-parametric methods are generally based on a triidetwveen smoothness and goodness-
of-fit. This trade-df is usually controlled by the choice of a parameter in the esiimaro-
cedure, which is a dicult task. It may result in the lack of stability that is detringrto the
out-of-sample performance of non-parametric methods. This is thegespn why one may
prefer a parsimonious parametric model. In addition, parametricetaagkhibit parametric
transparency that non-parametric (‘black-box’) models are typit¢adlking. Notwithstanding
the validity of this view, parametric models may alsdtsufrom similar drawbacks. For exam-

IFor some excellent recent surveys of option pricing lilemasee Garcia et al. (2010) and Renault (2010).
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ple, certain parametric specifications of SV or SVJ may not bidyeaterpreted.

Overall, with respect to model implementation and interpretatboth approaches pose
substantial dticulties. First, finding the initial values for local non-linesstimators of the SV
and SVJ models emerges as a challenging task. The problemt igvéhoptimization routines
often arrive at inappropriate local solutions. Without subshamount of time spent studying
the data, ensuring convergence becomes a daunting procestes3ty Bakshi et al. (1997)
and Gencay and Gibson (2009) point out these important ishaeare frequently overlooked
in the literature. Similarly, the pricing performance of non-paraimehodels such as neural
networks (NN) heavily depends on the choice of the initial patemvalues. In addition, the
model structure, the types of non-linearities used in modefsmgdational elements (nodes)
and the selection of an appropriate estimation (training) seequally important modeling
decisions that have to be made. Withouffigient care, overfitting or data snooping biases
might arise and deteriorate the out-of-sample performance or regals@inference.

Itis also noteworthy that by relaxing the assumption of log-nditynaf the underlying price
process or other assumptions of the Black-Scholes model,amproduce dierent parametric
variants of the benchmark modelThis ofers a possibility of exploiting more general cumu-
lative distributions as well as more flexible functional forms.nf@oimportant papers along
these lines are the mixture of distributions model by Melick &hdmas (1997) and the semi-
parametric estimator by i&Sahalia and Lo (1998). These models have been shown to allow
sizable improvements in option pricing accuracy compared tdBthek-Scholes model, but
Gradojevic et al. (2009) reveal their out-of-sample pricing infetyoaigainst non-parametric
modular neural network (MNN) models. Some recent non-parametpimaphes also include
the dfine jump-ditusion models (Carr and Wu, 2004) and the normal inverse Gaussidelsn
(Erikkson et al., 2009). Finally, Wu (2005) argues that fuzzydagin be very useful for option
pricing. Similar approaches can be found in Agliardi and Agli§2fi09) and Yoshida (2003).

The goal of this paper is, first, to review the relevant literaturempirical parametric and
non-parametric option pricing. Sections 2 and 3 are dedicateukctegely, to those modeling
strands. In Section 4, we present the fuzzy learning vector quaiotn (FLVQ) algorithm
that is used to improve the pricing performance of the MNN model (§estt et al., 2009).
Specifically, as Gradojevic et al. (2009) rely on ad-hoc opticia déassification from Garcia
and Gencay (2000), we refine the classification through the FLMQrithm that combines
a Kohonen unsupervised NN and fuzzy logic c-means clustering.otitrast to the pre-set
boundaries between clusters (i.e., modules), this methodgloapuces a set of ‘intelligent’
boundaries and improves data classification in each sampte(3@87-1993). In turn, these
improvements enhance the learning capabilities of the NNs NN modules and result in
an increased pricing accuracy. Section 5 discusses in degaibsults of our pricing exercises.

2For example, Bates (2000), Bakshi et al. (1997) and Pan j20@e stochastic volatility and jump
diffusion processes.
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Section 6 concludes and suggests directions for future research.

2 Parametric Option Pricing Models

In a risk neutral economy, the underlying non-dividend-payingkstmice S(t) and its compo-
nents are, for ant, given by (Bakshi et al., 1997):

ds(t)

S - RO - dwl + VW (tdws(t) + J)dat) @
dV(t) = [6y — x,V(O]dt + oy V(D dw(b) @)
In[1 + (] ~ N(n[1 + 5] - 12 03, %) ©)

whereR(t) is the timet instantaneous spot interest rafels the frequency of jumps per year;
V(t) is the difusion component of stock return variance (conditional on no jaegquring);
ws(t) andw,(t) are each a standard Brownian motion, with §dws(t), dw(t)] = pdt; J(9) is
the percentage jump size (conditional on a jump occuring) thi@iginormally, identically, and
independently distributed over time, with unconditionalamg;. The standard deviation of
In[1 + J(B)] is o3, q(t) is a Poisson jump counter with intensitywhere Prdq(t) = 1) = Adt
and Prfiqt) = 0) = 1 - Adt. «, 6,/«, ando, are respectively the speed of adjustment, long-run
mean, and variation céigcient of the dffusion volatility V(t). q(t) and J(t) are uncorrelated
with each other or withwg(t) andw,(t).

Under the assumed framework, the total return variance can be gesenhinto two com-
ponents

1., (ds())
d—tVart( 50 ) = V(1) + V3 (t) ()

whereV;(t) = (1/d)Var[I()dq(t)] = [’ + (€75 — 1)(1+ uy)?] is the instantaneous variance
of the jump component. The discounting of future cash flows é®®ting to the single-factor
term structure model (Cox et al., 1985)

dR(t) = [6r - krR)]dt + or VRE)dWR() (5)

wherexkg, 0r/kr andog are respectively the speed of adjustment, long-run mean, arativari
codficient of theR(t) process.wg(t) is the standard Brownian motion, uncorrelated with any
other process in the model.

For a European call option written on the stock with strike pKcand term-to-expiratiom,
its time+ priceC(t, ) must solve
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92C acC 2C 1, 0°C ocC
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+ AE{C(t, 7, S(1+J),R V)-C(t, 7, S, R V)} =

subject toC(t + 7, 0) = maxXS(t + ) — K, 0}. Bakshi et al. (1997) have shown that

C(t, 7) = SN, 7; S, R V) — KB(t, N)Ix(t, 7; S, R V) (7

whereB(t, 7) is the current price of a zero-coupon bond that pays %1pariods from time.
The risk-neutral probabilitied]; andIl,, are recovered from inverting the respective charac-
teristic functions:

II(t, 7 S(Y), R(), V(1))

1 1 fm [e-i¢'“l*<1 fi(t, 7, S(1), R(t), V(1); ¢)
=-+- Re -
0 Ip
for j = 1, 2 with the characteristic functioriy defined in the Appendix.

The European option pricing model in Equation 7 encompassesa®f the most studied
cases. For example, the Black-Scholes model is obtained wWhefk = kxr = or = 6y = ky =
oy = 0; the stochastic volatility (SV) model when= 6r = kg = or = 0; the stochastic interest
rate (SIR) model when = 6, = «, = oy = 0; the stochastic volatility jump (SVJ) model when
0r = kr = or = 0 and stochastic volatility & stochastic interest rate mod®1§5 whena = 0.

As Gencay and Gibson (2009) demonstrate that in terms of theinfesample pricing per-
formance NN models dominate the above parametric models, inetktesaction, we turn our
attention to non-parametric option pricing. In general, there acepwssible explanations for
the superiority of NN models: their ability to capture non-noritgadf return distributions and
adaptive learning.

do (8)

3 Non-parametric Option Pricing

The Black-Scholes formula has been mostly criticized for itgithstional assumptions of the
underlying security. Non-parametric valuation models are a nagutansion, as it is easier
to relax the distributional assumptions. A natural non-paraméiriction for pricing a Euro-
pean call option on a non-dividend paying asset will relateptiiee of the option to the set of
variables which characterize the option

Ct = f(St9 K’ O, rt’ T) (9)
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whereS; is the price of the underlying assé, is the strike priceg is the volatility of the
underlying asset; is the interest rate andis the time-to-maturity.

To facilitate clustering and classification, we reduce ouropppricing formula as in Hutchin-
son et al. (1994) and Garcia and Gengay (2000):

Ct = f(St, K, T) (10)

Assuming the homogeneity of degree one of the pricing functiovith respect tdS; and
K, one can write the option pricing function as follows:

Co_q S

K = f( K L 1) = o(x, X). (11)
—— —— Xo
Ct X1

The pricing functionf is approximated by an MNN with the number of modules and their
location determined by the FLVQ algorithm (described in Secfipn

In contrast to parametric models such as the Black-Scholes thathascumulative normal
shapes, non-parametric models such as MNNs make minimal assnmpbout the shape or
the properties of the underlying price process. In addition, nearpetric pricing functions are
convenient for estimating state price densities (SPDs) amditsal derivatives (the “Greeks”).
For instance, the MNN estimator can be directlffetientiated numerically (or analytically) to
extract the SPD or option delta. Since the partial derivatifemoption pricing formula are
risk pricing tools, an accurate estimation of the unknown eppiacing function is essential for
pricing and hedging.

Similar to linear regression models, NNs map a set of explaypatariables &;, for ex-
ample,i = 1,2) into a dependent variable;). The major diference between NNs and other
non-parametric estimators is that NNs are based on a layered strudtare each layer trans-
forms time series;’s using special functions known as sigmoid logistic or hypédxtangent
functions. The number of layers and the structure of each layer toabe determined before
estimation, like the bandwidth in kernel regression methagiek In the case of NNs, this is
typically performed through a cross-validation method on thelaéilbn part of the data (Garcia
and Gencay, 2000). Then, the parameters of an NN are estimatathimgizing the loss func-
tion defined as the sum of squareffeliences between the obsenggdnd the one predicted by
an NN. The NN-based approaches in option pricing were used byasand Gencgay (2000),
Hutchinson et al. (1994), Gencgay and Gibson (2009), Gradoj¢dk £009) and Gengay and
Altay-Salih (2003).

A popular non-parametric alternative to NNs to estimate thenmiiinction is kernel re-
gression (At-Sahalia and Lo, 1998). In contrast to NNs, where observationaiseare reduced
by averaging the data based on a recursive error minimization gwioegefor kernel regression
this is achieved by local averaging (smoothing). The kernel ate#stimates the price based
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on the weighted sum of the information from the in-sample data. Mpeeifically, given some
time series of explanatory variables (exj.,andx,), to estimate the price, more weight is as-
signed to the observations at locations that are closer todb®wn For instance, our option
pricing model has two regressors and the appropriate kernel pricimgidn would be con-
structed as a product of two univariate kernels. The usual tr&dsetween smoothness and
goodness-of-fit is achieved by the choice of the bandwidth okéneel function. At-Sahalia
and Lo (1998) show that the Nadaraya-Watson kernel estimatorisdomthe SPD and option
delta lie within one per cent of the theoretical values. Theastsample pricing performance of
their model is also impressive and superior over the NN modé&.nibteworthy that the kernel
pricing function from At-Sahalia and Lo (1998) that is used for forecasting is semi-parame
It is informed by dividend yieldr, K, S, risk-free interest rate, and non-parametrically esti-
mated volatility. In contrast, the variables in the MNN model tire ratio of the asset price
to the strike price and the time to maturity. Nevertheless, Gestogt al. (2009) find that the
MNN model outperforms the kernel estimator frorit+&ahalia and Lo (1998) in out-of-sample
pricing exercises.

A novel approach to option pricing pioneered by Barifiblielsen (1998) and Barndidr
Nielsen and Shephard (2001), and extended by Erikkson et al. }280floys the normal
inverse Gaussian model to approximate an unknown distributgianeutral density. This
model’s pricing errors are smaller than the errors of several optieingrinodels with known
densities. The benefit of using the normal inverse Gaussiaityfafrdistributions is that they
are characterized by the first four moments, which are important fovadige pricing. Another
relatively recent theoretical research direction is thigme jump-difusion models. These mod-
els rely on the compound Poisson processes to model jumps wiaigloe a finite or an infinite
number of jumps within a finite time interval. An advanced &mtlon of such models can be
found in Carr and Wu (2004). It uses a generalization of the@Poisson jump diusions, i.e.,
time-changed vy processes that relax thffime structure and allow more general specifica-
tions of the jump structure. The empirical results of applyimgetichanged &vy processes to
the S&P-500 options signify the role of jumps and stochastiatilidl in option pricing (Carr
et al., 2003; Huang and Wu, 2004). However, the results alsstifite the importance of choos-
ing the right jump structure and the appropriate stochasticiliylapecification. Specifically,
a good option pricing model should include a high-frequency jemmponent and should al-
low stochastic volatility to be generated separately from tfffieassion component and the jump
component.

Other non-parametric and semi-parametric estimators that canfdeyed for option pric-
ing include nearest-neighbour estimators (Yakowitz, 1987)strtamed splines (Bates, 2000),
average derivative estimators (Hardle and Stoker, 1989), locgheuolial regression (&-
Sahalia and Duarte, 2003), and orthogonal series expansionréiet al., 1999).
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4 Fuzzy learning vector quantization (FLVQ)

Fuzzy learning vector quantization (FLVQ) algorithm belormthe class of batch unsupervised
learning methods (Bezdek and Pal, 1995). The FLVQ algorithm reptes combination of
the weight adaptation rule used in the Kohonen unsupervisegineetwork and the fuzzy set
membership function proposed by the batch clustering fuzzy c-sn@&@M) algorithm. In
comparison to similar clustering methods, the main advasta§¢he FLVQ algorithm are:
1) smaller number of input (user-defined) parameters is requijdds® frequently trapped in
local minima, and 3) final solution is noffacted by the order of the input data sequence. The
clustering process of the FLVQ algorithm is based on the assomiitat each data class may
contain several clusters defined by their representative poafiesdprototypes In general, the
algorithm contains two phases: the initialization of the ptygpe coordinates of the clusters
(prototype generation) and the improvement of classificatiorr ésr@dapting the prototypes’
coordinates (prototype adaptation).

4.1 Prototype generation

The FLVQ is a self-organizational, non-sequential and cortipetlustering algorithm. Using
the training data, after the initial number of classes and pypes are defined, for each input
observation from the training set, the density of distributiorotbfer input data in its neigh-
borhood is determined from the FCM algorittinThe output of this algorithm represents the
coordinates of the data with the highest density, which argtedoas the initial values of the
prototypes.

Classes that should be extended with new prototypes arefiddriti an iterative process.
Those classes are considered to have the largest number d¢disaiied data. In other words,
if an input pattern has the nearest prototype from the same classatrectly classified and
vice-versa. In each iteration, a partition matxof the current prototypes is calculated by:
o1

(fxmrcmy)
A04(8.G () i=1...K, j=1...,N. (12)

U= Uj = ” " — >

21 (Txeae) ™
whereN is the number of observations in the training dafais total number of prototypes,
x; is the j'" input pattern from the training se€ is the matrix of prototypes coordinates,
d(x;(e), Ck(e)) is the Euclidean distance betweghinput pattern and the" prototype in each
training (iteration) epock and the weighting exponeni(e) is called the “degree of fuzziness”
in epoche.

3We experimented with training data from the first two quartgreach year and the validation data from
the third quarter representing the trial testing data. Tlstraccurate pricing for the third quarter data
was obtained by using eight classes and thirty prototypes ¢in average, about 3-4 prototypes per class).
These input parameters are then used in pricing the foudheuoptions (true out-of-sample data).
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The degree of fuzziness = m(€) is monotonically decreasing with respect to the processing

timeeg, i.e., the number of training epochs:
&M — My)
m=mp — W (13)

wheremy andm; are the initial and final values of the degree of fuzzinessvhose values
are limited by the heuristically determined constraint>fry > my > 1.1.* Parameteemay
determines the maximum number of epochs.

The coordinates of prototypes are modified using FLVQ learning giden by following
expression:

N
Q@+D=Zp¢@ma i=1....K (14)
j=1
whereq; j(€) is the learning rate of thié prototype in epocle. This learning factor is set by:

(uij(€))™
(Ui j(@)me
Equations 12 - 15 are repeated until the given number of pratstgps reached.

@i j(e) = (15)

4.2 Prototype adaptation

This phase of the algorithm involves modifications of the prgies’ coordinates. The key
parts of the algorithm are equations 14 and 15, where the eleroétite partition matrix

U and the coordinates of the prototyp@sare updated. Based on the distances among all
input patterns and the current position of the prototypes, n@sdavates of the prototypes are
calculated in each iteration. The parametée) and current epoch determine the prototype’s
neighborhood, while only patterns belonging to same classargidered. After this step, the
total number of prototypes, as well as their number per eadsare not changed. In the end,
afterenaxiterations, the best prototype coordinates, i.e., the progstyyth the highest number
of correctly classified patterns are recorded and assigned toabmes!.

5 Results
5.1 Data
The data are daily S&P-500 index European call option pricestéken the Chicago Board

Options Exchange. For each available complete year, oeepdhiod from January 1987 to
October 1994, options acrosdtdrent strike prices and maturities are considered. Being one

“Bezdek and Pal (1995) show that this range is appropriata foonotonically decreasing FLVQ algo-
rithm. More specifically, these limits prevent numericatability that may arise when values wfare
close to 1 or are very large (i.e., whemtends to infinity).
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of the deepest and the modfieient option markets in the United States, the S&P-500 index
option market is an adequate choice for our investigations @t§o makes our study directly
comparable to Garcia and Gencay (2000) and Gradojevic et al9)200

Options with zero volume are not used in the estimation. For BliMmation purposes, the
data for each year are divided into three parts: first two quartersiftgaset), third quarter
(validation set) and fourth quarter (out-of-sample, testing set)s ptoduced the following
non-overlapping sub-samples:

e 1987:Training sample: 3610, Validation sample: 2010, Testingman2239

e 1988:Training sample: 3434, Validation sample: 1642, Testingsanl479

1989: Training sample: 3052, Validation sample: 1565, Testinganl515

1990: Training sample: 3605, Validation sample: 2075, Testingan?166

1991: Training sample: 4481, Validation sample: 1922, Testingan?061

1992: Training sample: 4374, Validation sample: 1922, Testinganild848

1993: Training sample: 4214, Validation sample: 1973, Testing@an?030

The optimal NN architecture for each module is determined from thieobsample per-
formance on the validation set with respect to the mean-squarédittioa error (MSPE). To
keep the complexity of the NNs close to Garcia and Gengay (28 modules are single hid-
den layer NNs with either sigmoid logistic or hyperbolic tangactivation functions. Hence,
the search for an optimal NN architecture involves specifyinghtimaber of hidden nodes (we
choose from 1-15 hidden nodes) and their activation functiome parameters are estimated
using the standard Levenberg-Marquardt algorithm. Overfittipgasented by early stopping,
i.e., stopping the training process when the validation set steots to increase. To control
for the possible sensitivity of the NNs to the initial parametaglues, the training is performed
from ten diferent random seeds and the average MSPE values are reported. Ticgvpred
performance on the testing part of the sample is finally assestiethe MSPE criterion.

The out-of-sample pricing performance of an MNN model is compardutt8lack-Scholes
model. The Black-Scholes call prices;) are computed using the standard formula:

In(St/K) + (r + 0.50%)r
oVF
whereN is the cumulative normal distributiorg; is the price of the underlying asse, is
the strike pricer is the time to maturityr is the risk-free interest rate, andis the volatility
of the underlying assets’ continuously-compounded returnsiattd from the last sixty days

Ci = StN(d) - Ke"'N(d - o v7) whered = (16)
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preceding the first day of the last quarter. The risk-free rate is appabed by the monthly
yield of the U.S. Treasury bills.

The statistical significance of the prediction performance sessed with the Diebold-
Mariano statistic (Diebold and Mariano, 1995), distributed asdard normal in large sam-
ples® When the calculated values of the Diebold-Mariano statistclarge and positive, our
model is viewed as being able to significantly improve uporctirapeting models.

5.2 Pricing performance

NN with hint  MNN model MNN-FLVQ model BS mode|] DM

MS PE
1987 16.7 4.1204 3.0880 4.38 20.66
1988 0.7114 0.6107 0.5277 2.07 6.63
1989 0.4138 0.4008 0.3954 1.42 3.11
1990 0.6761 0.5579 0.4859 2.62 4.10
1991 0.3498 0.3293 0.3107 1.73 3.15
1992 0.1511 0.1285 0.1176 1.36 4.28
1993 0.1054 0.0546 0.0475 0.74 4.43

Table 1: REDICTION PERFORMANCE OF THE OPTION PRICING MODELS.

Notes: This table reports the out-of-sample average meaaratprediction errorsS PB for the following option pricing
models: Garcia and Gencgay (2000)'s feedforward neural or&tvnodel with the hint (NN with hint), Gradojevic et al.
(2009)'s modular neural network (MNN) model with nine modulbe MNN model with eight modules determined by the
FLVQ algorithm (MNN-FLVQ model), and the Black-Scholes mo¢®$s model). The average MSPEs for the MNN models
have been obtained as averages across fisrefit random training seeds. DM denotes the Diebold andaMar(1995) test
statistic. This test is used to assess the statisticalfsignce of the model’s forecast gains relative to the NN wittt iodel.

All MS PEfigures have been multiplied by 40

Table 1 compares the out-of-sample pricing performance of the NN Invatte the hint
(Garcia and Gencay, 2000), the MNN model with nine modules frontd@eaic et al. (2009),
the MNN model with eight modules determined by the FLVQ aldomitand the Black-Scholes
model (in terms of the MSPE performance measure). The MNN modelstareted ten times
from ten diferent sets of starting values and the average MSPEs are reportatlyChoth

SWe compute the test statistic as the average of the foreastifferences for the ten estimations of the
optimal NN architectures.
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MNN models outperform the NN model with the hint as well as thecBi&choles model in
all years. Further, the MNN-FLVQ model represents a robust prigimg@ovement relative to
the basic MNN model from Gradojevic et al. (2009) and it demorssrttat an adequate (i.e.,
intelligent) classification can benefit option pricing. In gead, the pricing improvements over
the NN with hint model are statistically significant accordinghe Diebold-Mariano statistic
for all sample years. The improvements are particularly sizeald®87 and 1988 (about 25%
and 15% reductions in the average MSPE, respectively), which mere volatile than the
other years. Such findings emphasize the importance of ctad®fi and clustering in risk
management.

Next, by comparing the module-by-module performance of the bablblivhodel (Grado-
jevic et al., 2009) and the MNN-FLVQ model, we will investigahe underpinnings of the
observed pricing improvements. Figure 1 displays the clusteaesrdul by classifying the op-
tions with the FLVQ algorithm in 1988 and 1993. The optimaksliéication is based on eight
modules (clusters) marked with ordinal numbers 1-8. The FLVQ dlguorclassifies the options
into the following types: out-of-the-money, short term options (£gmthe-money, short term
options (2), in-the-money, short-medium term options (3), out-of-thaeapanedium term op-
tions (4), near-the-money, medium term options (5), in-the-monegljurmelong term options
(6), out-of-the-money, long term options (7), and near-the-money, tlenmg options (8). Note
that the FLVQ-determined boundaries between the clusters amgiveot by straight lines. In
contrast, the option types selected by the so-called “hardhtharies in the Gradojevic et al.
(2009)'s MNN model are set as follovfs:

e Type 1: Out-of-the-money, short term option$;(K) < 0.97 andr < 0.1;
e Type 2: Near-the-money, short term options: 087S;/K) < 1.05 andr < 0.1;
e Type 3: In-the-money, short term optionsS({K) > 1.05 andr < 0.1;

e Type 4: Out-of-the-money, medium term optiong;(K) < 0.97 and 0.k r < 0.2;

e Type 5: Near-the-money, medium term options: 097S;/K) <1.05and 0.k 7 <0.2;
e Type 6: In-the-money, medium term optionsS(K) > 1.05 and 0.k 7 < 0.2;

e Type 7: Out-of-the-money, long term optionsS(/K) < 0.97 andr > 0.2;

e Type 8: Near-the-money, long term options: 0.81S;/K) < 1.05 andr > 0.2;

e Type 9: In-the-money, long term optionsS{/K) > 1.05 andr > 0.2.

5The same pre-determined boundaries are used in Garcia agaBE000).
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Figure 1. FLVQ option classification
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The moneynessS¢/K) of the S&P-500 call options is plotted on the x-axis and thigie-to-expiration ) in years on the
y-axis. Top panel: Eight modules (clusters; marked with atiiumbers 1-8) received by the FLVQ classification
algorithm of all available call options (3610 observatipimsthe training sample of 1988. Bottom panel: Eight modules
(clusters; marked with ordinal numbers 1-8) received by thé@tlassification algorithm of all available call options

(4214 observations) in the training sample of 1993.

The above results show that pre-determining boundaries detertbeaMNN model’s pric-
ing performance relative to the MNN-FLVQ model. It can be observatittte FLVQ-generated
clusters correspond to merging type 3 and a subset of type éheptito cluster 3. In addition,
cluster 6 roughly combines the remaining type 6 and also typei®res. Table 2 lists the aver-
age MSPE figures for all modules of the MNN models across all y®dedind that both MNN
models produce on average the highest pricing errors for modules 8,ad 9 i.e., for the
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Year | Cluster— \ 1 2 3 4 5 6 7 8 9
Model: \
1987 | MNN 353 201 569 115 469 6.87 517 10.17 8.87

MNN-FLVQ | 1.32 191 6.44 219 503 8.22 296 10

1988 | MNN 006 035 035 049 1.18 068 049 149 0.56
MNN-FLVQ | 0.11 0.33 0.36 0.10 0.11 0.86 0.10 0.69

1989 | MNN 0.13 033 058 0.17 048 185 0.23 051 042
MNN-FLVQ | 0.05 0.34 0.10 0.17 048 0.60 0.19 0.56

1990 | MNN 0.05 0.19 047 030 097 0.76 108 0.87 0.70
MNN-FLVQ | 0.09 0.20 049 042 0.10 0.78 055 0.77

1991 | MNN 0.02 0.09 054 014 034 039 018 050 153
MNN-FLVQ | 0.02 0.11 0.52 0.14 0.25 141 0.14 045

1992 | MNN 0.00 0.05 0.17 0.03 0.11 0.20 0.12 0.23 0.46
MNN-FLVQ | 0.00 0.05 0.15 0.04 0.11 045 0.07 0.20

1993 | MNN 0.00 0.03 0.10 0.01 0.04 019 0.02 0.08 0.12
MNN-FLVQ | 0.00 0.03 0.12 0.01 0.03 0.12 0.03 0.04

Average| MNN 055 044 113 033 112 157 105 198 181
MNN-FLVQ | 0.23 043 1.18 0.44 088 1.78 0.58 1.82

Table 2: RepicTioN PERFORMANCE OF THE MNN MODEL MODULES.

Notes: Each cell of this table contains the out-of-sampleame mean-squared prediction errd@3 PE) for the modules
(clusters) of the following option pricing models: Gradageet al. (2009)’'s modular neural network (MNN) model with nine
modules (marked with ordinal numbers 1-9) and the MNN model wightemodules (marked with ordinal numbers 1-8)
determined by the FLVQ algorithm (MNN-FLVQ). The MNN-FLVQ mel cluster 3 corresponds to merged clusters 3 and
(part of) 6 of the MNN model. The MNN-FLVQ model’s cluster 6 cesponds to merged clusters 9 and (part of) 6 of the
MNN model. In addition, cluster 6 combines the remaining typedaso type 9 options. The average MSPEs for the MNN

models have been obtained as averages acrossfferedt random training seeds. All figures have been multiflietio*.
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in-the-money (3, 6, 9) and long term (8, 9) options. Overall, neamtloney, long term options
appear to be the mostficult to price, while pricing the short term options is the mosuaate.
The fact that the MSPE figures are the smallest for the out-of-theeynshort term options is
generally in accord with Bakshi et al. (1997) and their eviddincehe Black-Scholes and the
competing parametric models (SVJ, Sl and SV). Figure 2 also itefidhat the pricing biases
increase with both the time to expiration and the moneynedeedaipitions. As noted before, the
errors are more pronounced in modules 3 (in-the-money options), 6 and@tdrm options).
This is visible as more scatter in the corresponding panelsgofrEi2!

Figure 2: Error plots for the modules in the MNN-FLVQ model (1991
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Notes:
Out-of-sample squared errors({ &), t = 1,...,2061) for 1991 are plotted for each observation classifiedadules 1-8.
The observation number of the S&P-500 call options is plottethe x-axis and out-of-sample squared errors on the y-axis.
All call options in 1991 are classified using the FLVQ aldnitinto the following types (modules): 217 out-of-the-money,
short term options (module 1), 406 near-the-money, short tgtions (module 2), 217 in-the-money, short-medium term
options (module 3), 203 out-of-the-money, medium term opt{omzdule 4), 284 near-the-money, medium term options
(module 5), 141 in-the-money, medium-long term options (modyl8@® out-of-the-money, long term options (module 7),

and 287 near-the-money, long term options (module 8).

"The shapes of the plots for all other years resemble the ond991 and can be available upon request
from the authors.
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The MNN-FLVQ model consistently improves the pricing accuratthe MNN model in
modules 7 and 8, which represent long term options. As long teriorgpare dificult to
price and they also represent a good indicator of model’s acgBakshi et al., 2000), this in
turn emphasizes thefectiveness of our approach. Module 5 (near-the-money, meditm te
options) also exhibits substantial pricing improvementsijedine large reduction in MSPE in
module 1 is driven by 1987, the year of the stock market crash. lwalattribute the success
of the MNN-FLVQ model to its ‘intelligent’ option classificatn that results in a better fit of
the non-linearities in the NN modules.

6 Conclusions

The goal of this study is to propose a new research direction inropticing that is based on
the clustering and classification of the S&P-500 European géilbos over the 1987-1993 data
span. The method we utilize for such purpose is the FLVQ alguritat provides sensible
and ‘intelligent’ boundaries between option classes. Themgbtclassification consists of eight
clusters that are used as modules in an MNN model. The resultitginis called the MNN-
FLVQ model and it represents a methodological improvementeffadojevic et al. (2009)’s
MNN architecture. Empirical pricing exercises show that the MNING model outperforms
both the standard MNN and the NN with the hint models. As theedatvo non-parametric
models dominate their parametric counterparts including thelBScholes model, the MNN-
FLVQ model proves to be arffective option pricing tool. More precisely, the success of the
MNN-FLVQ model mainly lies in its accurate classification ohgpterm option. Also, the
model exhibits remarkable pricing ability in volatile years 87%nd 1988.

Our approach can also be understood as a generalization andiertef the methodologies
such as the Markov switching model or the threshold regressiatem&imilarly, the FLVQ
algorithm involves splitting and sorting the data based oragedriteria. However, it does not
make use of any special threshold or state variables to claksifgata, but, rather relies on its
clustering (learning) algorithm applied on the input space. Hitamh, it generates more than
two regimes that characterize the relationship between theblesiaf interest. In this context,
our approach could also be applied to other non-linear probiletirme series financial econo-
metrics. For example, financial models that are potentialscsptible to regime switching
include foreign exchange rate, interest rate and derivative grioiodels.

In closing, we conclude that the MNN-FLVQ model is a promisingifatresearch avenue
in option pricing. Furthermore, the current approach can be extetodthe notion of ‘soft’
boundaries where data points could belong to any cluster vgthea probability. An example
of this approach are Gaussian mixture models (Behr d@iteR 2009). This class of models
employs all data points in the input space and allows for ictema between clusters when
predicting the output variable.
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Appendix

The characteristic functions are:
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where

The stochastic interest rate (Sl), the stochastic volatility (SMghastic volatility and stochastic
interest rate (SVSI) and the stochastic volatility random jumpJjSiodels are all nested within
the general formula in Equation 7. In the case of SX(f) = Ris a constantB(t, 7) = e ¥ and
the characteristic functions are:
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The characteristic functions for the SV model can be obtaine@tiyng A = 0 in Equations
A3-A4.

V(t)} ,
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