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Testing for Restricted Stochastic Dominance: Some Further
Results
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Extensions are presented to the results of Davidson and Duclos (2007), whereby the null
hypothesis of restricted stochastic non dominance can be tested by both asymptotic and
bootstrap tests, the latter having considerably better properties as regards both size and
power. In this paper, the methodology is extended to tests of higher-order stochastic dom-
inance. It is seen that, unlike the first-order case, a numerical nonlinear optimisation prob-
lem has to be solved in order to construct the bootstrap DGP. Conditions are provided for a
solution to exist for this problem, and efficient numerical algorithms are laid out. The em-
pirically important case in which the samples to be compared are correlated is also treated,
both for first-order and for higher-order dominance. For all of these extensions, the boot-
strap algorithm is presented. Simulation experiments show that the bootstrap tests perform
considerably better than asymptotic tests, and yield reliable inference in moderately sized
samples.
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1 Introduction

In Davidson and Duclos (2006) henceforth DD, methods based on empirical likelihood are
developed for testing stochastic dominance. The null hypotheses of the tests proposed postulate
non dominance, the idea being that, if such a null hypothesis is rejected, it is reasonable to
accept the only remaining alternative, which is dominance. It is shown, however, that a null
of non dominance can never be rejected statistically if the distributions that are compared are
continuous, and full account is taken of the tails of the distributions. In such circumstances,
only a hypothesis of restricted dominance, that is, dominance restricted to some closed interval
contained in the interior of the support of the distributions, can ever be rejected empirically.
The aim of this paper is to extend the results of DD beyond first order stochastic dominance

to higher orders, and also to treat the case in which the samples drawn from the distributions
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Fonds Québécois de Recherche sur la Société et la Culture. I am grateful to Jean-Yves Duclos for valu-
able comments on an earlier version of the paper.
c© 2009 Russell Davidson. Licenced under the Creative Commons Attribution-Noncommercial 3.0 Li-
cence (http://creativecommons.org/licenses/by-nc/3.0/). Available at http://rofea.org.

34



DAVIDSON Testing for Restricted Stochastic Dominance

that are to be compared are correlated. DD treated only the case of independent samples, but,
in practice, correlated samples are common enough: One might wish the compare distributions
of pre- and post-tax income, or the distributions of the separate incomes of married couples, for
instance.
It is not difficult to set up asymptotic testing procedures, based on the intersection-union

principle, for all the cases dealt with in this paper. It was shown by DD that not only are asymp-
totic t statistics and empirical likelihood-ratio statistics asymptotically equivalent under the null
and local alternatives, but also that they are very close numerically in quite small samples un-
der these same conditions. The disadvantage of tests based on these statistics is that they are
typically seriously undersized, and lacking in power.
DD then show that bootstrap tests, which rely on the probabilities associated with maximis-

ing the empirical likelihood under the null in order to set up a bootstrap data-generating process
(bootstrap DGP), can improve substantially on asymptotic tests regarding both size and power.
This use of the probabilities generated by empirical likelihood maximisation is suggested by
Brown and Newey (2002). See also Owen (2001) for a survey of empirical likelihood meth-
ods. There remains an ineradicable tendency to underreject, but it is greatly reduced relative to
asymptotic inference. In this paper, these bootstrap methods are extended, and shown to share
two main properties with the methods studied by DD, namely, the near numerical equivalence
of the asymptotic t statistics and the empirical likelihood-ratio statistics, and the considerable
improvement in the reliability of inference based on the bootstrap tests.
In section 2, we recall the definitions of higher-order stochastic dominance, and define

an empirical likelihood-ratio statistic based on the difference between empirical loglikelihood
functions computed unrestrictedly and computed under the constraint of the null hypothesis of
non dominance. Then, in section 3, we study the problem of the existence of the statistic de-
fined in the preceding section, and discuss numerical methods for its computation. The case in
which the samples to be compared are correlated is treated in section 4, and the special case of
first-order dominance, for which an analytic solution of the empirical likelihood problem exists,
is treated in section 5. In section 6, the relation between the likelihood-ratio statistic and the
asymptotic t statistic of an intersection-union test is investigated, and it is seen how this relation
makes it possible to have a more efficient implementation of the empirical likelihood problem.
Bootstrap tests, with bootstrap DGPs defined in terms of the solution to that problem, are pro-
posed in section 7 and the results of simulation experiments designed to study their performance
are given in section 8. Some conclusions are presented in section 9.

2 Higher-Order Dominance

Recall that distribution A, characterised by a cumulative distribution function (CDF) FA, is
stochastically dominated at first order by distribution B, characterised by the CDF FB, if, for
all y in the joint support of the two distributions, FA(y) > FB(y). If y is income, this means that
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the proportion of population A with income no greater than y is greater than in population B.
If we define the dominance functions DS

K , K = A, B, recursively by the relations

DS+1
K (y) =

∫ y

0
DS
K(z) dz, D1K(y) = FK(y), (1)

then B dominates A stochastically at order S if DS
A(y) > D

S
B(y) for all y in the joint support. Here

we make the simplifying assumption that this support is entirely contained in the nonnegative
real line. It is easy to show that the function DS

K can be written explicitly as

DS
K(y) =

1
(S − 1)!

∫ y

0
(y − z)S−1 dFK(z); (2)

see Davidson and Duclos (2000), where the link between higher-order stochastic dominance
and inequality and poverty indices is explained.
We are interested in the hypothesis that B does not dominate A at order S . Suppose that we

have two samples, here supposed IID and mutually independent, one of size N A, with typical
observation yAi , drawn from the distribution A, another of size NB, with typical observation yBi ,
from B. We can define empirical distribution functions (EDFs) for each sample as follows:

F̂K(y) =
1
NK

NK∑

i=1
I(yKi ≤ y), K = A, B, (3)

where I denotes an indicator function, equal to 1 if its Boolean argument is true, and to 0
otherwise. The EDF evaluated at y is thus the proportion of the observations less than or equal
to y.
Similarly, we define empirical versions of the dominance functions:

D̂S
K(y) =

1
(S − 1)!

∫ y

0
(y − z)S−1 dF̂K(z)

=
1

NK(S − 1)!

NK∑

i=1
(y − yKi )S−1 I(yKi ≤ y)

=
1

NK(S − 1)!
NK∑

i=1
(y − yKi )S−1+ (4)

where for convenience we write z+ for max(0, z). We say that B dominates A at order S in the
sample if D̂S

A(y) > D̂S
B(y) for all y in the joint support. It is clear that the hypothesis of non

dominance in the underlying distributions should not be rejected unless there is dominance in
the sample. Procedures for testing for restricted dominance can therefore proceed under the
assumption that, for all y in the interval of interest, D̂S

A(y) > D̂
S
B(y).

An empirical likelihood-ratio test statistic is computed, just like an ordinary likelihood-ratio
statistic, as twice the difference between the values of the empirical loglikelihood maximised
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under the alternative hypothesis and under the null. The empirical loglikelihood function (ELF)
depends on, and is maximised with respect to, a set of probabilities, one each assigned to the
observations of the sample. Since here there are two independent samples, the joint ELF is the
sum of the ELFs of the individual samples. As in DD, it is convenient to use a notation that can
apply equally well to samples drawn from continuous or discrete distributions. We denote by Y K

the set of distinct values in the sample drawn from distribution K, and then, for each y Kt ∈ YK ,
we let nKt denote the number of sample points equal to yKt . If the underlying distribution is
continuous, then, with probability 1, nKt = 1 for each t, but with a discrete distribution, higher
integer values are possible.
If a probability pKt is assigned to each yKt ∈ YK , the empirical loglikelihood function for the

sample drawn from distribution K is
∑

yKt ∈YK
nKt log pKt . (5)

If this is maximised with respect to the pKt under the constraint that their sum is equal to 1, the
maximising probabilities are given by pKt = nKt /NK , and the maximised value of the ELF is

∑

yKt ∈YK
nKt (log nKt − logNK) =

∑

yKt ∈YK
nKt log nKt − NK logNK . (6)

The first term on the right-hand side above vanishes if each nKt = 1.
Any assignment of probabilities to the points of the observed sample implicitly defines a set

of weighted dominance functions, by the relation

D̃S
K(y) =

1
(S − 1)!

∑

yKt ∈YK
pKt (y − yKt )S−1+ , (7)

In order to maximise the ELF under the hypothesis of non dominance, given that there is dom-
inance in the sample, we impose the requirement that D̃S

A(y) = D̃S
B(y) for some y ∈ Y where

Y is the union of YA and YB. One reason for having to limit attention to restricted dominance
in statistical work is immediately visible: If y is the greatest observation in the pooled sample,
then, for S = 1, D̂1A(y) = D̂

1
B(y) = 1, whatever the relation between the two distributions may

be. If the definition (3) were formulated with strict inequality in the indicator functions, the
same problem would arise at the smallest observation.
The device proposed by DD to overcome this problem is to limit attention to some interval

that is strictly inside the interval determined by the smallest and greatest observations in the
pooled sample, without concern for what happens outside this interval. The null hypothesis
is thereby changed from one of global non dominance to the stronger hypothesis of restricted
non dominance, which requires that the inequality DS

A(y) > D
S
B(y) should be violated, not just

somewhere in the joint support, but somewhere in the chosen interval. Of course, rejection of
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this stronger hypothesis allows only a weaker conclusion than the one possible if global non
dominance is rejected: all we can conclude is restricted dominance.
The problem of maximising the ELF subject to the null of restricted non dominance can be

formulated as follows:

max
pAt ,pBt ,y∈Y

∑

yAt ∈YA
nAt log pAt +

∑

yBs ∈YB
nBs log pBs

subject to
∑

t
pAt = 1,

∑

s
pBs = 1,

and
∑

t
pAt (y − yAt )S−1+ =

∑

s
pBs (y − yBs )S−1+ , (8)

with an obvious notation for sums over t and s. The last condition here implies that D̃S
A(y) =

D̃S
B(y). For the moment we fix the point y of contact between the two dominance functions. We

discuss later the problem of determining the value of y that solves the maximisation problem.
A suitable Lagrangean for the maximisation with respect to the probabilities pAt and pBs is

∑

t
nAt log pAt +

∑

s
nBs log pBs + λA(1 −

∑

t
pAt ) + λB(1 −

∑

s
pBs )

−µ(
∑

t
pAt (y − yAt )S−1+ −

∑

s
pBs (y − yBs )S−1+

)
. (9)

The signs of the Lagrange multipliers λA, λB, and µ are chosen so that all three are nonnegative
when A is dominated by B in the sample. The first-order necessary conditions for a maximum
are given by the three constraints, the conditions

nAt
pAt
− λA − µ(y − yAt )S−1+ = 0 for all t, (10)

and a similar set of conditions for B. Solving (10) gives

pAt =
nAt

λA + µ(y − yAy )S−1+
. (11)

The corresponding solution for the probabilities in distribution B is

pBs =
nBs

λB − µ(y − yBs )S−1+
. (12)

The requirement that
∑
t pAt = 1 implies that

λA =
∑

t

λAnAt
λA + µ(y − yAt )S−1+

=
∑

t
nAt
λA + µ(y − yAt )S−1+
λA + µ(y − yAt )S−1+

− µ
∑

t

nAt (y − yAt )S−1+
λA + µ(y − yAt )S−1+

= NA − µ
∑

t
pAt (y − yAt )S−1+ . (13)
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Similarly,
λB = NB + µ

∑

s
pBs (y − yBs )S−1+ . (14)

Now let ∑

t
pAt (y − yAt )S−1+ =

∑

s
pBs (y − yBs )S−1+ = ν. (15)

Then (13) and (14) can be written as

λA = NA − µν and λB = NB + µν, (16)

while (11) and (12) become

pAt =
nAt

NA − µ(ν − (y − yAt )S−1+ )
and pBs =

nBs
NB + µ(ν − (y − yBS )S−1+ )

. (17)

The two unknowns in (17) are µ and ν. Two equations that can be solved to find their values
are

∑

t

nAt (y − yAt )S−1+
NA − µ(ν − (y − yAt )S−1+ )

−
∑

s

nBs (y − yBs )S−1+
NB + µ(ν − (y − yBs )S−1+ )

= 0,

and
∑

s

nBs (y − yBs )S−1+
NB + µ(ν − (y − yBs )S−1+ )

= ν (18)

which follow from substituting (17) into (15). It is obvious that, if the probabilities are given by
(17) with µ and ν solutions of (18), then the third constraint is satisfied. A little algebra shows
that the constraints that the two sets of probabilities each sum to 1 are also satisfied; see Lemma
1 in the Appendix.
It is unfortunately not possible to find an analytic solution to the equations (18). It is however

not at all difficult to solve them numerically, as we will see in the next section.

3 Existence of the Constrained Solution

The equations (18) all have the same algebraic structure, whatever the values of y and S , and
so the same considerations apply to their solutions. In this section, it is convenient to simplify
notation a little by writing kAt = (y − yAt )S−1+ and kBs = (y − yBs )S−1+ . Observe that kAt ≥ 0, kBs ≥ 0
for all t and s. We may then define two functions of the unknowns µ and ν as follows:

fA(µ, ν) =
∑

A

nAt kAt
NA − µ(ν − kAt )

and fB(µ, ν) =
∑

B

nBs kBs
NB + µ(ν − kBs )

. (19)

Here the sums indicated schematically by the notation mean that, for each sample, we sum over
only those observations for which kAt or kBs is nonzero. In this particular case, the values of these
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sums are of course the same as they would be if we summed over all observations in the sample.
Equations (18) become

fA(µ, ν) − fB(µ, ν) = 0 and fB(µ, ν) = ν (20)

and the probabilities (17) become

pAt =
nAt

NA − µ(ν − kAt )
and pBs =

nBs
NB + µ(ν − kBs )

. (21)

In order for all of these probabilities to be nonnegative, we require that

µν ≤ NA + µkAt and µν ≥ −NB + µkBs (22)

for all t and s, not just those included in the sums in (19). If y is restricted to a set in the interior
of the joint support, we can be sure that there will be observations t in the sample from A for
which kAt = 0, which means that the first inequality of (22) is satisfied for all t if and only if
ν ≤ NA/µ. The second inequality is satisfied for all s if and only if ν ≥ −NB/µ + kB+, where
kB+ = maxs kBs . The admissible region in (µ, ν)−space is thus bounded above by the hyperbola
with equation ν = NA/µ and below by the hyperbola with equation ν = −NB/µ + kB+; see
Figure 1. The figure shows only the region in which µ ≥ 0, since only solutions satisfying that
requirement can solve the constrained maximisation problem, if sample B dominates sample A.
The dotted red line in the figure is another hyperbola, displaced upwards from the upper bound;
its equation is ν = NA/µ + kA−, where kA− is the smallest nonzero value in the set of the kAt .
It is easy to check that the functions fA and fB are positive in the region bounded by the

lower hyperbola and the upwards-displaced upper one. If k A− < kB+, the two hyperbolas inter-
sect; otherwise this region is unbounded to the right. On the other hand, the hyperbolas with
equations ν = NA/µ and ν = −NB/µ + kB+ always intersect for some finite µ.
The function fA is monotonically increasing in ν, and tends to infinity as ν tends upwards to

NA/µ+ kA− on the displaced upper hyperbola. Similarly, fB is monotonically decreasing in ν and
tends to infinity as ν tends downwards to −NB/µ + kB+ on the lower hyperbola. Consequently,
for any given positive µ less than the value at which the displaced upper hyperbola and the
lower hyperbola intersect, fA − fB has a unique zero for the given µ, for some ν in the interval
[−NB/µ + kB+,NA/µ + kA−]. We denote by ν(µ) the value of ν such that fA(µ, ν) − fB(µ, ν) = 0.
A pair (µ, ν) that solves the equations (20) is therefore such that ν = ν(µ) and f B(µ, ν(µ)) =

ν(µ). Define the function f (µ) as the common value of fA(µ, ν(µ)) and fB(µ, ν(µ)). If we can
find µ such that f (µ) = ν(µ), we have a solution to (20).
If sample B dominates sample A at order S , then, for any value of y, D̂S

A(y) > D̂
S
B(y). In our

present notation, this means that, for any (irrelevant) value of ν, we have f A(0, ν) > fB(0, ν).
Thus the first equation of (20) cannot be satisfied with µ = 0. Consequently, the function f is
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Figure 1: Region of Nonnegative Probabilities

not defined at µ = 0, and ν(0) does not exist. However, the product µν(µ) tends to a nonzero,
finite, limit as µ→ 0, obtained by solving the first equation of (20) with µ = 0, µν ! 0, that is,

NA fA(0, 0)
NA − (µν)

=
NB fB(0, 0)
NB + (µν)

. (23)

From this we see that the limit of µν(µ) as µ→ 0 is

−NANB( fA(0, 0) − fB(0, 0))
NA fA(0, 0) + NB fB(0, 0)

, (24)

and from this it follows that the limit of f (µ) as µ→ 0 is

lim
µ→0

f (µ) =
NA fA(0, 0) + NB fB(0, 0)

NA + NB
, (25)

that is, a weighted average of fA(0, 0) and fB(0, 0), and thus a positive quantity. It follows as
well that ν(µ)→ −∞ as µ→ 0. Thus for positive values of µ close enough to 0, f (µ) > ν(µ).
Denote by µ+ the value of µ at which the upper and lower hyperbolas between which all

probabilities are nonnegative intersect. We see that µ+ = (NA + NB)/kB+, and that NA/µ+ =
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−NB/µ+ +kB+. Since ν(µ+) > −NB/µ+ +kB+, the graph of the function ν(µ) must cut the hyperbola
ν = NA/µ at least once from below for a value of µ less than µ+. Let the greatest value of µ for
which ν(µ) = NA/µ be denoted as µlim. For any µ > µlim, the value of ν(µ) is greater than NA/µ,
and so must generate some negative probabilities. We are therefore interested only in solutions
with µ ≤ µlim. See Figure 2 for an illustration of the case in which the lower and displaced
upper hyperbolas intersect when µ = µmax.

Figure 2: Approach to Upper Limit of µ

Let us calculate the value of f (µlim). Since ν(µlim) = NA/µlim, this value is
fA(µlim,NA/µlim). From (19) we find that

f (µlim) =
∑

A

nAt kAt
µlimkAt

=
1
µlim

∑

A
nA <

NA

µlim
= ν(µlim). (26)

The inequality above is strict because the sum is over only those observations for which k At is
nonzero. Since for µ in the neighbourhood of 0, ν(µ) < 0 < f (µ), and since the functions f
and ν are continuous in µ, there must exist a µ ∈]0, µ lim[ where f (µ) = ν(µ). This proves the
existence of a solution to equations (20) in the region in which all the probabilities (21) are
nonnegative.
There remains the question of the uniqueness of the solution. I have not as yet discovered

either a proof of uniqueness or a counterexample, but it is clear that one may choose among
multiple solutions on the basis of the maximised ELF.
A suitable way of finding the solution(s) to the equations (20) is to use Newton’s method.

The starting point of the algorithm should of course be chosen to lie inside the region bounded
by the undisplaced upper hyperbola and the lower one. Experience shows that it is also desir-
able to check at each iteration of Newton’s method that the new (µ, ν) pair is still inside the
admissible region, and, if not, put it back in. The derivatives of the functions f A and fB with
respect to µ are often very much smaller than those with respect to ν, and so it can be helpful
to rescale them, in order that the Jacobian of the left-hand sides of (20) with respect to µ and ν
should not be nearly singular. If these precautions are observed, Newton’s method seems to
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find a solution after a small number of iterations – always fewer than 10 in the cases so far
examined.

4 Correlated Samples

If the samples drawn from the distributions A and B are correlated, an “observation” must be
thought of as a couple (yAt , yBt ) of correlated drawings. There is but one sample size, N say, in
this case. The ELF now ascribes probabilities pt to each couple, so that, if nt is the number
of drawings equal to (yAt , yBt ), the ELF is

∑
t nt log pt. If it is maximised with respect to the pt

subject only to the constraint that
∑
t pt = 1, the maximising probabilities are pt = nt/N and the

maximised ELF is
∑
t nt log nt − N logN. As before, if each nt = 1, the first term vanishes.

In order to test for restricted non dominance, we now wish to impose the condition that, for
some y in the restricted interval of interest,

∑

t
pt
(
(y − yAt )S−1+ − (y − yBt )S−1+

)
= 0, (27)

which means that D̃S
A(y) = D̃

S
B(y), where as usual the weighted empirical dominance functions

are given by (7). For any given y, the problem of maximising the ELF with respect to the p t is
characterised by the Lagrangean

∑

t
nt log pt + λ(1 −

∑

t
pt) − µ

(∑

t
pt
(
(y − yAt )S−1+ − (y − yBt )S−1+

))
. (28)

Equating the partial derivative of this Lagrangean with respect to pt to zero gives the first-order
condition

pt =
nt

λ + µ
(
(y − yAt )S−1+ − (y − yBy )S−1+

) (29)

The constraint (27) that the dominance functions touch at y becomes

0 =
∑

t

nt
(
(y − yAt )S−1+ − (y − yBt )S−1+

)

λ + µ
(
(y − yAt )S−1+ − (y − yBt )S−1+

) . (30)

Similarly, the constraint that
∑
t pt = 1 becomes

1 =
∑

t

nt
λ + µ

(
(y − yAt )S−1+ − (y − yBt )S−1+

) . (31)

Adding together λ times (31) and µ times (30) gives

λ =
∑

t

nt
[
λ + µ

(
(y − yAt )S−1+ − (y − yBt )S−1+

)]

λ + µ
(
(y − yAt )S−1+ − (y − yBt )S−1+

) = N. (32)

There is only one unknown left, namely µ, and it is determined by the constraint
∑

t

nt
(
(y − yAt )S−1+ − (y − yBt )S−1+

)

N + µ
(
(y − yAt )S−1+ − (y − yBt )S−1+

) = 0. (33)

43



Review of Economic Analysis 1 (2009) 34–59

In order to analyse the set of solutions for µ to the equation (33), make as before the defini-
tions kAt = (y−yAt )S−1+ and kBt = (y−yBt )S−1+ . Further, let kt = kAt −kBt and γ = µ/N. The left-hand
side of (33) becomes

1
N

∑

t

ntkt
1 + γkt

=
1
N

∑

{t:kt!0}

nt
γ + 1/kt

. (34)

This expression has poles at the points γ = −1/kt for kt ! 0. Since the derivative with respect
to γ of the expression is

− 1
N

∑

{t:kt!0}

nt
(γ + 1/kt)2

< 0, (35)

it follows that, between poles, the function decreases continuously from +∞ to −∞ as γ in-
creases. Consequently, (33) has a unique solution (for µ) between each successive pair of points
of the form −N/kt. However, in order that the probabilities (29) should all be nonnegative, we
require that 1 + γkt > 0 for all t. The condition is trivially satisfied if kt = 0. If kt > 0, the
condition is that γ > −1/kt; if kt < 0, that γ < −1/kt. If there are some negative and some
positive kt, it follows that γ must be greater than −1/kt for the largest positive kt and smaller
than −1/kt for the negative kt that is greatest in absolute value. Since these are the locations of
adjacent poles, it follows that there is exactly one admissible solution for µ. This solution can
be found easily by one-dimensional search methods, with the admissible region defined by the
two bounds, which therefore bracket the desired solution. See Press, Flannery, Teukolsky, and
Vetterling (1986) for discussion of search methods that rely on bracketing.
We assumed earlier that A is dominated by B in the sample. This requirement is incompatible

with a situation in which all the kt are nonpositive and some negative. Consider then the case
in which they are all nonnegative. This implies that every term of the left-hand side of (33) is
nonnegative, so that the only way in which the constraint can be satisfied is by setting p t = 0
for every observation for which kt ! 0. Formally, nonnegative probabilities now require only
that γ should be greater than the least negative −1/kt. In the interval from this lower bound
to +∞, the expression (34) decreases monotonically from +∞ at the pole to 0 at +∞. The only
solution to (33) in that interval thus corresponds to γ = ∞, or, equivalently, µ = ∞. By (29), we
see that all observations for which kt > 0 have zero probability, which means in turn, of course,
that the ELF diverges to minus infinity. It is still possible to maximise the ELF restricted to the
contributions from observations for which kt = 0, in which case all the nonzero probabilities pt
are proportional to the corresponding nt, with values nt/N+, where N+ =

∑
{t:kt=0} nt. The set of t

with kt = 0 includes all observations for which both yAt and yBt are greater than y. By considering
only values of y within a restricted interval, we can ensure that the set is always non-empty, so
that the constraint can be satisfied. In cases like this, no special numerical methods are needed
to obtain the solution.
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5 Special Case: First-Order Dominance

With uncorrelated samples, the problem of first-order dominance has been exhaustively treated
in DD. With correlated samples, however, it is useful to specialise the results of the preceding
section to the case in which S = 1, because then an analytic solution exists, which of course
greatly simplifies numerical implementations.
When S = 1, the expression (y − yAt )S−1+ − (y − yBt )S−1+ is zero whenever both yAt ≤ y and

yBt ≤ y or both yAt ≥ y and yBt ≥ y. If yAt < y and yBt > y, then the expression is equal to +1; if
yAt > y and yBt < y, it is equal to -1. Let us denote by N++ the number of observed couples with
yAt ≤ y and yBt ≤ y, by N−− the number with yAt > y and yBt > y, by N+− the number with yAt ≤ y
and yBt > y, and by N−+ the number with yAt > y and yBt ≤ y. Then the condition (33) becomes

N+−

N + µ
− N−+

N − µ = 0. (36)

If both N+− and N−+ are zero, condition (36) is vacuously satisfied, naturally enough, since in
this case FA(y) = FB(y) = N++/N. If N+− = 0 and N−+ > 0, then A is not dominated by B
in the sample, contrary to our assumption. If N−+ = 0 and N+− > 0, the situation is like the
one considered in the previous section in which all the k t are nonnegative. Indeed, (36) can
be satisfied only in the limit when µ → ∞. This implies that only the observations in the sets
counted by N++ and N−− have (equal) positive probability.
In the general case in which N+− and N−+ are both nonzero, we may solve (36) to find that

µ =
N(N+− − N−+)
N+− + N−+

. (37)

We can then see from (29) that, for those observations counted by N ++ or N−−, pt = nt/N,
while, for those counted by N+−,

pt =
nt

N + µ
=
nt(N+− + N−+)

2NN+−
, (38)

and, for those counted by N−+,

pt =
nt

N − µ =
nt(N+− + N−+)

2NN−+
. (39)

This constitutes an exact solution to the problem of maximising the ELF in this special case,
analogous to that presented for uncorrelated samples in DD. In particular, the solution always
exists and is unique.

6 Relation to Intersection-Union Test

In Kaur, Prakasa Rao, and Singh (1994), henceforth KPS, an intersection-union test is proposed
for testing restricted stochastic dominance at first order. See also Howes (1993). The test
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statistic is the minimum over all points of the pooled sample of an asymptotic t statistic for the
hypothesis that the values of the CDFs of the two distributions are equal at that point. DD show
that, with uncorrelated samples, under the tested null and local alternatives to it, this minimum
t statistic is asymptotically equivalent to the signed square root of the empirical likelihood-ratio
(ELR) statistic given by twice the difference between the unconstrained maximum of the ELF
and the ELF resulting from solving the problem (8). Indeed, they find that, in the cases they
consider, the t statistic and the (square-root) ELR statistic are very close numerically.
It is natural to extend the KPS procedure to higher orders of stochastic dominance by replac-

ing the CDFs by dominance functions for the chosen order. In order to compute the asymptotic
t statistics needed for the KPS test, it is necessary to estimate the variance of the values of the
two empirical dominance functions at all points of the pooled sample. Distribution-free esti-
mates of the variances and covariances of empirical distribution functions, and also empirical
dominance functions, are given in Davidson and Duclos (2000); see also the proof of Lemma 2
in the Appendix. These can be used to provide convenient implementations of an intersection-
union test for which the statistic is the minimum t statistic of the form

t(y) =
D̂S
A(y) − D̂S

B(y)
(
v̂ar(D̂S

A(y)) + v̂ar(D̂
S
B(y))
)1/2 (40)

as y varies over all points of the pooled sample Y .
The maximisation in problem (8) over y, the point at which the two CDFs are equal, is

solved by DD by a brute-force search over all the points of the pooled sample. With higher-
order dominance, such a search would be reasonably costly, since a nonlinear optimisation
problem must be solved for each point. But it is not obvious that there is a much better way
of minimising the t statistic (40) than searching over all points of the pooled sample. However,
these t statistics are easy to compute and involve no nonlinear optimisation, and so a brute-force
search is no more costly than the similar searches used by DD.
As shown in Lemma 2 of the Appendix, at or near a point y at which DS

A(y) = D
S
B(y) for

the two underlying distributions, the signed square root of the ELR statistic and the statistic
(40), computed using DD’s distribution-free variance estimates, are asymptotically equivalent.
This fact suggests a simple approach to minimising the ELR statistic over y, a problem that is
equivalent to the maximisation over y in problem (8). First, one finds, by brute-force search
(or otherwise), the point y∗ ∈ Y at which the right-hand side of (40) attains its minimum. We
ignore the zero-probability possibility that the minimum is attained at more than one point.
Then one solves the part of problem (8) involving the choice of the probabilities p At and pBs .
Next, the estimated dominance functions (7) for the two distributions are compared over their
full range. If D̂S

A(y) > D̂S
B(y) for all y ∈ Y except for y∗, at which the inequality becomes an

equality, then stop. If there is a point y∗ ! y∗ at which D̂S
A(y) < D̂

S
B(y), then set y

∗ = y∗, re-solve
the minimisation (8) with respect to the probabilities at the new y∗, and so on until the desired
condition is satisfied. One may expect that at most two or three iterations of this procedure will
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be necessary. Since the number of points in Y is finite, the number of iterations cannot exceed
the size of the pooled sample.
A by-product of the proof of Lemma 2 is approximate expressions for the quantities µ and ν

that solve the equations (20). It is easy to estimate these approximate expressions using the
observed data, and using the result as the starting point for Newton’s method can speed the
convergence of the method.
A similar procedure for finding the point y∗ can be used with correlated samples. In such

cases, it is necessary in the denominator of the t statistic to take account of the covariance of the
estimated dominance functions. Estimates of such a covariance are also provided in the David-
son and Duclos (2000) paper. Lemma 3 in the Appendix proves the asymptotic equivalence of
the t statistic with estimated covariance and the ELR statistic found by solving the problemwith
Lagrangean (28).

7 Bootstrap Tests

The main use of the empirical likelihood approach, here as in DD, is not the computation of the
ELR statistic itself, but rather the computation of the probabilities that make the weighted em-
pirical dominance functions satisfy the constraint of non dominance. The process of minimising
the ELR statistic over points of the pooled sample leads to empirical dominance functions for
which dominance fails at just one point. They therefore represent a state of affairs on the frontier
of the null hypothesis. It is shown in DD that the minimum t statistic and the ELR statistic are
asymptotically pivotal on this frontier, and the same is true here, for the same reason, namely
that the asymptotic distribution of the minimum t statistic on the frontier is standard normal.
DD also show that the rejection probability of the test based on either statistic, at any reasonable
nominal level, is lower for a DGP that lies in the interior of the null hypothesis than for another
one that lies on the frontier. That result, too, carries over to the testing situations examined in
this paper.
These remarks justify extending the bootstrap procedure developed in DD to these new

testing situations. We now outline the way in which a bootstrap test for the null hypothesis that
distribution B does not dominate distribution A can be carried out.

• If the distributions that are to be compared for stochastic dominance are continuous,
select an interval in the interior of the joint support such that there is at least one point in
each sample above its upper limit and at least one other below its lower limit. The null
of the test is then one of non dominance restricted to that interval.

• Compute the usual, unweighted, empirical dominance functions, D̂S
K , K = A, B, and

evaluate them at all points y ∈ Y ◦, where Y◦ is the set of points in the pooled sample inside
the interval for which restricted non dominance is to be tested. Unless D̂S

A(y) > D̂
S
B(y) for

all y ∈ Y◦, the null is not rejected: Stop here, setting the bootstrap P value equal to 1.
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• Compute the t statistics t(y) for all y ∈ Y◦, either as in (40) if the samples are uncorrelated,
or else with the same numerator as in (40), but with denominator the square root of

v̂ar(D̂S
A(y)) + v̂ar(D̂

S
B(y)) − 2ĉov(D̂S

A(y), D̂
S
B(y)). (41)

Locate the y∗ ∈ Y◦ at which t(y) attains its minimum.

• Solve problem (8) for uncorrelated samples, or else the problem with Lagrangean (28)
for correlated samples. Construct the weighted empirical dominance functions D̃S

K(y),
K = A, B, for y ∈ Y◦, as in (7). Check whether D̃S

A(y) > D̃
S
B(y) for all y ∈ Y◦ except y∗. If

so, skip the next step.

• Replace y∗ by the point y∗ at which D̃S
A(y) − D̃S

B(y) is minimised, and repeat the previous
step. Move on to the next step only when the check of the previous step is satisfied at y ∗.

• Construct a bootstrap DGP as follows. For uncorrelated samples, bootstrap samples are
drawn from the distributions for which the CDFs are the weighted empirical distribution
functions D̃1K , K = A, B. That is, points in a bootstrap sample are drawn by resampling
from the observed sample, with unequal probabilities as specified by the solution to the
empirical likelihood problem. For correlated samples, a bootstrap sample is drawn by
resampling pairs from the observed correlated samples, again with the unequal probabil-
ities given by the empirical likelihood problem.

• For each of B bootstrap replications, draw bootstrap samples of sizes NA and NB, and
compute the minimum t statistic t∗j , j = 1, . . . , B, using the bootstrap data, in exactly the
same way as t(y∗) was computed using the observed data. Set t ∗j to zero unless there is
dominance in the bootstrap data.

• The bootstrap P value is the proportion of the t∗j that are greater than the original statis-
tic t(y∗). Reject the null of (restricted) non dominance if the bootstrap P value is smaller
than the desired significance level.

Unlike most conventional bootstrap P values, the one computed using the above algorithm is
not asymptotically distributed uniformly on [0, 1] under the null that the DGP is on the frontier
of non dominance. This is because there is a positive probability, asymptotically one-half, that
the P value is equal to 1. However, the asymptotic distribution conditional on a P value of less
than 1 is uniform on [0, 0.5]. Thus, for any conventional significance level, the usual rejection
rule, as specified in the last step above, is asymptotically justified.
Most of the statements in the above paragraph follow from standard bootstrap theory applied

to a case in which the test statistic is asymptotically pivotal under the null, see Beran (1988). As
we saw above, that is the case here for the null that the DGP is on the frontier of non dominance.
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If the DGP is inside that frontier, then all tests, asymptotic or bootstrap, are asymptotically
conservative. The statements regarding the asymptotic distribution of P values greater than a
half follow from the fact that, if y0 is the single point of contact of two dominance functions one
of which dominates the other everywhere except at y0, then D̂S

A(y0) − D̂S
B(y0) is asymptotically

normal with zero expectation. The probability that it takes one sign rather than the other thus
tends to a half as the sample size grows. At all other points, the probability of a “wrong” sign
tends to zero. Thus the probability of failing to reject on account of finding non dominance in
the data tends to a half. The statements above follow from this fact, applied both to the original
test and the bootstrap tests.

8 A Few Simulation Experiments

In this section, results of some simulation experiments are reported. The set of experiments
is representative of interesting cases, but is far from complete. One reason for this is that the
results are very similar indeed to those found by DD for the case of first-order dominance.
Just two configurations are considered. The first is one situated on the frontier of non domi-

nance at second order, where the function D2
A and D

2
B touch at exactly one point in the interior

of the joint support. This means, of course that there is no first-order dominance, and the con-
figuration is thus in the interior of the set of configurations in which B does not dominate A at
first order. The second configuration has B dominating A at second order, but not at first order.
In both cases, the null hypothesis is non dominance of A by B at second order.
Unlike first-order dominance, which is invariant to monotonically increasing transforma-

tions applied to both distributions, higher-order dominance is invariant only to increasing affine
transformations. Thus a relation of second-order dominance is globally scale invariant, but not
locally so – the intensity of poverty matters for second-order relations. The choice made here
to consider distributions defined on the [0, 1] interval is thus harmless, but the precise location
of crossings or tangencies of the dominance functions matter.
In both configurations studied, each of the distributions A and B has a piecewise linear

CDF. Distribution A is in fact just a uniform distribution on [1/9, 1]. For distribution B, there
are 8 segments, [i/9, (i + 1)/9], i = 1, . . . , 8, to which a total probability of pi is assigned,
the distribution within each segment being uniform, which is what makes the CDF piecewise
linear. For the first setup, the probabilities are p1 = 0.075, p2 = 0.125, p3 = 0.175, p4 = 0.225,
p5 = 0.025, p6 = 0.025, p7 = 0.045, p8 = 0.305. The CDFs of A and B are shown in the left
panel of Figure 3, and the second-order dominance functions in the right panel. Note that the
CDFs are equal at the point of tangency of the second-order functions.
Rejection frequencies were computed for various sizes of independent samples. In all cases,

the null hypothesis is that B does not dominate A at second order over the restricted inter-
val [0.2, 0.9]. The experiments all comprised 10,000 repetitions, and for the bootstrap tests,
399 bootstrap repetitions were used. Figure 4 shows P value plots of the sort proposed by
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Figure 3: A configuration on the boundary of second-order non dominance

Davidson and MacKinnon (1998) for NA = 32 and NB = 27 on the left, and for NA = 64 and
NB = 57 on the right. These plots show the observed rejection frequency, a simulation-based
estimate of the true rejection probability, as a function of the nominal level. A P value plot
below the 45◦ line corresponds to under-rejection, above to over-rejection. The sample sizes
are chosen to be of comparable orders of magnitude, but unequal. If the sample sizes are the
same, largely meaningless discrete jumps appear in the plots. These simulation artefacts are
eliminated if the sample sizes are relatively prime.
Although rejection frequencies for nominal levels much above 0.1 are not of great interest

in themselves, the P value plot is a useful way to characterise the complete distribution of a
statistic. Here, we go out only as far as a level of 0.5, because, beyond that, we run into the
problem mentioned in the previous section.
Plots are shown, first, for the asymptotic test based on the minimum t statistic, with critical

values given by the right-hand tail of the standard normal distribution. The other plot is for the
bootstrap test described above.
The phenomenon of under-rejection remarked in DD is plainly visible with these small sam-

ple sizes. However, although for NA = 64 the asymptotic test is still quite noticeably undersized,
the bootstrap test is already providing reasonably reliable inference. In Figure 5, the pattern set
for smaller sample sizes continues for larger ones. For NA = 512, there is even some evidence
of over-rejection by the bootstrap test at nominal levels greater than those usually of interest.
The next set of experiments looks at power. The configuration of the two distributions is

shown in Figure 6, which, like Figure 3, shows the CDFs and the second-order dominance
functions for the two distributions. There is second-order dominance of A by B, but not first-
order dominance. A desirable test rejects the null of (restricted) second-order non dominance
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Figure 4: P value plots

Figure 5: P value plots for larger sample sizes

with high probability.
Figure 7 shows P value plots for the sample sizes shown in Figure 4, and Figure 8 for those

in Figure 5. For the small sample sizes of Figure 7, there is very little useful power, and the
asymptotic test still rejects with probability smaller than the nominal level, even though the null
hypothesis is not true. With the larger sample sizes of Figure 8, both tests acquire useful power,
but the bootstrap test is considerably more powerful.
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Figure 6: A configuration with second-order dominance

Figure 7: P value plots with second-order dominance

It is of interest to see how well the bootstrap algorithm worked in the experiments just de-
scribed. The table below shows a number of statistics for the configurations of the experiments.
First, the number of times (out of the 10,000 repetitions) that the value y ∗ at which the asymp-
totic t statistic attained its minimum did not satisfy the requirement that D̃S

A(y) > D
S
B(y) for all

y ! y∗, so that other values of y had to be checked – this number is called “moves” in the table.
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Next the maximum number of iterations needed for the nonlinear optimisation routine, and fi-
nally the number of occasions on which a pair (µ, ν) generated by this routine was outside the
admissible zone for nonnegative probabilities. The figures given in the table were found when
Newton’s method was initialised as described above using the approximate expressions in the
proof of Lemma 2.

Figure 8: P value plots for larger samples with second-order dominance

Sample sizes Null true Moves Max iterations outside zone
32/27 yes 105 7 0
64/57 yes 43 7 1
128/111 yes 25 6 0
256/243 yes 17 2 0
32/27 no 155 8 0
64/57 no 101 8 3
128/111 no 47 8 3
256/243 no 52 3 0

It emerges clearly that the algorithm functions quite efficiently. In the overwhelming major-

53



Review of Economic Analysis 1 (2009) 34–59

ity of cases, minimising the t statistic gives the right value of y at which to construct a bootstrap
DGP on the frontier of the null hypothesis, and Newton’s method strays outside the admis-
sible zone only very rarely indeed. In none of the experiments was it necessary to try more
than six values of y before satisfying the requirement for the bootstrap DGP, and again in the
overwhelming majority of cases only one try was enough. The rapid convergence of Newton’s
method is evident, especially for larger samples.

9 Conclusion

This paper extends the approach of Davidson and Duclos (2006) for testing for stochastic dom-
inance. The null hypothesis of tests based on this approach is that one distribution does not
dominate another over some restricted interval. The restriction is necessary whenever the dis-
tributions are continous – the tails must not be taken into account for a dominance or non-
dominance relation.
It is shown how to test a null hypothesis of the type considered for an arbitrary order of

stochastic dominance, and for correlated as well as uncorrelated samples. For orders greater
than the first, a nonlinear optimisation problem must be solved, and an algorithm based on
Newton’s method is given in order to do so. The bootstrap tests proposed can be implemented
efficiently, using the fact that a nonlinear problem need be solved only a few times, often just
once, in order to set up a suitable bootstrap DGP. Simulations show that the method is useful,
in that the bootstrap tests are superior to asymptotic tests as regards both size and power.

Appendix

Lemma 1 We show here that, if the probabilities pAt and pBs are given by (17) with µ and ν
solutions of the equations (18), then

∑
t pAt = 1 and

∑
s pBs = 1. From (17) we see that

∑

t
pAt =

∑

t

nAt
NA − µ(ν − (y − yAt )S−1+ )

=
1

NA − µν
∑

t

nAt
[
NA − µ(ν − (y − yAt )S−1+ ) − µ(y − yAt ))S−1+

]

NA − µ(ν − (y − yAt )S−1+ )

=
1

NA − µν


NA − µ

∑

t

nAt (y − yAt )S−1+
NA − µ(ν − (y − yAt )S−1+ )




=
1

NA − µν
(NA − µν) = 1. (42)

The proof for distribution B is exactly similar.

Lemma 2 As the size N = NA + NB of the pooled sample Y tends to infinity in such a way
that NA/N = r, 0 < r < 1, then, at any point y in the interior of Y at which DS

A(y) = DS
B(y),

the signed ELR statistic and the asymptotic t statistic (40) are asymptotically equivalent, in the
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sense that the difference between them tends to zero in probability as N → ∞. The same result
holds if DS

A(y) − DS
B(y) is nonzero, but is of the order of N

−1/2 as N → ∞.

Proof: In this proof, we will forget the factorial in the definition (4) of D̂S
K , K = A, B, in order

to lighten notation. It will be easy to see that the statistics we consider are unchanged when
this factor, the same for both A and B, is omitted. We write then that D̂S

A(y) = (1/NA)
∑
t nAt kAt .

The observations are IID, and so this expression is the average of the random variables k Ai ,
i = 1, . . . ,NA, where we consider observations singly instead of grouping them by their values.
The variance of D̂S

A(y) is thus the variance of ki divided by NA. This variance can be estimated
using the formula

NAv̂ar(D̂S
A(y)) =

1
NA

NA∑

i=1
(kAi )

2 −


1
NA

NA∑

i=1
kAi




2

=
1
NA

∑

t
nAt (kAt )2 −



1
NA

∑

t
nAt kAt



2

. (43)

The formula for B is exactly similar. Make the definitions

K̂A =
1
NA

∑

t
nAt (kAt )2 and K̂B =

1
NB

∑

s
nBs (kBs )2. (44)

Then the square of the t statistic (40) can be written as

t2 =
(D̂S

A − D̂S
B)
2

1
NA
(K̂A − (D̂S

A)
2) +

1
NB
(K̂B − (D̂S

B)
2)

=
r(1 − r)N(D̂S

A − D̂S
B)
2

(1 − r)(K̂A − (D̂S
A)2) + r(K̂B − (D̂S

B)2)
(45)

where we omit explicit dependence on y to avoid notational clutter.
Denote by D the limit in probability as N → ∞ of DS

A(y), and so also of D
S
B(y). Then, since

D̂S
K(y), K = A, B, is a root-n consistent estimate of D, we have D̂S

K(y) = D + Op(N−1/2). It
follows as well that d ≡ N1/2(D̂S

A(y) − D̂S
B(y)) = Op(1). Let KA and KB be the probability limits

as N → ∞ of K̂A and K̂B respectively. Then (45) can be written as

t2 =
r(1 − r)d2

(1 − r)KA + rKB − D2
+ Op(N−1/2). (46)

From (6) we see that the unconstrained maximum of the ELF is equal to
∑

t
nAt log nAt +

∑

s
nBs log nBs − NA logNA − NB logNB. (47)
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When the constraint that
∑
A nAt kAt =

∑
B nBs kBs is imposed, the maximised ELF becomes

∑

t
nAt log pAt +

∑

s
nBs log pBs , (48)

where the probabilities pAt and pBs are given by (21). This constrained maximum is therefore
equal to
∑

t
nAt log nAt +

∑

s
nBs log nBs −

∑

t
nAt log(NA − µ(ν − kAt )) −

∑

s
nBs log(NB + µ(ν − kBs ))

=
∑

t
nAt log nAt +

∑

s
nBs log nBs − NA logNA − NB logNB

−
∑

t
nAt log

(
1 − µ(ν − k

A
t )

NA

)
−
∑

s
nBs log

(
1 +
µ(ν − kBs )

NB

)
. (49)

The difference between the unconstrained and constrained maxima is twice the
ELR statistic:

1
2
ELR =

∑

t
nAt log

(
1 − µ(ν − k

A
t )

NA

)
+
∑

s
nBs log

(
1 +
µ(ν − kBs )

NB

)
. (50)

Now D̃S
A(y), as defined in (7), is also a root-n consistent estimator of D, so that D̂

S
A(y) −

D̃S
A(y) = Op(N−1/2). Aside from the factorial factor, this difference is

∑

t
nAt kAt

(
1
NA
− 1
NA − µ(ν − kAt )

)
= − µ

N A

∑

t

nAt kAt (ν − kAt )
NA − µ(ν − kAt )

. (51)

By (15), the quantity ν is a weighted average of either NA or NB quantities, and so is of order 1
in probability. In fact, (15) implies that ν = D+Op(N−1/2). Therefore the sum on the right-hand
side above is also of order 1 in probability, from which it follows that µ/N = Op(N−1/2), or,
equivalently, µ = Op(N1/2). If we write m = N−1/2µ, then it follows that m = Op(1).
If we Taylor expand the first logarithm in (50), we find that

∑

t
nAt log

(
1 − µ(ν − k

A
t )

NA

)
=
∑

t
nAt


−
µ(ν − kAt )

NA
− µ

2(ν − kAt )2
2N2A


 +Op(N−1/2)

= −µν + µD̂S
A −
µ2ν2

2NA
+
µ2ν

NA
D̂S
A −

µ2

2NA
K̂A + Op(N−1/2)

= −µν + µD̂S
A −

m2

2r
D2 +

m2

r
D2 − m

2

2r
KA + Op(N−1/2)

= −µν + µD̂S
A −

m2

2r
(KA − D2) + Op(N−1/2). (52)

An exactly similar calculation shows that
∑

s
nBs log

(
1 +
µ(ν − kBs )

NB

)
= µν − µD̂S

B −
m2

2(1 − r) (KB − D2) +Op(N−1/2). (53)
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Thus (50) becomes

1
2
ELR = md − m2

2r(1 − r)
(
(1 − r)KA + rKB − D2

)
. (54)

We now wish to express the random variable m in terms of d. For this, note that, from (15),

ν =
1
NA

∑

t
nAt kAt

(
1 − µ(ν − k

A
t )

NA
+Op(N−1)

)

= D̂S
A

(
1 − N−1/2mν

r

)
+ N−1/2

m
r
K̂A + Op(N−1) (55)

But we also have

ν = D̂S
B

(
1 + N−1/2

mν
1 − r

)
− N−1/2 m

1 − r K̂B +Op(N−1), (56)

so that, on subtracting (56) from (55) and multiplying by N 1/2, we obtain

0 = d − 1
r(1 − r)m(D

2 − (1 − r)KA − rKB) + Op(N−1/2), (57)

whence
m =

r(1 − r)
(1 − r)KA + rKB − D2

d +Op(N−1/2). (58)

Substituting (58) into (54) gives

1
2
ELR =

r(1 − r)d2
(1 − r)KA + rKB − D2

− 1
2

r(1 − r)d2
(1 − r)KA + rKB − D2

+ Op(N−1/2) (59)

so that
ELR =

r(1 − r)d2
(1 − r)KA + rKB − D2

+ Op(N−1/2). (60)

From (46) and (60) we see that the difference between t 2 and ELR is Op(N−1/2), which is the
asymptotic equivalence we wished to demonstrate.

Lemma 3 As the sample size N tends to infinity, at any point y in the interior of the joint support
of the distributions A and B at which DS

A(y)−DS
B(y) = O(N

−1/2), the signed ELR statistic and the
asymptotic t statistic with denominator the square root of (41), based on a correlated sample
jointly drawn from the two distributions, are asymptotically equivalent in the same sense as in
Lemma 2.

Proof: The proof follows lines similar to that of Lemma 2, but it is much simpler. We use the
notation of section 4, with kt = (y − yAt )S−1+ − (y − yBt )S−1+ . The squared t statistic can then be
written as follows, where as before we omit the explicit dependence on y.

t2 =
(D̂S

A − D̂S
B)
2

v̂ar(D̂S
A) + v̂ar(D̂

S
B) − 2ĉov(D̂S

A, D̂
S
B)
. (61)
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Ignoring the factorial factor as before, we have that

D̂S
A − D̂S

B =
1
N

∑

t
ntkt, (62)

and so the denominator of (61) can be obtained by use of the formula

Nv̂ar(D̂S
A − D̂S

B) =
1
N

∑

t
ntk2t −



1
N

∑

t
ntkt



2

. (63)

Let N1/2(D̂S
A − D̂S

B) ≡ d. Then d = Op(1) as N → ∞, because DS
A and D

S
B are root-n consistent.

Further, let K be the limit in probability of 1/N
∑
t ntk2t . Then (61) becomes

t2 = d2/K + Op(N−1/2). (64)

The unconstrained maximum of the ELF is
∑
t nt log nt − N logN. The constrained maximum

is
∑
t nt log pt, with the pt given by (29). We have pt = nt/(N + µkt), so that the constrained

maximum is
∑

t
nt log nt −

∑

t
nt log(N + µkt) =

∑

t
nt log nt − N logN −

∑

t
nt log

(
1 +
µkt
N

)
. (65)

It is easy to show, as in the proof of Lemma 2, that µ = Op(N1/2), and so we see that

ELR = 2
∑

t
nt log

(
1 +
µkt
N

)
= 2
µ

N

∑

t
ntkt −

µ2

N2
∑

t
ntk2t + Op(N−1/2)

= 2md − Km2 + Op(N−1/2) (66)

where m ≡ N−1/2µ = Op(1). The constraint (33) can be written as
∑
t ntkt/(N + µkt) = 0. Taylor

expansion of this gives

0 = N−1/2d − N−1/2Km + Op(N−1/2), or d = Km + Op(N−1/2). (67)

Consequently (66) becomes
ELR = d2/K + Op(N−1/2). (68)

With (64), this completes the proof.
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