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In this essay, I argue about the relevance and the ultimate unity of the Bayesian approach
in a neutral and agnostic manner. My main theme is that Bayesian data analysis is an
effective tool for handling complex models, as proven by the increasing proportion of
Bayesian studies in the applied sciences. I thus disregard the philosophical debates on the
meaning of probability and on the random nature of parameters as things of the past that
ultimately do a disservice to the approach and are irrelevant to most bystanders.
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1 Introduction

Bayesian data analysis can be defined asa method for summarising uncertainty and making

estimates and predictions using probability statements conditional on observed data and an

assumed model(Gelman 2008). In this essay, I aim to explain why I believe (with many others)

that Bayesian data analysis is valuable and useful in statistics, econometrics, and biostatistics,

among other fields. My defence of the theme is based on presenting a user’s perspective and

arguing in favour of the ultimate practicality of the Bayesian toolbox, whilst refraining from

more elaborate philosophical and epistemological arguments on the nature of Science.

I do agree with Russell Davidson that the shrill tone of some –mostly past – defences of the

Bayesian paradigm are doing it a disservice by transferringthe debate to religious and therefore

irrational grounds.1 My personal stance on the Bayesian choice is on the contrary grounded

in realism. The Bayesian perspective provides me with a complete toolbox that allows me to
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Econometrics III workshoporganisers for their invitation to lovely Rimini and for their support, and to
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1The barb of Russell Davidson, also found in Senn (2008),Bayesians are of course their own worst
enemies. They make non-Bayesians accuse them of religious fervour, and an unwillingness to see another
point of view, is not completely unfounded.
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conduct inference in an arbitrary setting at a minimal cost in terms of constructing statistical

procedures. In addition, it provides sufficient theoretical safety rails to ensure coherence in

my decision-making and convergence properties for my procedures. I also agree with Andrew

Gelman’s (2008) reservation thata consequence of Bayesian statistics being given a proper

name is that it encourages too much historical deference from people who think that the bibles

of Jeffreys, de Finetti, or Jaynes have all the answers. The formalisation of Bayesian statistics

by those pioneers has greatly contributed towards more efficiency in the design of Bayesian

procedures (Robert et al. 2009) and therefore to their current popularity. However, naming a

technique after particular scientists, even when as prestigious as those above, is a rhetorical trick

to bring more authority to an approach. To keep the tone of this essay as clear as possible, I will

nonetheless use the recent (Fienberg 2006) adjective of “Bayesian” in the following but I will

mostly refrain from giving a name to alternatives, the usualadjective of “frequentist” seeming

now out-dated and overly restrictive. The range of non-Bayesian statistical techniques indeed

extends much further than looking at average properties.

As already done in the above, throughout the text I will be making (an admittedly selective)

use of recent quotes that defend or criticise the Bayesian approach. Most of them emanate from

a debate run byBayesian Analysisfollowing the tongue-in-cheek critique of Gelman (2008). I

will present here elements to support Gelman’s (2008) conclusion that,given the advances in

practical Bayesian methods in the past two decades, anti-Bayesianism is no longer a serious

option. My view is that denying the relevance of Bayesian analysis on the sole ground that it is

Bayesian does not follow from a rational stance.

2 Bayesian Models

Let me first stress that the Bayesian approach to non-parametrics is alive and well, as shown for

instance by the recent advances in Dirichlet models (Teh et al. 2006) and Bayesian asymptotics

(Ghosal and Van der Vaart 2006) (see also Hjort et al. 2009). Bayesian non-parametrics can

now manage density and functional estimation with the same degree of complexity with which

a normal mean is estimated by a Bayesian analysis based on a conjugate prior (Holmes et al.

2002). As regards Russell Davidson’s first question relatedto the Bahadur-Savage impossibility

theorem, I do not understand the statistical point of the test in his Section 3 and I therefore have

no answer. (His Theorem 1 reminds me very much of a result of the late Costas Goutis, reported

in my book, Robert 2001, Table 3.2.3, about the range of Bayesestimators.) On the other hand,

the issue raised by Russell Davidson in Section 7 about incorporating smoothness in the prior

does not seem to be particularly problematic, once smoothness is defined in terms of a particular

class of functions.

I will only consider here parametric settings, mostly for simplicity and space reasons. (And

also for the fact that the priors found in non-parametric settings seem to be much more ac-

ceptable as working tools by non-Bayesians.) The common ground for both parametric and
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non-parametric settings is nonetheless that a model provides a likelihood. I simply do not be-

lieve meaningful inference is possible without this likelihood function.2

Given that all models are approximations of the real world, the choice of a parametric model

obviously is wide-open to criticism. As stated by Gelman (2008),Bayesians promote the idea

that a multiplicity of parameters can be handled via hierarchical, typically exchangeable, mod-

els, but it seems implausible that this could really work automatically [instead of] giving rea-

sonable answers using minimal assumptions. This is, however, a type of criticism that goes

beyond Bayesian modellingper seand questions the relevance of completely built models for

drawing inference or running predictions. (Obviously, embracing my “opponent’s” perspective

that inference is sometimes impossible would immediately close the discussion!) The Bayesian

paradigm does not state that the model with which it operatesis the “truth”, no more than it

requires that the corresponding prior distribution has a connection with the “true” production

of parameters (since there may even be no parameter at all). It simply provides an inferential

machine that has strong optimality properties under the right model and that can similarly be

evaluated under any other well-defined alternative models.In Popper’s (1934) terms, a Bayesian

model can be “falsified” when faced with data from another model.3 Templeton (2008) sees the

fact thathaving a high relative [posterior] probability does not mean that a hypothesis is true

or supported by the dataas the ultimate drawback of the Bayesian paradigm. On the contrary,

I see it as a strength, even in Popperian terms, because (a) there is no such thing as a “true” hy-

pothesis and (b) the support brought by the data is always relative to a reference model. Besides,

the Bayesian approach is such thattechniques allow prior beliefs to be tested and discarded as

appropriate(Gelman 2008). In other words,Bayesian data analysis has three stages: formu-

lating a model, fitting the model to data, and checking the model fit (Gelman 2008). Hence,

there seems to be little reason for not using a parametric model at an early stage even if it is

later dismissed as “not true enough” (in favour of another model).

Besides giving the Bayesian paradigm his name, Thomas Bayescontributed by stating the

definition of a conditional probability and deriving what is now known as Bayes theorem.4

Nonetheless, if surprisingly, there still exists a debate about the very nature of Bayes theorem.

2Of course, this statement goes against a large portion of thecurrent practice that contends that first
moments are sufficient descriptions of the real world. But I do prefer the facilities provided by a full if
wrong model to the adhocqueries required by a minimalist modelling. In particular, replying to Russell
Davidson’s question in Section 4, I do not think there is a Bayesian approach to GMM’s unless one is
ready to use a pseudo-likelihood that encompasses the specified moments.
3This is not to imply that the philosophy of Popper (1934) is inagreement with the Bayesian approach,
since Popper and Miller (1983) demonstrates the impossibility of coherent statistical inference.
4As stressed by Jaynes (2003), Bayes’ contribution to inference was essentially restricted to a somewhat
dubious toy example of locating the position of a billiard ball. In contrast, Laplace and others had a much
wider range of examples, with more realistic applications.Jeffreys, de Finetti and Jaynes set the bases
into firmer mathematical and methodological ground, while Wald and Stein established the fundamental
optimality properties validating Bayes procedures.
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Russell Davidson points out that it is difficult to express itin the formalism that is used in fi-

nancial economics/econometrics. Another illustration is given by Templeton (2008). He argues

that conditioning upon the observationx ∼ f (x|θ) is plainly invalid:The impact of treating x as

a fixed constant is to increase statistical power as an artefact andignoring the sampling error

of x undermines the statistical validity of all inferences made by the method. As validated by

standard measure theory (Billingsley 1986), the posteriordistribution

π(θ|x) =
f (x|θ)π(θ)

∫

f (x|θ)π(θ) dθ

does include the sampling (orerror) distribution while conditioning on the datax. This ap-

proach furthermore is the only coherent way to give a meaningto statements likeP(θ > 0|x),

i.e. to properly construct confidence and prediction statements, while conditioning on the data

at hand.5

Gelman (2008) reports thatBayesian methods are presented as an automatic inference en-

gine, and this raises suspicion in anyone with applied experience. It is true thatπ(θ|x) is the

core of Bayesian inference. It can legitimately be viewed asthe “ultimate inference engine”

via which all decisions (in a decision-theoretic framework) based on the data can be automati-

cally derived. There is no fundamental difficulty in this automated derivation.6 Once optimality

criteria are explicitly stated via the utility function associated with the decision, searching for

the optimal decision reduces to solving a well-posed optimisation problem.7 Furthermore, the

inference [step] gets most of the attention, but the Bayesian procedure as a whole is not auto-

matic (Gelman 2008). In addition, using a probability distribution on the parameter space and

Bayes theorem allows for a coherent update of the information available onθ in the sense that

the current posterior distribution becomes the prior distribution before gathering more data.

3 On Prior Selection

The recurrent criticism of the Bayesian perspective is thatthe whole inferential approach is ulti-

mately dependent upon the choice of the prior distribution,as clearly shown by the definition of

5This point relates to Russell Davidson’s questions about the bootstrap. While I appreciate very much the
strength of bootstrapping techniques and find them a naturalentry to Statistics for my third year students,
I have trouble reconciliating the bootstrap and Bayesian statistics. Indeed, the bootstrap is fundamentally
a plug-in method, especially in its parametric version, which therefore omits to properly take into account
the variability of the plugged-in parameter estimates.
6That it is an automatic engine is an argument rarely advancedby critics of the Bayesian approach, who
on the contrary uniformly point out its subjective features. See Section 3.
7Gelman (2008) stresses thatloss functions [are] not relevant to statistical inferenceand he does not
see any role for squared error loss, minimax, or the rest of what is sometimes called statistical decision
theory. Following the arguments advanced in Robert (2001), but also in Berger (1985) and Bernardo and
Smith (1994), I cannot but strongly disagree with this perspective. Decision theory is a strong motivation
for using Bayesian procedures, especially in economics andeconometrics where rationality is customarily
associated with maximising utility functions.
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the posterior distribution above. There is no possible debate about this fact, either from a math-

ematical or methodological perspective. It is also straightforward to come up with examples

where the choice of the prior leads to absurd decisions.

There is no easy answer to this criticism, but this acknowledgement must not be taken as

conceding defeat in the debate! If the prior had no impact on the inference, data would be

similarly useless, since the update would not matter. Therefore, I see this dependence as a plus

of the Bayesian approach. It allows one to include an infiniterange of prior opinions and items

of information, while progressively concentrating on neighbourhoods of the “true” value of the

parameter – in settings where the data is generated from the assumed model. In the literature,

this point about the advantages of incorporating prior information is rather universally accepted.

The criticisms instead focus on the opposite situation where the prior information is poor or

inexistent, denyingnon-informative(or ignorance) priors their label, i.e. the representation of a

state of complete ignorance.

Maybe surprisingly (and maybe not!), I completely agree with this criticism in that any

choice of prior distribution corresponds to some informational input about the parameter. The

ultimate argument is that, were there such a thing asthe non-informative prior, it wouldbe

expected to represent total ignorance about the problem(Kass and Wasserman 1996). Thus,

being moderately unfair (!), this object should be such an information black hole as to cancel

the effect of any amount of information and should thus remain the same even after observing

the data! Therefore, when Jeffreys (1939) states thatif the parameter may have any value from

−∞ to+∞, its prior probability should be taken as uniformly distributed, he is making a choice

of a particular structure of the model that impacts on his future inference, in addition to using

the termuniform in an implicitly generalised manner because the parameter space is then un-

bounded (Robert et al. 2009). Instead, as stated by Gelman (2008),there is no good objective

principle for choosing a noninformative prior (even if thatconcept were mathematically defined,

which it is not). The notions ofobjectiveand ofnon-informativeare indeed not well-defined

mathematical concepts and they carry an irrational undertone that fails to lend legitimacy to

the associated priors. Some mathematical criteria do lead to some competing families ofref-

erencepriors like the left Haar measures mentioned by Russell Davidson or matching priors

(see Robert 2001, Chapters 3 and 8). The ultimate attempt at producing a meaningful rationale

for building non-informative priors is, in my opinion, Bernardo’s (1979) definition through the

information theoretical device of Kullback divergence (see also Berger and Bernardo 1992).

Quite obviously, this is not the only possible approach. Among other things, it depends on a

choice of information measure, does not always lead to a solution and requires an ordering of

the model parameters that involves some prior information (or some subjective choice). How-

ever, as long as we do notthink of those reference priors as representing ignorance(Lindley

1971), they can indeed betaken as reference priors, upon which everyone could fall back when

the prior information is missing(Kass and Wasserman 1996).
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Apart from the conceptual confusion about non-informativepriors that plagued most of the

19th and mid 20th century debate about the nature of Bayesianinference, the issue of improper

priors often serves as a further criticism. Indeed, non-informative priors often are measurable

functionsπ(θ) with infinite mass,
∫

Θ

π(θ) dθ = +∞ ,

which deprives them of a probabilistic interpretation. This criticism can be most easily rebutted

for a wide variety of reasons. The first reason is topologicalcoherence: limits of Bayesian

procedures often partake of their optimality properties (Wald 1950) and should therefore be

included in the range of possible procedures. Another one isrobustness: a measure with an

infinite mass is much more robust than a true probability distribution with a large variance.

Provided
∫

Θ

f (x|θ)π(θ) dθ < ∞ ,

the quantity

π(θ|x) =
f (x|θ)π(θ)

∫

Θ
f (x|θ)π(θ) dθ

is as well-defined as a probability density as a regular posterior distribution (Hartigan 1983,

Berger 1985, Robert 2001).

4 Testing Versus Model Comparison

The inferential problems of Bayesian model selection and ofBayesian testing are clearly those

for which the most vigorous criticisms can be found in the literature. An illustration is provided

by Senn (2008) who states thatthe Jeffreys-subjective synthesis betrays a much more dangerous

confusion than the Neyman-Pearson-Fisher synthesis as regards hypothesis tests. I find this

suspicion rather intriguing given that the Bayesian approach is the only one giving a proper

meaning to the probability of a null hypothesis,P(H0|x). Alternative methodologies are able, at

best, to specify a probability value on thesamplingspace, i.e. on the “wrong” space since the

only variation is on the parameter space once the observation is obtained.

Senn (2008) further advances thatwhat is almost never used, however, is the Jeffreys sig-

nificance test. I recall here that the most standard Bayesian approach to testing and model

choice relies on the Bayes factor (Kass and Raftery 1995), which, for hypotheses written as

H0 : θ ∈ Θ0 and asH1 : θ ∈ Θ1, is defined as (Jeffreys 1939, Jaynes 2003)

B01 =
π(Θ0|x)
π(Θ1|x)

/

π(Θ0)
π(Θ1)

=

∫

Θ0

f (x|θ)π0(θ)dθ
∫

Θ1

f (x|θ)π1(θ)dθ
.

This monotonic transform of the posterior probability ofH0 eliminates the influence of the prior

weightπ(Θ0) and has a similar interpretation to the classical likelihood ratio. However, it does
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not suffer from the over-fitting difficulties of the latter, in that it includes a natural penalisation

factor for richer models. This is shown by the connection with the BIC (Bayesian information

criterion), intuited by Jeffreys (1939):variation is random until the contrary is shown; and

new parameters in laws, when they are suggested, must be tested one at a time, unless there

is specific reason to the contrary. Although I strongly dislike using the term because of its

undeserved weight of academic authority, the Bayes factor acts as a naturalOckham’s razor.

A criticism of the use of Bayes factors (e.g., Templeton 2008) is that the quantity is not

scaled in probability terms. On the contrary, I maintain it is naturally scaled against one and can,

moreover, be readily transformed into posterior probabilities when the prior probabilities of the

hypotheses are specified. (It is furthermore a natural factor in a decision-theoretic framework,

see Robert 2001.) Another criticism is rarely voiced outside the Bayesian community, namely

that the use of improper priors is mostly prohibited in this setting, for lack of proper normalising

constants. Solutions have been proposed, akin to cross-validation techniques in the classical

domain (Berger and Pericchi 1996, Berger et al. 1998), but they are somehow too ad-hoc to

convince the entire community (and obviously beyond).

If we consider the special case of point null hypotheses – which is not so limited in scope

since it includes all variable selection setups – there is a difficulty with using a standard prior in

this environment. As put by Jeffreys (1939), whenconsidering whether a location parameter

α is 0 [when] the prior is uniform, we should have to takeπ(α) = 0 and B10 would always be

infinite. This is a case when the inferential question implies a modification of the prior, justified

by the information contained in the question. Avoiding the whole issue is a clear-cut solution, as

with Gelman (2008) havingno patience for statistical methods that assign positive probability

to point hypotheses of theθ = 0 type that can never actually be true. Considering the null and

the alternative hypotheses as defining two different models is another solution that allows for a

Bayes factor representation.

A major criticism directed at the Bayesian approach to testing is that it is not interpretable

on the same scale as the Neyman-Pearson-Fisher solution, namely in terms of Type I error prob-

ability and test power. In other words,frequentist methods have coverage guarantees; Bayesian

methods don’t; 95 percent frequentist intervals will live up to their advertised coverage claims

(Wasserman 2008). A natural thing to do is then to question the appeal of such frequentist prop-

erties when considering a single dataset. That is, in Jeffreys’ (1939) famous words,a hypothesis

that may be true may be rejected because it had not predicted observable results that have not

occurred. From a decision-theoretic perspective – to which the frequentist properties should

relate – a classical Neyman-Pearson-Fisher procedure is never evaluated in terms of the con-

sequences of rejecting the null hypothesis, even though therejection must imply a subsequent

action towards the choice of an alternative model. (From a narrower decision-theoretic perspec-

tive, note also thatp-values may be inadmissible estimators, Hwang et al. 1992.)Therefore,

arguing that high posteriors probabilities do not imply that a hypothesis is true as in Templeton
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(2008) and that the Bayesian approach is relative in that itposits two or more alternative hy-

potheses and tests their relative fits to some observed statistics(Templeton 2008), is missing the

main purpose of Bayesian tests. Bayesian procedures do not aim at validating or invalidating a

golden modelper sebut rather lead to the choice of a working model that allows for acceptable

predictive properties.8

Another criticism covers the lack of asymmetry of the Bayes factor, since it satisfies the

equalityB10 = 1/B01. For model choice, i.e. when several models are under comparison for the

same observation

Mi : x ∼ fi(x|θi) , i ∈ I ,

whereI can be finite or infinite, this symmetry seems to me to be a fundamentally sound prop-

erty. Nevertheless, Templeton (2008) bemoans thatthere is no null hypothesis, which compli-

cates the computation of sampling error, since there is no single statistical model under which

to evaluate sampling. This should be construed as a clear limitation of the Neyman-Pearson-

Fisher paradigm, since the latter imposes asymmetry and (Type I) error control under a single

(null) model. However, this is not the perspective of Templeton (2008) who concludes with the

impossibility of the posterior probability of a model,

π(Mi |x) =

pi

∫

Θi

fi(x|θi)πi(θi)dθi

∑

j

p j

∫

Θ j

f j(x|θ j )π j(θ j)dθ j

due to the impression thatthe numerators are not co-measurable across hypotheses, and the

denominators are sums of non-co-measurable entities. Hence, the “posterior probabilities”

that emerge are not co-measurable. This means that it is mathematically impossible for them

to be probabilities.Given that all terms are marginal likelihoods for the same observation, it

seems difficult to argue against their co-measurability. Contrary to classical plug-in likelihoods,

marginal likelihoods do allow for a comparison on the same scale. Similarly, the belief that

complicating dimensionality of test statistics is the factthat the models are often not nested,

and one model may contain parameters that do not have analogues in the other models and

vice versa(Templeton 2008) is not well-founded. The Bayes factor is properly defined and

applicable to settings where the models are not embedded (ornested). This is due to the fact

that the corresponding quantity of interest for a given model is the marginal likelihood (or

evidence), which integrates over spaces and complexity andwhich can be interpreted at face

value since it is calibrated across models.

A last point of contention about Bayesian testing is the apparent absence of clearly defined

directions when conducting a standard analysis. Figure 1 reproduces an output from Marin and

8It is worth repeating the earlier assertion that all models are false and that finding that a hypothesis is
“true” is not within our reach, if at all meaningful!
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Robert (2007b). This computer output illustrates how a default prior and Bayes factors can

be used in the same spirit as significance levels in a standardregression model, each Bayes

factor being associated with the test of the nullity of the corresponding regression coefficient.

This output mimics the standardR function lm outcome in order to show that the level of

information provided by the Bayesian analysis goes beyond the classical output. My point here

is obviouslynot in showing that we can get similar answers to those of a least square analysis

since, else,we might as well use the frequentist method(Wasserman 2008). It is to demonstrate

that reference analyses are available, while preserving the strength of the Bayesian machinery

(like joint confidence regions and multiple tests).

Figure 1:R output of a Bayesian regression on a processionary caterpillar dataset with ten
covariates analysed in Marin and Robert (2007b).

Estimate BF log10(BF)

(Intercept) 9.2714 26.334 1.4205 (***)

X1 -0.0037 7.0839 0.8502 (**)

X2 -0.0454 3.6850 0.5664 (**)

X3 0.0573 0.4356 -0.3609

X4 -1.0905 2.8314 0.4520 (*)

X5 0.1953 2.5157 0.4007 (*)

X6 -0.3008 0.3621 -0.4412

X7 -0.2002 0.3627 -0.4404

X8 0.1526 0.4589 -0.3383

X9 -1.0835 0.9069 -0.0424

X10 -0.3651 0.4132 -0.3838

evidence against H0: (****) decisive, (***) strong, (**) substantial, (*) poor

5 On Pervasive Computing

Bayesian analysis has long been derided for providing optimal answers that could not be com-

puted. With the advent of early Monte Carlo methods, of personal computers, and, more re-

cently, of more powerful Monte Carlo methods (Hitchcock 2003), the pendulum appears to have

switched to the other extreme. Nowadays,Bayesian methods seem to quickly move to elaborate

computation(Gelman 2008). This feature does not make Bayesian methods less suspicious

in the mind of critics for different reasons:a simulation method of inference hides unrealistic

assumptions(Templeton 2008). I won’t launch here into a defence of simulation techniques

that have done so much to promote Bayesian analysis in the past decades, referring to Chen et

al. (2000), Robert and Casella (2004), Marin and Robert (2007b) for detailed arguments and to
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Robert and Marin (2010), Robert and Wraith (2009) for specific coverages of the computational

advances related to Bayesian model choice. Simulation methods can certainly be misused, as

any methodology can be. However, whileBayesian simulation [may seem] stuck in an infinite

regress of inferential uncertainty(Gelman 2008), there exist enough convergence assessment

techniques (Robert and Casella 2010) to ensure a reasonabledegree of confidence in the accu-

racy of the approximation provided by those simulation methods. Thus, as rightly stressed by

Bernardo (2008),the discussion of computational issues should not be allowed to obscure the

need for further analysis of inferential questions.9

In Section 6, Russell Davidson asks about the reliability ofMarkov chain Monte Carlo

(MCMC) methods and about recent developments in this field. The answer is more complex

than time and space allow in this essay, so my first reply is to refer him to (Robert and Casella

2004, 2009) for booklength entries. A second response is that, despite their specific label,

MCMC methods do not differ in essence from other Monte Carlo methods. When using an im-

portance sampler or an harmonic mean estimator (see Marin and Robert 2007a for details), the

quantities we produce are unbiased, which is not a characteristic of MCMC outputs. However,

they may also be associated with infinite variance, which means that their convergence time is

beyond anyone’s patience! The same applies to MCMC samples which are formally associated

with the correct stationary distribution but which may in practice end up with a cosmologi-

cal number of iterations! Robert and Casella (2010) detailsseveral tools that help in checking

convergence and stationarity, but those tools are not completely foolproof. Therefore it may

happen that the lack of convergence of a MCMC output remains undetected. Similarly, using a

numerical integration software may fail to detect an important region for the integrand. Those

are numerical problems that have little to do with the methodology under scrutiny and can often

be detected by using a multifaceted strategy, mixing together several numerical methods.

Interestingly enough, the most accurate – in our opinion – approximation technique for

Bayes factors is, when applicable, derived from Bayes theorem. This is indeed the purpose of

Chib’s (1995) rendering:

m(x) =
π(θ) f (x|θ)
π(θ|x)

≈
π(θ) f (x|θ)
π̂(θ|x)

,

whereπ̂(θ|x) is a simulation-based approximation to the posterior density. Marin and Robert

(2008) propose an illustration in the setting of mixtures, while Robert and Marin (2010) im-

plement the method for a probit model, with both examples demonstrating the precision of this

approximation. There have been discussions about the accuracy of this method in multimodal

settings (Frühwirth-Schnatter 2004), but straightforward modifications (Berkhof et al. 2003, Lee

9The confusion of Templeton (2008) is of this nature, namely his criticisms bear in fact on the generic
principles of Bayesian inference and in particular testingwhile he aims at criticising a specific simulation
methodology called ABC and described below. See Beaumont etal. (2010) for a discussion of this
confusion.
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et al. 2008) overcome such difficulties and make for both an easy and a robust computational

tool associated with Bayes factors.

Instead of presenting the whole range of available computational solutions, I want to point

out here a single but recent advance in Bayesian computing that allows for a further extension

of Bayesian data analysis to cases where any other method of inference is either impossible

or seriously inaccurate. This new method is called ABC, standing for Approximate Bayesian

Computation. It was introduced in genomics by Pritchard et al. (1999) to handle models, like

phylogenic trees, where the likelihood could not be computed in a reasonable time, hence pro-

hibiting the use of standard simulation tools. The method isbased on a standard accept-reject

principle generatingθ ∼ π(θ), x′ ∼ f (x|θ) until x′ = x which produces a generation fromπ(θ|x).

Since the stopping rule is impossible to attain in continuous settings, the approximation in ABC

consists in replacingx = x′ with a relaxed condition,d(x, x′) < ǫ, whered is an arbitrary di-

vergence measure andǫ is an approximation parameter to be calibrated. Assuming that new

“observations”x′ from the likelihood can be easily simulated, this method provides controlled

approximationsπ(θ|d(x, x′) < ǫ) to the posterior distribution. The accuracy of this method

can be calibrated against the available computing power andit is currently in standard use for

genomic applications (Cornuet et al. 2008) as well as for model choice in graphical models

(Grelaud et al. 2009).10

The field of Bayesian computing is therefore very much alive and, while its diversity can be

construed as a drawback by some, I do see the emergence of new computing methods adapted

to specific applications as most promising, because it bearswitness to the growing involvement

of new communities of researchers in Bayesian advances.

6 Conclusion

Once again, I want to stress that the purpose of this essay is far from trying to preach in favour

of my creed, as I do not see Bayesian data analysis as a philosophical (and even less reli-

gious) stance. What drives my Bayesian choice is the essential practicality of the tools and

of the actions I can undertake thanks to that choice, as well as the ability to evaluate, criti-

cise, and possibly modify, the calibration choices I have made at the beginning of my analysis.

There is beauty as well as efficiency in transparency and a Bayesian data analysis is ultimately

transparent in that it displays all of its components (prior, likelihood, loss function, simulation

technique) for public evaluation. The fact that any of thesecomponents can be replaced by an

alternative version explains and illustrates the versatility of the method and the appeal it exerts

on non-statisticians in need of a data analysis tool. The other practical side of Bayesian data

analysis is that we now see a growing range of complex models where, apart from abdicating

10(Grelaud et al. 2009) is one illustration of the high popularity of Bayesian techniques in epidemiology,
biostatistics and genomics. I thus disagree with Russell Davidson’s impression of the opposite at the end
of Section 8!
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on some part of the complexity, the only available solution is to use a Bayesian approach. Han-

dling highly non-identifiable models, inferring about the graphical structure of a spatial model,

running a small area estimation on an very dense grid, analysing continuous time data with

hidden Markov structures, all of these problems and a myriadof others cannot be processed but

from a Bayesian perspective.
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