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On the Relevance of the Bayesian Approach to Statistics
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In this essay, | argue about the relevance and the ultimatg eirthe Bayesian approach
in a neutral and agnostic manner. My main theme is that Bagedata analysis is an
effective tool for handling complex models, as proven by theedasing proportion of
Bayesian studies in the applied sciences. | thus disrebarghilosophical debates on the
meaning of probability and on the random nature of parareeteithings of the past that
ultimately do a disservice to the approach and are irreleieamost bystanders.
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1 Introduction

Bayesian data analysis can be defineciasethod for summarising uncertainty and making
estimates and predictions using probability statementelitional on observed data and an
assumed modéGelman 2008). In this essay, | aim to explain why | believél{uwnany others)
that Bayesian data analysis is valuable and useful in Btati®conometrics, and biostatistics,
among other fields. My defence of the theme is based on piegemuser’s perspective and
arguing in favour of the ultimate practicality of the Bayasitoolbox, whilst refraining from
more elaborate philosophical and epistemological argtsrmmthe nature of Science.

| do agree with Russell Davidson that the shrill tone of someostly past — defences of the
Bayesian paradigm are doing it a disservice by transfethiaglebate to religious and therefore
irrational grounds. My personal stance on the Bayesian choice is on the contraynged
in realism. The Bayesian perspective provides me with a ¢et@mpoolbox that allows me to

*C.P. Robert is supported by the ANR-2009-BLAN-0318 “Big'M@rant. He is grateful to thBayesian
Econometrics Il workshoprganisers for their invitation to lovely Rimini and for theupport, and to
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also gratefully acknowledged.
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1The barb of Russell Davidson, also found in Senn (2083)yesians are of course their own worst
enemies. They make non-Bayesians accuse them of religivasif and an unwillingness to see another
point of view is not completely unfounded.
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conduct inference in an arbitrary setting at a minimal cogerms of constructing statistical
procedures. In addition, it providesfBuaient theoretical safety rails to ensure coherence in
my decision-making and convergence properties for my mhoess. | also agree with Andrew
Gelman’s (2008) reservation thatconsequence of Bayesian statistics being given a proper
name is that it encourages too much historical deferenaa fpeople who think that the bibles
of Jgfreys, de Finetti, or Jaynes have all the answélrke formalisation of Bayesian statistics
by those pioneers has greatly contributed towards mfiigiency in the design of Bayesian
procedures (Robert et al. 2009) and therefore to their nupepularity. However, naming a
technique after particular scientists, even when as giiests as those above, is a rhetorical trick
to bring more authority to an approach. To keep the tone sfdbksay as clear as possible, | will
nonetheless use the recent (Fienberg 2006) adjective gfe$an” in the following but I will
mostly refrain from giving a name to alternatives, the usujéctive of “frequentist” seeming
now out-dated and overly restrictive. The range of non-Barestatistical techniques indeed
extends much further than looking at average properties.

As already done in the above, throughout the text | will be imgkan admittedly selective)
use of recent quotes that defend or criticise the Bayesiproaph. Most of them emanate from
a debate run bayesian Analysifllowing the tongue-in-cheek critique of Gelman (2008). |
will present here elements to support Gelman’s (2008) emimh that,given the advances in
practical Bayesian methods in the past two decades, ante8ianism is no longer a serious
option My view is that denying the relevance of Bayesian analysithe sole ground that it is
Bayesian does not follow from a rational stance.

2 Bayesian Models

Let me first stress that the Bayesian approach to non-parasistalive and well, as shown for
instance by the recent advances in Dirichlet models (Teh 2086) and Bayesian asymptotics
(Ghosal and Van der Vaart 2006) (see also Hjort et al. 200@)yeBian non-parametrics can
now manage density and functional estimation with the saggees of complexity with which
a normal mean is estimated by a Bayesian analysis based anjumate prior (Holmes et al.
2002). As regards Russell Davidson’s first question reladdide Bahadur-Savage impossibility
theorem, | do not understand the statistical point of theitdsis Section 3 and | therefore have
no answer. (His Theorem 1 reminds me very much of a resuliedatie Costas Goutis, reported
in my book, Robert 2001, Table 3.2.3, about the range of Bagtators.) On the other hand,
the issue raised by Russell Davidson in Section 7 aboutpracating smoothness in the prior
does not seem to be particularly problematic, once smosthea@efined in terms of a particular
class of functions.

| will only consider here parametric settings, mostly fanplicity and space reasons. (And
also for the fact that the priors found in non-parametritirsgs seem to be much more ac-
ceptable as working tools by non-Bayesians.) The commouargtdor both parametric and
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non-parametric settings is nonetheless that a model prs\adikelihood. | simply do not be-
lieve meaningful inference is possible without this likelod functior?

Given that all models are approximations of the real wohd,¢hoice of a parametric model
obviously is wide-open to criticism. As stated by GelmanQ&))Bayesians promote the idea
that a multiplicity of parameters can be handled via hiefdoal, typically exchangeable, mod-
els, but it seems implausible that this could really workomoatically [instead of] giving rea-
sonable answers using minimal assumptiofifis is, however, a type of criticism that goes
beyond Bayesian modellinger seand questions the relevance of completely built models for
drawing inference or running predictions. (Obviously, eading my “opponent’s” perspective
that inference is sometimes impossible would immediatielyecthe discussion!) The Bayesian
paradigm does not state that the model with which it operiatése “truth”, no more than it
requires that the corresponding prior distribution has reneation with the “true” production
of parameters (since there may even be no parameter attadimply provides an inferential
machine that has strong optimality properties under thiet mgodel and that can similarly be
evaluated under any other well-defined alternative modieBopper’'s (1934) terms, a Bayesian
model can be “falsified” when faced with data from another eiddrempleton (2008) sees the
fact thathaving a high relative [posterior] probability does not nrethat a hypothesis is true
or supported by the datas the ultimate drawback of the Bayesian paradigm. On theargn
| see it as a strength, even in Popperian terms, becausee(a)i$mo such thing as a “true” hy-
pothesis and (b) the support brought by the data is alwagtwelo a reference model. Besides,
the Bayesian approach is such ttethniques allow prior beliefs to be tested and discarded as
appropriate(Gelman 2008). In other wordBayesian data analysis has three stages: formu-
lating a model, fitting the model to data, and checking the ehdit (Gelman 2008). Hence,
there seems to be little reason for not using a parametricehaichn early stage even if it is
later dismissed as “not true enough” (in favour of anothedetp

Besides giving the Bayesian paradigm his name, Thomas Bayesbuted by stating the
definition of a conditional probability and deriving what is now knows Bayes theorerh.
Nonetheless, if surprisingly, there still exists a debimud the very nature of Bayes theorem.

20f course, this statement goes against a large portion ofuhent practice that contends that first
moments are gficient descriptions of the real world. But | do prefer the liiels provided by a full if
wrong model to the adhocqueries required by a minimalistetiog). In particular, replying to Russell
Davidson’s question in Section 4, | do not think there is ad¥gn approach to GMM'’s unless one is
ready to use a pseudo-likelihood that encompasses thdisdenoments.

3This is not to imply that the philosophy of Popper (1934) isgreement with the Bayesian approach,
since Popper and Miller (1983) demonstrates the impoggyibil coherent statistical inference.

4As stressed by Jaynes (2003), Bayes’ contribution to inferavas essentially restricted to a somewhat
dubious toy example of locating the position of a billiardl bk contrast, Laplace and others had a much

wider range of examples, with more realistic applicatioddireys, de Finetti and Jaynes set the bases
into firmer mathematical and methodological ground, whileld\and Stein established the fundamental

optimality properties validating Bayes procedures.
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Russell Davidson points out that it isflicult to express itn the formalism that is used in fi-
nancial economigeconometricsAnother illustration is given by Templeton (2008). He aegu
that conditioning upon the observatign- f(x0) is plainly invalid: The impact of treating x as
a fixed constant is to increase statistical power as an actedadignoring the sampling error
of x undermines the statistical validity of all inferenceada by the methodAs validated by

standard measure theory (Billingsley 1986), the posteigtribution

_0)(6)
(09 = [ f(x6)(6) dé

does include the sampling (error) distribution while conditioning on the data This ap-
proach furthermore is the only coherent way to give a meatdrggatements lik&(6 > 0|x),
i.e. to properly construct confidence and prediction states) while conditioning on the data
at hanc®

Gelman (2008) reports th&ayesian methods are presented as an automatic inference en
gine, and this raises suspicion in anyone with applied eepee It is true thatr(9|x) is the
core of Bayesian inference. It can legitimately be viewedhas“ultimate inference engine”
via which all decisions (in a decision-theoretic framewdssed on the data can be automati-
cally derived. There is no fundamentaffiiulty in this automated derivatidchOnce optimality
criteria are explicitly stated via the utility function as$ated with the decision, searching for
the optimal decision reduces to solving a well-posed otation problent. Furthermore, the
inference [step] gets most of the attention, but the Bayegiacedure as a whole is not auto-
matic (Gelman 2008). In addition, using a probability distrilaution the parameter space and
Bayes theorem allows for a coherent update of the informati@ilable org in the sense that
the current posterior distribution becomes the prior iigtion before gathering more data.

3 On Prior Selection

The recurrent criticism of the Bayesian perspective istti@tvhole inferential approach is ulti-
mately dependent upon the choice of the prior distributstlearly shown by the definition of

5This point relates to Russell Davidson’s questions abaubtotstrap. While | appreciate very much the
strength of bootstrapping techniques and find them a naguta} to Statistics for my third year students,
| have trouble reconciliating the bootstrap and Bayesiatistics. Indeed, the bootstrap is fundamentally
a plug-in method, especially in its parametric version,alittherefore omits to properly take into account
the variability of the plugged-in parameter estimates.

5That it is an automatic engine is an argument rarely advahgeglitics of the Bayesian approach, who
on the contrary uniformly point out its subjective featurB8ee Section 3.

‘Gelman (2008) stresses tHass functions [are] not relevant to statistical inferenaed he does not
see any role for squared error loss, minimax, or the rest chtvi sometimes called statistical decision
theory Following the arguments advanced in Robert (2001), but ial8erger (1985) and Bernardo and
Smith (1994), | cannot but strongly disagree with this pecsipe. Decision theory is a strong motivation
for using Bayesian procedures, especially in economiceaadometrics where rationality is customarily
associated with maximising utility functions.
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the posterior distribution above. There is no possible telbout this fact, either from a math-
ematical or methodological perspective. It is also strdidgtvard to come up with examples
where the choice of the prior leads to absurd decisions.

There is no easy answer to this criticism, but this acknogdasent must not be taken as
conceding defeat in the debate! If the prior had no impactheninference, data would be
similarly useless, since the update would not matter. Thezgl see this dependence as a plus
of the Bayesian approach. It allows one to include an infirgitege of prior opinions and items
of information, while progressively concentrating on ridigurhoods of the “true” value of the
parameter — in settings where the data is generated fronsthereed model. In the literature,
this point about the advantages of incorporating priorrimiation is rather universally accepted.
The criticisms instead focus on the opposite situation wltlee prior information is poor or
inexistent, denyingon-informativgor ignorancg priors their label, i.e. the representation of a
state of complete ignorance.

Maybe surprisingly (and maybe not!), | completely agreehwitis criticism in that any
choice of prior distribution corresponds to some informmadil input about the parameter. The
ultimate argument is that, were there such a thinghanon-informative prior, it wouldoe
expected to represent total ignorance about the probléass and Wasserman 1996). Thus,
being moderately unfair (!), this object should be such doarimation black hole as to cancel
the dfect of any amount of information and should thus remain timesaven after observing
the data! Therefore, whenfieys (1939) states thdtthe parameter may have any value from
—oo 0 +00, its prior probability should be taken as uniformly disuiied he is making a choice
of a particular structure of the model that impacts on hiareiinference, in addition to using
the termuniformin an implicitly generalised manner because the paramptaresis then un-
bounded (Robert et al. 2009). Instead, as stated by Geln@@8)2here is no good objective
principle for choosing a noninformative prior (even if titatncept were mathematically defined,
which it is not) The notions obbjectiveand ofnon-informativeare indeed not well-defined
mathematical concepts and they carry an irrational undertbat fails to lend legitimacy to
the associated priors. Some mathematical criteria do leadrme competing families aéf-
erencepriors like the left Haar measures mentioned by Russell @rn or matching priors
(see Robert 2001, Chapters 3 and 8). The ultimate attempodiiping a meaningful rationale
for building non-informative priors is, in my opinion, Beardo’s (1979) definition through the
information theoretical device of Kullback divergencegsdso Berger and Bernardo 1992).
Quite obviously, this is not the only possible approach. Amother things, it depends on a
choice of information measure, does not always lead to disaland requires an ordering of
the model parameters that involves some prior informatisrs¢me subjective choice). How-
ever, as long as we do ntink of those reference priors as representing ignoragidedley
1971), they can indeed haken as reference priors, upon which everyone could falklvehen
the prior information is missingkass and Wasserman 1996).
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Apart from the conceptual confusion about non-informagiiers that plagued most of the
19th and mid 20th century debate about the nature of Bayedenence, the issue of improper
priors often serves as a further criticism. Indeed, noofimfative priors often are measurable
functionsn(6) with infinite mass,

7(0)d6 = +oo,
®

which deprives them of a probabilistic interpretation. sTtiiiticism can be most easily rebutted
for a wide variety of reasons. The first reason is topologicdderence: limits of Bayesian

procedures often partake of their optimality propertieai@\1950) and should therefore be
included in the range of possible procedures. Another omehigstness: a measure with an
infinite mass is much more robust than a true probabilityrithstion with a large variance.

Provided

f@ f(X|9)7(6) d < 0,
the quantity
(o) = —10407(0)
Jo, f(Xi6)=(6) do
is as well-defined as a probability density as a regular piostdistribution (Hartigan 1983,
Berger 1985, Robert 2001).

4 Testing Versus Model Comparison

The inferential problems of Bayesian model selection arBlayfesian testing are clearly those
for which the most vigorous criticisms can be found in therbiture. An illustration is provided
by Senn (2008) who states thihe Jgfreys-subjective synthesis betrays a much more dangerous
confusion than the Neyman-Pearson-Fisher synthesis asdediypothesis testd find this
suspicion rather intriguing given that the Bayesian apginda the only one giving a proper
meaning to the probability of a null hypothesiHo|x). Alternative methodologies are able, at
best, to specify a probability value on teamplingspace, i.e. on the “wrong” space since the
only variation is on the parameter space once the obsenvatmbtained.

Senn (2008) further advances thehat is almost never used, however, is thgides sig-
nificance test | recall here that the most standard Bayesian approachstmgeand model
choice relies on the Bayes factor (Kass and Raftery 1995)chylior hypotheses written as
Ho: 6 € ©pand asH; : 6 € @y, is defined as (J&reys 1939, Jaynes 2003)

f f(X10)70(6)dO
Q9

Bo1 =

_ 7T(®o|X)/7T(®o) _
7(®1]X)

(1) f F(XO)r2(6)d6
0

This monotonic transform of the posterior probabilityHef eliminates the influence of the prior
weightz(®g) and has a similar interpretation to the classical likaetithoatio. However, it does
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not sufer from the over-fitting dticulties of the latter, in that it includes a natural penaisa
factor for richer models. This is shown by the connectiorhwiite BIC (Bayesian information
criterion), intuited by Jfreys (1939):variation is random until the contrary is shown; and
new parameters in laws, when they are suggested, must legl tesé at a time, unless there
is specific reason to the contranAlthough | strongly dislike using the term because of its
undeserved weight of academic authority, the Bayes factsras a naturdabckham’s razor.

A criticism of the use of Bayes factors (e.g., Templeton 2068hat the quantity is not
scaled in probability terms. On the contrary, | maintais haturally scaled against one and can,
moreover, be readily transformed into posterior probtédiwhen the prior probabilities of the
hypotheses are specified. (It is furthermore a natural fasta decision-theoretic framework,
see Robert 2001.) Another criticism is rarely voiced owdgslte Bayesian community, namely
that the use of improper priors is mostly prohibited in tlgtiag, for lack of proper normalising
constants. Solutions have been proposed, akin to crogkatiah techniques in the classical
domain (Berger and Pericchi 1996, Berger et al. 1998), beyt #ire somehow too ad-hoc to
convince the entire community (and obviously beyond).

If we consider the special case of point null hypotheses -lvls not so limited in scope
since it includes all variable selection setups — there isfecdlty with using a standard prior in
this environment. As put by fieeys (1939), whemronsidering whether a location parameter
a is 0 [when] the prior is uniform, we should have to takgér) = 0 and B, would always be
infinite. This is a case when the inferential question implies a mzatifin of the prior, justified
by the information contained in the question. Avoiding tHeoke issue is a clear-cut solution, as
with Gelman (2008) havingo patience for statistical methods that assign positivebpbility
to point hypotheses of tife= 0 type that can never actually be tru€onsidering the null and
the alternative hypotheses as defining twdedlent models is another solution that allows for a
Bayes factor representation.

A major criticism directed at the Bayesian approach tongsis that it is not interpretable
on the same scale as the Neyman-Pearson-Fisher solutioglynia terms of Type | error prob-
ability and test power. In other wordsequentist methods have coverage guarantees; Bayesian
methods don't; 95 percent frequentist intervals will liyeto their advertised coverage claims
(Wasserman 2008). A natural thing to do is then to questiemfipeal of such frequentist prop-
erties when considering a single dataset. That is,fiine}es’ (1939) famous words, hypothesis
that may be true may be rejected because it had not predidisereable results that have not
occurred From a decision-theoretic perspective — to which the feadjst properties should
relate — a classical Neyman-Pearson-Fisher procedurevés eealuated in terms of the con-
sequences of rejecting the null hypothesis, even thougtefletion must imply a subsequent
action towards the choice of an alternative model. (Fronreomeer decision-theoretic perspec-
tive, note also thap-values may be inadmissible estimators, Hwang et al. 199Rérefore,
arguing that high posteriors probabilities do not implytthéypothesis is true as in Templeton
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(2008) and that the Bayesian approach is relative in thabsits two or more alternative hy-
potheses and tests their relative fits to some observedtitatiTempleton 2008), is missing the
main purpose of Bayesian tests. Bayesian procedures dimait &alidating or invalidating a
golden modeper sebut rather lead to the choice of a working model that allowsafaeptable
predictive propertie$.

Another criticism covers the lack of asymmetry of the Bayastdr, since it satisfies the
equalityB;o = 1/Bp1. For model choice, i.e. when several models are under cosgpeior the
same observation

miZX~fi(X|9i), iej,

whereJ can be finite or infinite, this symmetry seems to me to be a foreteially sound prop-
erty. Nevertheless, Templeton (2008) bemoansttiee is no null hypothesis, which compli-
cates the computation of sampling error, since there is nglsistatistical model under which
to evaluate samplingThis should be construed as a clear limitation of the NeyPaarson-
Fisher paradigm, since the latter imposes asymmetry anue(lyerror control under a single
(null) model. However, this is not the perspective of Tertgotg2008) who concludes with the
impossibility of the posterior probability of a model,

pi | fi(XI6)mi(6:)d6,

O;
ijf fj(X|9j)7Tj(9j)d9j
i ©;

due to the impression th#fhe numerators are not co-measurable across hypothesesthan
denominators are sums of non-co-measurable entities. &jehe “posterior probabilities”
that emerge are not co-measurable. This means that it is enadkically impossible for them
to be probabilities.Given that all terms are marginal likelihoods for the samsentation, it
seems dficult to argue against their co-measurability. Contrarylassical plug-in likelihoods,
marginal likelihoods do allow for a comparison on the samaescSimilarly, the belief that
complicating dimensionality of test statistics is the fégt the models are often not nested,
and one model may contain parameters that do not have anafouthe other models and
vice versa(Templeton 2008) is not well-founded. The Bayes factor w@pprly defined and
applicable to settings where the models are not embeddeteéted). This is due to the fact
that the corresponding quantity of interest for a given naslehe marginal likelihood (or
evidence), which integrates over spaces and complexityndrich can be interpreted at face
value since it is calibrated across models.

A last point of contention about Bayesian testing is the agmizabsence of clearly defined
directions when conducting a standard analysis. Figur@rbdeices an output from Marin and

a(Mi|x) =

81t is worth repeating the earlier assertion that all modet¢sfalse and that finding that a hypothesis is
“true” is not within our reach, if at all meaningful!
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Robert (2007b). This computer output illustrates how a wlefarior and Bayes factors can
be used in the same spirit as significance levels in a standgrdssion model, each Bayes
factor being associated with the test of the nullity of theresponding regression déieient.
This output mimics the standai function Im outcome in order to show that the level of
information provided by the Bayesian analysis goes beybedlassical output. My point here
is obviouslynotin showing that we can get similar answers to those of a lepgtre analysis
since, elseywe might as well use the frequentist metifdéasserman 2008). It is to demonstrate
that reference analyses are available, while preservimgtiiength of the Bayesian machinery
(like joint confidence regions and multiple tests).

Figure 1:R output of a Bayesian regression on a processionary cdsergdtaset with ten
covariates analysed in Marin and Robert (2007b).

Estimate BF log10(BF)
(Intercept) 9.2714 26.334 1.4205 (***)

X1 -0.0037 7.0839  0.8502 (**)
X2 -0.0454 3.6850 0.5664 (**)
X3 0.0573 0.4356 -0.3609

X4 -1.0905 2.8314  0.4520 (*)
X5 0.1953 2.5157 0.4007 (*)
X6 -0.3008 0.3621 -0.4412

X7 -0.2002 0.3627 -0.4404

X8 0.1526 0.4589 -0.3383

X9 -1.0835 0.9069 -0.0424
X10 -0.3651 0.4132 -0.3838

evidence against HO: (****) decisive, (***) strong, (**) dostantial, (*) poor

5 On Pervasive Computing

Bayesian analysis has long been derided for providing gdtamswers that could not be com-
puted. With the advent of early Monte Carlo methods, of pemscomputers, and, more re-
cently, of more powerful Monte Carlo methods (Hitchcock 2)@e pendulum appears to have
switched to the other extreme. Nowadagayesian methods seem to quickly move to elaborate
computation(Gelman 2008). This feature does not make Bayesian metlesdssuispicious

in the mind of critics for diferent reasonsa simulation method of inference hides unrealistic
assumptiongTempleton 2008). | won’t launch here into a defence of satiah techniques
that have done so much to promote Bayesian analysis in the&leeades, referring to Chen et
al. (2000), Robert and Casella (2004), Marin and Robert{BD6r detailed arguments and to
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Robert and Marin (2010), Robert and Wraith (2009) for specifiverages of the computational
advances related to Bayesian model choice. Simulationadstban certainly be misused, as
any methodology can be. However, whBayesian simulation [may seem] stuck in an infinite
regress of inferential uncertainfGelman 2008), there exist enough convergence assessment
techniques (Robert and Casella 2010) to ensure a reasateplee of confidence in the accu-
racy of the approximation provided by those simulation radth Thus, as rightly stressed by
Bernardo (2008)the discussion of computational issues should not be alade®bscure the
need for further analysis of inferential questichs

In Section 6, Russell Davidson asks about the reliabilityMairkov chain Monte Carlo
(MCMC) methods and about recent developments in this fielie dnswer is more complex
than time and space allow in this essay, so my first reply igfeer him to (Robert and Casella
2004, 2009) for booklength entries. A second response is tiespite their specific label,
MCMC methods do not dier in essence from other Monte Carlo methods. When using an im
portance sampler or an harmonic mean estimator (see MatiRabert 2007a for details), the
guantities we produce are unbiased, which is not a charstatesf MCMC outputs. However,
they may also be associated with infinite variance, whichmadiaat their convergence time is
beyond anyone’s patience! The same applies to MCMC samiedare formally associated
with the correct stationary distribution but which may iragtice end up with a cosmologi-
cal number of iterations! Robert and Casella (2010) desal&ral tools that help in checking
convergence and stationarity, but those tools are not aetelplfoolproof. Therefore it may
happen that the lack of convergence of a MCMC output remaidgtected. Similarly, using a
numerical integration software may fail to detect an imaottregion for the integrand. Those
are numerical problems that have little to do with the methogly under scrutiny and can often
be detected by using a multifaceted strategy, mixing tagetbveral numerical methods.

Interestingly enough, the most accurate — in our opinion pr@pmation technique for
Bayes factors is, when applicable, derived from Bayes #eofThis is indeed the purpose of
Chib’s (1995) rendering:
m(x) = n(0)f(x0) _ ﬂ(f?)f(XIG)

7(6]X) 7(61X)

wheren{0]X) is a simulation-based approximation to the posterior ignMarin and Robert
(2008) propose an illustration in the setting of mixturegijler Robert and Marin (2010) im-
plement the method for a probit model, with both examplesatestrating the precision of this
approximation. There have been discussions about theamcaf this method in multimodal
settings (Fruhwirth-Schnatter 2004), but straightfadv@odifications (Berkhof et al. 2003, Lee

9The confusion of Templeton (2008) is of this nature, namesychiticisms bear in fact on the generic
principles of Bayesian inference and in particular testiulgje he aims at criticising a specific simulation
methodology called ABC and described below. See Beaumoat. ¢2010) for a discussion of this
confusion.
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et al. 2008) overcome suchfficulties and make for both an easy and a robust computational
tool associated with Bayes factors.

Instead of presenting the whole range of available comjmualt solutions, | want to point
out here a single but recent advance in Bayesian computiaigtows for a further extension
of Bayesian data analysis to cases where any other methadesénce is either impossible
or seriously inaccurate. This new method is called ABC, ditaj for Approximate Bayesian
Computation It was introduced in genomics by Pritchard et al. (1999)dadie models, like
phylogenic trees, where the likelihood could not be comgiriea reasonable time, hence pro-
hibiting the use of standard simulation tools. The methdubased on a standard accept-reject
principle generating ~ x(8), X' ~ f(x|9) until X = x which produces a generation frorfg|x).
Since the stopping rule is impossible to attain in contiragettings, the approximation in ABC
consists in replacing = X’ with a relaxed conditiond(x, X') < €, whered is an arbitrary di-
vergence measure amrds an approximation parameter to be calibrated. Assumiagrtbw
“observations™’ from the likelihood can be easily simulated, this method/tes controlled
approximationsr(6|d(x, X') < ¢€) to the posterior distribution. The accuracy of this method
can be calibrated against the available computing poweitasdurrently in standard use for
genomic applications (Cornuet et al. 2008) as well as for ehatloice in graphical models
(Grelaud et al. 2009Y?

The field of Bayesian computing is therefore very much alivé, avhile its diversity can be
construed as a drawback by some, | do see the emergence obnmgwiting methods adapted
to specific applications as most promising, because it beiamess to the growing involvement
of new communities of researchers in Bayesian advances.

6 Conclusion

Once again, | want to stress that the purpose of this essayfi©om trying to preach in favour
of my creed, as | do not see Bayesian data analysis as a pbfhilicsd (and even less reli-
gious) stance. What drives my Bayesian choice is the essgméicticality of the tools and
of the actions | can undertake thanks to that choice, as wetha ability to evaluate, criti-
cise, and possibly modify, the calibration choices | havelenat the beginning of my analysis.
There is beauty as well agfigiency in transparency and a Bayesian data analysis isatilgn
transparent in that it displays all of its components (ptigelihood, loss function, simulation
technique) for public evaluation. The fact that any of theseponents can be replaced by an
alternative version explains and illustrates the veiigatf the method and the appeal it exerts
on non-statisticians in need of a data analysis tool. Thergthactical side of Bayesian data
analysis is that we now see a growing range of complex modedsey apart from abdicating

19(Grelaud et al. 2009) is one illustration of the high popityanf Bayesian techniques in epidemiology,
biostatistics and genomics. | thus disagree with Russefid3an’s impression of the opposite at the end
of Section 8!
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on some part of the complexity, the only available solut®toiuse a Bayesian approach. Han-
dling highly non-identifiable models, inferring about theghical structure of a spatial model,
running a small area estimation on an very dense grid, angly®ntinuous time data with
hidden Markov structures, all of these problems and a myriadhers cannot be processed but
from a Bayesian perspective.
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