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1  Introduction 

It is indeed an honor and a pleasure to have this opportunity to address a Conference honoring 

Professor S. James Press on the occasion of his formal retirement.  I say “formal” retirement 

because from my knowledge of Jim’s amazing productivity and very inquisitive nature over 

the many years that I have known him, it is impossible for me to imagine him in a state of full 

retirement in the usual sense of the word.  I believe, with probability 0.99 (subjective or 

objective; see Press (2003) and Press and Tanur (2001) for clarification) that he will continue 

to pursue his research and other interests vigorously and make additional important 

contributions in the years ahead.  As prior information for this assessment, note from his 

University of California at Riverside web page, he lists “only” the following as his Research 

Areas: “Image classification and reconstruction (The project involves developing multivariate 

Bayesian statistical methods for reconstructing scenes on the ground based on noisy signals 

received by sensors in the satellite.), Statistical analysis of microarrays, Cognitive modeling 

in sample surveys, Bayesian factor analysis, and Data mining: Bayesian analysis in data 

mining.”  With a research agenda like this, who can imagine him spending much time playing 

golf on the course alongside his home in Riverside? 

As you all know, Jim has had a very productive career in lecturing, mentoring students, 

research, service to the universities with which he has been associated and to the Statistics 

profession and creating a wonderful family. And he has played a key role in ushering in the 
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current Bayesian Era with his many Bayesian research contributions, his fine Bayesian books 

and papers and his key role in the formation of the American Statistical Association’s Section 

on Bayesian Statistical Science (SBSS, http://www.amstat.org). and the International Society 

for Bayesian Analysis (ISBA, http://www.bayesian.org). See the indicated home pages for 

detailed information regarding his contributions to the founding of these organizations.   In 

what follows, some of these topics and others will be discussed in sections titled, with great 

originality, The Past, The Present, and The Future.   

2  The Past 

From the very first time that I met Jim when he arrived in Chicago in the late 1960s after 

completing his doctoral degree in Statistics at Stanford, I have been impressed with his 

breadth and depth of knowledge, creativity, productivity and persistent curiosity.  Soon after 

his arrival in Chicago, he asked me for permission to sit in my graduate Bayesian 

Econometrics course.  Of course I answered positively. The thought of having a bright new 

PhD in Statistics in my course who had worked and studied with such statistical luminaries as 

Olkin, Stein, Anderson and others at Stanford was exciting.  However, I underestimated the 

extent to which Jim would contribute to the course’s content.  During each meeting of the 

course, he asked imaginative, relevant, fundamental questions in a most creative and 

constructive manner.  For example, when I was discussing Bayesian solutions to the 

multicolinearity problem in multiple regression analysis, he asked, “Why not consider using a 

generalized inverse to solve the multicolinearity problem?”  I responded that use of a 

generalized inverse must involve use of added prior information and suggested that it would 

be useful to describe it in detail.  The result was a paper, S.J. Press and A. Zellner, “On 

Generalized Inverses and Prior Information in Regression Analysis,” (1968) that revealed the 

hidden information after some algebraic analysis and produced a Bayesian interpretation of 

the sampling theory generalized inverse approach to solving multicolinearity problems.  

 At another point, he inquired about the properties of a ratio of random variables that are 

distributed as Student t, as in the case of the posterior distribution of the ratio of two 

regression coefficients or a structural parameter that is equal to a ratio of two reduced form 

equation coefficients, ratios that I explained do not have finite posterior moments.  But that 

did not completely satisfy him.  The result was Jim’s paper, “The t-Ratio Distribution” (1969) 

in which he analyzed the non-existence of moments and pointed to the possibility of 

encountering bimodal posterior distributions under certain conditions.  Further, his questions 

about the finite sample properties of the sampling distribution of   , the squared multiple 

correlation coefficient, led to our joint paper, “Posterior Distribution for the Multiple 

Correlation Coefficient with Fixed Regressors” (1978).  There were also many deep and 

useful philosophical, methodological and statistical questions that Jim raised throughout the 
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quarter that we all enjoyed discussing and trying to answer.  His contribution to my course 

that year was indeed significant, appreciated by all and indicative of a brilliant future for him.  

 This interaction with Jim in my course, our joint NSF research grant and research 

workshops and meetings at Chicago and elsewhere reflected his earlier work not only in 

Statistics but also his studies for his MS degree in Mathematics and his BA degree in Physics 

and some experience gained from his employment in research organizations.  This 

background plus an inquisitive nature and brilliant intellect help to explain the origins, 

breadth and depth of his comments and questions.  Then too, I learned that he interacted a 

good deal with my former University of Chicago colleague Harry Roberts, a famous Bayesian 

statistician.  Indeed in Jim’s most recent book, Subjective and Objective Bayesian Statistics: 

Principles, Models, and Applications, Wiley 2003, he writes in the preface, “I am deeply 

grateful to Drs. Harry Roberts and Arnold Zellner for exposing me to Bayesian ideas.” (p. 

xxvii). I believe that Harry’s deep appreciation and understanding of Bayesian ideas and his 

ability to apply them in solving practical statistical, quality control, business and forecasting 

problems appealed very much to Jim.  Here was a case of theory with application, not just 

theory, and the Bayesian solutions to practical problems compared very favorably to non-

Bayesian solutions. Also, Jim enjoyed learning about the philosophical aspects of Bayesian 

analysis and statistical research results of Harold Jeffreys, Leonard Savage, Bruno de Finetti, 

George Box, George Tiao, Dennis Lindley, Morris DeGroot, James Berger and other 

Bayesians. 

 In the late 1960s and early 1970s at Chicago, Jim enriched the environment by interacting 

on Bayesian and other statistical issues with Harry Roberts, Gordon Antelman, George Tiao, 

Robert McCulloch,  David Wallace, Milton Friedman, myself and other Chicago Bayesians, 

as well as with non-Bayesians, or neutralists Albert Madansky, Stephen Stigler, Henri Theil, 

et al. In the advance copy of his 1972 book, Applied Multivariate Analysis,  that he gave to 

me, he wrote an inscription that I value greatly, namely, “To Arnold, In gratitude for years of 

intellectual stimulation, and for exposing me to some of the solutions, and also some of the 

problems a Bayesian must face.  Jim” Also, in the preface to this volume he graciously 

acknowledged others who made contributions to his development and his book in the 

following words, “The author’s interest in multivariate analysis was inspired by Ingram 

Olkin, whose enthusiasm for the subject is contagious and whose ideas are tacitly in evidence, 

especially in Chapter 2.  Jacques Drèze, Thomas Ferguson, Seymour Geisser, Divakar 

Sharma, Henri Theil, and Robert Winkler provided helpful comments on various sections of 

the manuscript.  Discussions with D.V. Lindley, M. Stone, and G. Tiao were helpful in 

putting various Bayesian concepts into perspective.” (pp.x-xi). 

 While his 1972 book had mainly a multivariate statistics emphasis, he did take up 

Bayes/non-Bayes issues quite directly in Section 1.4, titled, “Sampling Theory Versus 

Bayesian Approach,” (p.4ff) in which he wrote, “This book does not take a dogmatic position 
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on the sampling theory versus the Bayesian approach toward solving problems. There is no 

claim that there is a right and a wrong way.  Rather, it is believed that cogent arguments can 

be made for both approaches to inference and decision making, and each may involve some 

subjective or technical difficulties.”  He goes on to expand on this theme illustrating an 

understanding of difficulties associated with the view that there is one and only one right way 

to learn from data and experience.  Rather, he takes a pragmatic, thoughtful, scientific 

approach that involves determining the logical soundness of alternative approaches and how 

well they work in solving important inference and decision problems, an approach that many, 

including myself, find very appealing. 

 Of course since 1972, the historical record indicates that Bayesian methods have proven to 

be very valuable in providing solutions to many basic statistical problems that are better than 

solutions provided by other methods, as, e.g., shown in Jim Press’s important Bayesian papers 

on factor analysis, spatial analysis, hierarchical modeling, and other problems.  Along with 

his many Bayesian statistical contributions, he had, and still has, a great interest in Bayesian 

computational problems.  His 1979 article, “Bayesian Computer Programs” in which he listed 

and discussed many early Bayesian computer programs was widely read by and extremely 

useful to Bayesian researchers.  

 In addition to his Bayesian and other statistical research, Jim participated energetically in 

the activities of several Bayesian organizations.  In the early 1970’s he played a role in the 

creation of the National Bureau of Economic Research, National Science Foundation Seminar 

on Bayesian Inference in Econometrics and Statistics (SBIES).  This seminar met two times a 

year beginning in 1971 at universities and other sites world-wide to hear and discuss reports 

on current Bayesian research.  At an early meeting of the SBIES at Chicago, in our “business 

luncheon” meeting on Saturday, we discussed the structure of the organization that had been 

operating for several years rather informally.  I raised the issue as to whether we needed to 

formulate a set of operating rules or a constitution to guide us.  A moment later, Seymour 

Geisser moved that this matter never be brought up again.  The motion was duly seconded 

and passed unanimously.  Thus we operated for 25 years rather informally and successfully 

without wasting much time on bureaucratic matters and held wonderful meetings world-wide.  

Some referred to the Seminar on several occasions as “the longest lasting floating crap game 

ever.”  Currently, Sid Chib at Washington University in St.Louis heads up the SBIES and is 

planning a meeting to be held in St. Louis on Aug. 1-2, 2005; for details, see 

http://www.olin.wustl.edu/faculty/chib/sbies.   

 Jim addressed the SBIES group a number of times and co-edited a book, Bayesian and 

Likelihood Methods in Statistics and Econometrics: Essays in Honor of George A. Barnard 

(1990), a collection of Bayesian research papers that the SBIES brought out in our series of 

books honoring famous Bayesians, e.g. Savage, Jeffreys, de Finetti, and others.  Originally, 

when it was suggested that we produce a book honoring Barnard, who had previously 
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attended one or two of our meetings, the following issue was brought up at one of our 

Saturday business luncheons.  How can we bring out a book honoring Barnard?  He’s not a 

Bayesian!  Immediately a person at the meeting responded, “That doesn’t matter. He’s a great 

guy.”  And thus the matter was settled.  In a letter, Barnard wrote that he wondered why a 

Bayesian group would publish a book in his honor.  When I explained what happened at our 

business meeting, he was very pleased. 

 Jim also arranged two very successful meetings of the SBIES, one was held at the 

University of California at Riverside in 1986 and the second, with the help of Ruben Klein 

was held in Rio de Janeiro, Brazil in 1990 at a beautiful hotel across the street from one of 

Rio’s famous beaches.  Needless to say, in addition to learning much about Bayesian analysis 

in the research sessions, we all learned a good deal about priors and posteriors from visits to 

the beach.  Joking aside, some claimed that this Rio meeting contributed significantly to the 

emergence of Bayesian research in Brazil. 

 Both the UCR and Rio meetings were very successful and indicated to all that Jim 

possesses exceptional organizational skills.  Also, participants noted that he is conscientious, 

willing to work hard and interacts well with others in solving difficult problems that arise in 

planning meetings, forming organizations, etc.  And later in the early 1990’s he was most 

effective in the formation of the International Society for Bayesian Analysis (ISBA) and the 

American Statistical Association’s Section on Bayesian Statistical Science (SBSS); see the 

websites http://www.bayesian.org 

and http://www.amstat.org for further information regarding Jim’s important role in the 

founding and activities of these two impressive organizations that have been very successful, 

including his essay, “The Formation of the Section on Bayesian Statistical Science (SBSS) of 

the American Statistical Association.” 

3  The Present 

So much for the past.  Let us now turn to the present. Since the present is just a point of time 

between the past and the future, I shall try to be brief in this section. 

 There can be no doubt but that Jim’s 2003 Wiley book, Subjective and Objective Bayesian 

Statistics: Principles, Models and Applications  is one of the most important and impressive 

Bayesian books on the scene today. It has received very favorable reviews and been given a 

special designation by Wiley. The broad and deep coverage of many Bayesian and related 

topics is impressive. As explained on page 13, “The book is subdivided into four parts. Part 1 

includes Chapters 1 to 5 on foundations and principles, Part 2 includes Chapters 6 and 7 on 

numerical implementation of the Bayesian paradigm, Part 3 includes Chapters 8 to 11 on 

Bayesian inference and decision making and Part 4 includes Chapters 12 to 16 on models and 

applications.” From this listing, it is clear that the book treats a broad spectrum of 

fundamental topics. The presentation involves clear, explicit explanations of concepts and 
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procedures along with many helpful, understand-able examples and references to the 

literature. 

 Topics covered in the book include concepts of probability, prior distributions, likelihood 

functions, Bayes’ theorem, procedures for estimation, testing, prediction, computation, model 

averaging, decision-making, de Finetti transforms, entropy, data mining, factor analysis, 

classification and discrimination, etc. To get this broad coverage, Jim very wisely enlisted the 

cooperation of friends and colleagues, Sid Chib, Merlisse Clyde and Alan Zaslavsky to 

contribute chapters reflecting their expertise in computing, MCMC, etc., model averaging and 

hierarchical Bayesian modeling, respectively. What a wonderful idea to achieve greater 

breadth and depth of coverage! 

 While it is infeasible to comment on all the above topics treated in Jim’s book, I shall just 

mention one briefly in this section. Given past and recent intense discussions of alternative 

statistical testing procedures, see, e.g. Berger (2003), Ziliak and McCloskey (2004), and 

Zellner (2004a), I believe that many would benefit considerably from a reading of Jim’s 

discussion of testing, pp. 217-233. He appreciates the major issues and reaches conclusions 

that are based on much past theoretical and empirical analysis. His carefully worded and 

insightful discussions probably will be appealing to most Bayesians if not to Fisherian p-

value, frequentist, and mechanical 5% Neyman-Pearson types. Jim clearly knows the issues 

and their complexity. He appreciates that learning from data about alternative hypotheses or 

models and making decisions in evaluating them are difficult problems and illustrates how 

Bayesian posterior odds have been employed to solve them. At the end of his chapter titled 

“Bayesian Hypothesis Testing,” he writes, “The Bayesian (Jeffreys) approach is now the 

preferred method of comparing scientific theories. . . . Richard Feynman suggests that to 

compare contending theories (in physics) one should use the Bayesian approach.” (p. 230) 

 With these brief remarks made about the present, now it’s off to the future. 

4  The Future 

I shall just say a few words about some aspects of the future of Bayesian analysis relative to 

its current successful state, as ably presented in Jim’s book and other current Bayesian texts. 

 How might the Bayesian approach or approaches change in the years ahead? We must 

face this problem since “innovation and continual improvement” is the name of the game in 

science, industry and other competitive areas of life. From this point of view, since my (1988) 

paper, “Optimal Information Processing and Bayes’ Theorem,” that Jim cites in his book, I 

have been concerned about alternative justifications and derivations of Bayes’ Theorem and 

generalizations of it in order to provide a number of optimal learning models that can be on 

the shelf for use to solve particular learning and other problems as they arise. Note that some 

are currently “adjusting” likelihood functions and prior densities in their use of Bayesian 

methods; see, e.g. the JASA paper by Ibrahim, Chen and Sinha (2003) , a departure from 
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‘usual’ Bayesian methods. In my (2000) paper, I introduced “information quality adjusted” 

priors and likelihood functions as contrasted to the usually assumed “standard” information 

quality in priors and likelihood functions. Also, Jeffreys (1998, p. 24ff) in his discussion of 

the standard proof of the product rule of probability has some serious concerns that an 

assumption used in the proof, namely that elements of the sets have the same probability of 

being drawn, may not always be satisfied in practice and thus introduced the product rule not 

as a theorem but just as an axiom in his inference system. In Zellner (2004b), is my recent 

effort to generalize the product rule of probability that shows that the product rule can hold in 

special cases in which probabilities of elements being drawn are not all the same. In 

psychology, there are a number of different learning models, as is well known, some 

incorporating “anchoring effects” or “costs of changing belief effects”, etc. Indeed, there is a 

huge theoretical and empirical literature on interactive learning, learning in game theory, 

computer science, marketing, economics, and other fields. Also, many recognize that 

Bayesians and non-Bayesians learn in various ways in performing data snooping, data 

mining, reductive inference or model formulation, diagnostic checking of models, etc. Indeed, 

in Hill (1988) there is a brief discussion of a theory of data snooping that “…takes us, to some 

extent outside the classical version of Bayes and decision theory; however, the classical 

version often provides a first approximation to the data-analytic approach that I 

recommend…Some related discussions concerning time coherency and/or generalizations of 

the Bayesian approach are in Diaconis and Zabell (1986), Goldstein (1983) and Lane and 

Sudderth (1985).” (p. 281). 

 Recognizing all of the above and other relatively unexplored features of learning, a 

question is whether it is possible to create an optimizing framework within the context of 

which it is possible to produce optimal learning models that are useful in solving many 

learning problems just as use of minimum expected loss Bayesian estimation procedures 

produces optimal estimates for a broad range of models and problems that have good 

properties. Before getting into the details regarding an optimization procedure that produces 

Bayes’ theorem and other learning models, I must address a commonly encountered question, 

“Why tamper with the well known and useful learning model, Bayes’ theorem?” The same 

question might have been raised vis á vis the Model T Ford or Einstein’s tampering with 

Newton’s well-established and useful “laws of motion”? And indeed, as is well known, 

Einstein had many early critics. For example, as quoted in Cerf and Navasky (1998, p. 331), 

Ernst Mach, Professor of Physics at the University of Vienna remarked in 1913, “I can accept 

the theory of relativity as little as I can accept the existence of atoms and other such dogma.” 

Of course empirical evidence supporting some predictions of Einstein’s theory changed many 

individuals’ degree of belief or confidence in the validity of his theory, a learning experience. 

Since the Michaelson-Morley experiments showing the non-existence of ether drift, there 

were some empirical “correction factors” introduced in attempts to patch up the Newtonian 
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laws, perhaps indicating the need for a more general theory that Einstein produced and that 

was quite “subjective” in its early stages. However, importantly, it was a testable theory and 

indeed some future observations were in accord with the theory’s predictions and not in 

accord with the predictions of Newton’s laws, thereby causing many to increase their degree 

of belief in Einstein’s theory that was on its way to becoming an “objective” law. However, 

astrophysicists have recently reported that observations indicate that the universe is expanding 

at an increasing rate, not at a decreasing rate as predicted by Einstein’s theory. Thus there is a 

need for some new theory that explains this “anomaly” and works well in explaining and 

predicting old and new data. And so on, and so on in the iterative process that is called 

science. 

 Similarly with respect to the famous Bayes’ learning model, apparently the only formal 

learning model that explains how initial beliefs are transformed into post data beliefs in 

Statistics, it has worked very well over a broad range of problems but there are other 

problems for which it does not provide answers. These are problems in which the forms of 

likelihood functions and/or prior density functions are unknown, problems in which some 

information is of poor quality and some of high quality, etc. These and many other problems 

can be cited, as recognized by Hill (1988), Jaynes (1988), and others, to indicate the need for 

broader learning models that work well in providing information about models’ parameters, 

future values of variables and in comparing and/or combining alternative models for 

observations. Needless to say, just as with Einstein’s theory, it will have to be shown that the 

new learning models actually do perform well in solving learning problems encountered in 

practice before they will be accepted for use, as is normal in science. 

 With such considerations in mind, some years ago in a 1988 paper, I put forward an 

information theoretic optimization approach for producing optimal learning models, including 

the Bayesian learning model, Bayes’ theorem that have the property that input information = 

output information and thus the optimal learning models are 100% efficient, as noted and 

discussed by Jaynes (1988, 2003), Hill (1988), Kullback (1988), Bernardo(1988), Soofi 

(1996, 2000), Bernardo and Smith (1994) and others. In later work, Zellner (1991, 1997, 

2000, 2003), new variants of the original optimization problem were formulated and solved to 

obtain a battery of optimal learning models, all of which are 100% efficient. Some of these 

are briefly reviewed below and then optimal information procedures for evaluating alternative 

models, including the traditional Bayesian posterior odds procedure, will be derived as 

optimal information processing procedures and their properties and uses indicated. In 

particular, it will be shown how to evaluate an initial “subjective” model vis á vis an 

established “objective” model, a problem that may appeal to those, including Judy, Jim and 

others who have worked hard to understand the “subjectivity” and “objectivity” of science. 

As mentioned above, it appears that “subjective” theories become “objective” when it is 
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shown convincingly that they work better in explanation, prediction and policy-making than 

currently utilized “objective” theories or mechanical empirical procedures. 

 To structure an information processing problem, there is of course a need to choose an 

information measure. In the past, I have used the Gibbs-Shannon (GS)  measure, and noted 

that it would be interesting to extend my analyses to use of the Rényi (1961) and Silver 

(1991) measures of information. Below, I shall show that my solutions are invariant to the use 

of the GS and a form of the Rényi information measure. In an effort to simplify the 

interpretation of the GS measure of information in a probability density function, e.g. 

( ) ( ) ( )ln[ / ]g x g x m x dx , where ( )g x is a probability density function with x either a scalar 

or vector, I interpret this as the “expected ln height of the density g(x) relative to the measure 

m(x). Of course to measure height, there has to be some reference level, say height relative to 

a plane or line or some given surface. In what follows, I shall, along with many others, e.g. 

Press (2003, p.246), take m(x) = constant throughout the analysis. Note too, that 

generally, 0 g< < +∞  and ln g−∞ < < +∞ . That a scale of measurement extends over 

negative values is not unusual. Note that Fahrenheit , Centigrade and Absolute temperature 

scales include negative values as anyone who has lived in Madison, Wisconsin or Oslo, 

Norway knows. Whether or not there are lower and/or upper limits to the information scale as 

with the Absolute temperature scale is an issue that has not as yet been considered. 

 Now if we consider another density, say p(x), we can consider its height and ln height, 

use uniform measure, and consider the expected value of the ln height of p(x), that 

is, ( ) ( ) ( )ln lnE p x g x p x dx=  . Note that this provides a measure of the information in  p(x) 

relative to uniform measure and it is recognized that this measure is dependent on the form of 

g. We want a form for g that incorporates all the relevant information regarding x in order to 

get a good measure of the information in a density function involving x. Given this procedure, 

we now wish to consider a “standard” inference problem in which we have two inputs, a prior 

density for the parameters, θ, π(θ), and a likelihood function for θ, given the observations, 

denoted by y, f(y| θ), , the probability density function for the observations, evaluated at the 

observed data, y viewed as a function of θ, that is, the likelihood function. The outputs of the 

information processing problem are a post data density for the parameters given the 

observations, y and prior information, and a marginal density for the observations, evaluated 

at the observed observations,  y, denoted by ( ) ( ) ( )h y f y dθ π θ θ=  . Now we write down 

information measures on the outputs, g and h and subtract information measures on the 

inputs, the prior density π and the likelihood function, f, as follows, denoting the difference by 

( )gΔ : 
 

( )

( ) output information - input information

ln ln ln ln

ln[ / / ] 0

g

g gd g hd g fd g d

g g f h d

θ θ θ π θ
π θ

Δ =
=  +  −  − 
=  ≥

   (1) 



ZELLNER   S James Press and Bayesian Analysis 

 107

We wish to minimize ( )gΔ  with respect to the choice of g subject to it’s being a proper 

density, namely, 1gdθ = , in order to keep the output information as close as possible to the 

input information so as not to lose any information. The solution to the problem, denoted by 

g*, using a calculus of variations approach, first given in Zellner (1988) is precisely in the 

form provided by Bayes’ theorem, namely,  
 

 g*=πf/h      (2) 
 
 Some, including Hill (1988), Kullback (1988), Robert McCulloch and Udi Makov, 

pointed out that the second line of (1) is in the form of the Jeffreys-Kullback-Leibler distance 

or cross entropy measure, shown in the third line of (1) that is known to be non-negative, see, 

e.g. Kullback (1959. p. 14ff) for a proof and Jeffreys (1946) for his distance measures, and 

thus g* in (2) is the form of g that minimizes (1). It is interesting that if we used a more 

general form for the information in a density, e.g. the expectation of the log of a density 

raised to the power lambda, with 0 λ< < ∞ , that is lnE f λ  , it is the case that the solution to 

the above optimization problem is unchanged. Thus the solution is “invariant” to the use of 

this variant of Rényi’s information measure. 

 The form of g* in (2) is such that ( ) 0g∗Δ = , that is the input information = the output 

information and thus the information processing procedure, Bayes’ theorem is 100% efficient, 

as noted in my 1988 paper and by Bernardo and Smith (1994) or obeys an “information 

conservation principle” as Hill (1988) puts it after explaining that many sampling theory 

procedures do not satisfy this principle. Further, Jaynes (1988, pp. 280-281) commented, “. . . 

entropy has been a recognized part of probability theory since the work of Shannon 40 years 

ago, and the usefulness of entropy maximization as a tool in generating probability 

distributions is thoroughly established. . . . This makes it seem scandalous that the exact 

relation of entropy to the other principles of probability is still rather obscure and confused. 

But now we see that there is, after all, a close connection between entropy and Bayes’s 

theorem. Having seen a start, other such connections may be found, leading to a more unified 

theory of inference in general. Thus, in my view, Zellner’s work is probably not the end of an 

old story but the beginning of a new one.” See also, Jaynes’ comments on the result in (2) in 

his recently published book, Jaynes (2003). 

 As part of the “new story,” in Table 1, I have provided several post data densities for 

parameters that minimize the difference between output information and input information 

and are 100% efficient in the sense that input information = output information in each case. 

In line 1, we have the “standard” Bayesian inputs, a prior density and a likelihood function 

and the solution, namely Bayes’ theorem, as mentioned above. In the second line, we have 

inputted just a likelihood function and no prior, as R.A. Fisher wished to do in his fiducial 

approach. The minimizing solution is to take the post data density for the parameters 

proportional to the likelihood function and when this is done, information in = information 
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out and the procedure is 100% efficient. In the third line the input information is in the form 

of moment side conditions, as in the Bayesian method of moments procedure, see references 

and discussion in Zellner (2003), and the efficient post data density function for the 

parameters is in the form of an exponential function of a linear combination of the powers of 

the parameter. Similar solutions are available in the case of moment and other side conditions 

involving vectors of parameters. See, e.g. Green and Strawderman (1996), La France (1999), 

Zellner and Tobias (2001) and Zellner (1997) for examples involving vectors of parameters in 

regression and other models. 
 
 

Table 1 Optimal Bayesian Information Processing Results 
 
 

       Output: Optimal Information 
 Inputs      Processing Rule  
 
1. Prior density, π     g lπ∝   

  Likelihood function, l 

2. Likelihood function, l    g l∝  

3. Post data moments,a 

  i
i gdμ θ θ=     1,...,i m=     

1
exp{ }

m
i

ig λθ∝ −   

4. Prior density, π 

  Post data moments,    
1

exp{ }
m

i
ig λθ∝ −  

  ( )i
ig D dθ θ θ μ =  

  1,2,...,i m=  

5. Quality adjusted inputs 

  1wπ  and 2 ,wl      1 2w wg lπ∝  

  1 20 , 1w w< ≤  

6. Inputs for time period t,b 

  1,2,...,t T=      1t t tg g l−∝ 1,2,...,t T=  

  1,t tg l−  

  (with 0 0 ,g π=  the initial prior density) 
 

a 
g denotes the post data density and iλ ’s are Lagrange multipliers. Extensions to cases in which 

vectors and matrices of parameters are employed, as in multiple and multivariate regression are 
available; see references in the appendix. 
b 

See Zellner (2000) for discussion of the solution to this multiperiod information processing problem, 
a dynamic programming problem 
 
 In line 4 of Table 1, the input information is that in a prior density and in moment side 

conditions on the parameters and the optimal information processing density is in the form of 
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a prior times the maxent density for the parameters. As with line 3, these results have also 

been obtained for problems involving vectors of parameters. In line 5 of Table 1, there 

are “quality corrected” inputs, so-called because raising a density to a fractional power 

usually spreads them out or reduces their average height, as noted in the literature on “power 

priors.” See, e.g., the paper by Ibrahim, Chen and Sinha (2003) for a thorough discussion of 

power priors and references to the literature. With such inputs as shown in line 5, the 

information processing solution, that is 100% efficient is to take the post data density for the 

parameters proportional to the prior raised to the power w1  times the likelihood function 

raised to the power w2. It is noted that the solution post data density in line 5 of Table 1 is in 

the form of a well known “Cobb-Douglas” production function with returns to scale = w1+ 

w2 and elasticity of substitution = -1, properties discussed in standard Econometrics and 

Economic texts. Other side conditions can be imposed to produce solutions that have other 

returns to scale and elasticity of substitution properties. See Zellner (1996, p. 169ff.), Zellner 

and Ryu (1998) and Dorfman and Koop (2005) for information regarding other general forms 

for production functions and many references to the literature. Also MacKay (2004, p.471ff.) 

provides some functions that relate informational inputs to informational output that are being 

used in information theory and its applications. 

 In the last line of Table 1, mention is made of dynamic information processing wherein 

the output of one period is the input to the next along with new data input each period. See 

Zellner (2000) for consideration of this optimization problem, a dynamic programming 

problem for which the Bellman solution is such that it is optimal to update post data densities 

for the parameters using Bayes’ theorem. And when this is done, information in = information 

out period by period and thus the usual Bayesian updating procedure is 100% efficient. 

However, as mentioned in the paper, if there are costs of changing beliefs or costs associated 

with obtaining new data, the optimal solution will differ from the traditional Bayesian 

solution and in some cases can resemble the forms of learning models used in the 

psychological literature. For further examples of information processing in relation to 

psychological learning processes, see the doctoral dissertation by David Just (2001) in which 

he employs information processing rules to explain paradoxical results in nine psychological 

experiments. 

 Given the results in Table 1, we have a range of optimal post data densities for the 

parameters of a model that can be employed in point estimation, that is to compute post data 

means that are optimal relative to quadratic loss functions, or post data medians that are 

optimal relative to absolute error loss functions, etc. And of course, post data intervals and 

regions can be computed to solve problems of interval estimation. Note too that various 

properties of the optimal densities shown in Table 1 can be easily obtained. For example, at a 

talk at the University of Wisconsin that I was invited to present by Ehsan Soofi, I mentioned 

that the first and higher moments of lng, the ln height of g, can easily be evaluated, 
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analytically or numerically by evaluating the integrals, ( )ln
i

g g dθ , i=1,2,…,m and thus 

means, variances and higher order moments are available to characterize the properties of lng 

or g. For example, if lnE g a= , and  lnVar g b=  the maxent density for lng is normal with 

mean a and variance b, and also, g has a log-normal density. This density for g can be 

employed to characterize its properties. 

Further, as shown in Zellner (2003), if we consider Bayes’ Theorem in line 1, it follows 

that ln ln ln lnE g E c E E lπ= + +  and ( ) ( ) ( ) ( )var ln var ln var ln 2cov ln , lng l lπ π= + + . 

The correlation of the ln-height of the leprior and the ln height of the likelihood function can 

then be evaluated to characterize the dependence of the prior on the likelihood function. If the 

prior is uniform, the correlation is zero. Also, using this type of analysis the properties of the 

traditional Bayesian learning model in line 1 of Table 1 can be compared to those of other 

learning models. Many other comparisons of the properties of the optimal information 

processing rules in Table 1 can also be made. 

 Properties of the predictive densities associated with alternative information processing 

rules in Table 1 can be compared as in the case of regression models studied in Zellner and 

Tobias (2001). Given that we have alternative predictive pdfs for future observations 

associated with alternative information processing procedures described in Table 1, and the 

observed future observations, we can evaluate the predictive pdf, 

( ) ( ) ( ),f fh y D g D f y D dθ θ θ=   where D stands for the past data and prior information. 

Such predictive densities have been employed to form Bayes’ factors and posterior odds to 

evaluate alternative models and their associated assumptions, e.g., a Bayesian method of 

moments model versus a traditional Bayesian model, a procedure about which Barnard (1997) 

commented as follows: 

 

And above all any method is welcome which, unlike nonparametrics, remains 

fully quantifiable without paying obeisance to a model which one knows to be 

false. And your proposal to compare BMOM results with a model-based one 

should achieve the best of both worlds. 

 

 The use of Bayes’ factors and prior odds to compute posterior odds is usually justified by 

an appeal to Bayes’ theorem in Bayesian texts and applications.1 That is, Bayes’ theorem is 

employed to derive the result that the posterior odds is equal to the prior odds times the 

Bayes’ factor. Recently I have shown that it is possible to derive this last relation using an 

information theoretic optimization approach similar to that used to produce the optimal rules 

shown in Table 1. See some of these results in Table 2 wherein posterior odds are related to 

                                                 
1 See, e.g. Keynes (1921, p. 297) for use of Bayes’ theorem to compute the posterior odds on the 
hypotheses, a “Final Cause” exists and a “Final Cause” does not exist after observing a miracle, also 
discussed in Zellner (1984, p. 39) in connection with an analysis of causality. 
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prior odds and Bayes’ factors by minimizing the difference between output information and 

input information for two mutually exhaustive hypotheses and for two non-exhaustive 

hypotheses. In both cases the optimal information processing rules are precisely in the form of 

the traditional Bayesian rules but have been derived using alternative assumptions. Clearly 

there are many variants of the problems shown in Table 2 that can be and will be analyzed in 

the future, some analogous to those analyzed in Table 1 solutions to which will be in forms 

not the same as those provided by the traditional Bayesian approach. If these new solutions 

are shown to be better than the traditional solutions, say in performing various tests of 

alternative drugs in clinical trials, then, in accord with what was said above, these procedures 

will come to be viewed as “objective” and not “subjective.” And of course, these comparisons 

can be made readily for a broad range of problems given the already great progress that has 

been made on the computing front with respect to numerical integration and optimization 

procedures. 

 In summary, in my opinion, the future looks very bright for Bayesians who use 

appropriate, formal learning models and methods in their analyses of statistical problems. 

Their solutions to problems will often be superior to those of non-Bayesians who usually use 

no or inappropriate learning models. E.g., the papers by Green and Strawderman (1996), 

LaFrance (1999), and van der Merwve et al. (2001) are outstanding examples of how new 

learning models have been employed to obtain good solutions to important applied problems 

when forms of likelihood functions are unknown. It appears that the current successful 

Bayesian Era will rapidly expand to incorporate various learning models and to provide a 

unifying framework for those concerned with learning theory and applications of it in many 

fields of science. Also, new and old information theory approaches for producing models for 

observations and prior densities for their parameters as described in Golan (2002), Jaynes 

(2003), Press (2003), Soofi (1996, 2000), Zellner (1996) and references cited in these sources, 

along with the creation of more computerized data bases, improved measurements and many 

more effective numerical integration and other computing techniques will be key factors in 

promoting the future progress of Bayesian analysis in all the sciences. With such 

developments, Bayesian analysis will continue to be dominant in the competitive arena that 

we call science and we can toast each other for the roles that we have played in creating a 

wonderfully productive Bayesian Era. 
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Table 2   Information Processing and Evaluation of Alternative Hypotheses 
 

 Inputs      Outputs 

 
1. Two Exhaustive Alternative Hypotheses 

       a. Prior Probabilities 

  ,1Π − Π  

       b. Data densitiesa     ,1P P−  

  ( ) ( )1 2,h y h y  

       c. Criterion Functional: 

  ( ) ( ) ( )ln 1 ln 1P P P P PΔ = + − −  

   ( ) ( )[ ln 1 ln 1P P− Π + − − Π  

   ( ) ( ) ( )1 2ln 1 ln ]P h y P h y+ + −  

       d. min ( )PΔ wrt P leads to: 

  Solution: 

  ( ) ( ) ( ) ( )1 2/ 1 [ / 1 ][ / ]P P h y h y− = Π − Π  

  i.e., 

  Post Data Odds =  Prior Odds x Bayes’ Factor 

  and 

  Info in =  Info out 

 

2. Two Non-Exhaustive Alternative Hypotheses 

 a. Prior Probabilities 

  Π1, Π2      1 2/ ,P P  Post data odds 

       b. Data Densities 

  ( ) ( )1 2,h y h y  

       c. Criterion Functional: 

  ( )1 2 1 1 2 2, ln lnP P P P P PΔ = + −  

   1 1 2 2 1 1 2 2[ ln ln ln ln ]P P P h P hΠ + Π + +  

       d. Solution: 

  ( ) ( )1 2 1 2 1 2/ [ / ][ / ]P P h y h y= Π Π  

  i.e., Post Data Odds =  Prior Odds x Bayes’ Factor 

  and 

  Info in =  Info out 

 
a ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1 2 2 2 2 2 2andh y f y d h y f y dθ π θ θ θ π θ θ=  =   
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Appendix:  

Selected References on New Information Processing and Bayesian Method of 
Moments (BMOM) Methods 

I. General Information Processing Results: Producing Models, Priors and 
Information Processing Rules (including Bayes’ Theorem) 

See A. Zellner, Bayesian Analysis in Econometrics and Statistics: The Zellner View and 

Papers, Elgar, 1997, Part III, “Bayesian Priors, Models and Information Processing,” pp. 

97-175. 

Here the problem of model formulation is discussed with many examples. In particular it 

is shown how information theory can be employed to derive univariate and multivariate 

regression and many other commonly employed models and prior densities for their 

parameters. Also, in the 1988 American Statistician article, “Optimal Information 

Processing and Bayes’s Theorem,” with discussion by E.T Jaynes, B.M. Hill, S. Kullback 

and J. Bernardo and the author’s response, pp. 154-160 in AZ (1997), it is shown how to 
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derive Bayes’s Theorem as a solution to an information theory optimization problem.  In a 

later article, A. Zellner, “Information Processing and Bayesian Analysis,” (2000) 

presented to the Am. Stat. Assoc. in 2001 and published in  J. of Econometrics, Vol. 107 

(2002), 41-50, Bayes’s Theorem and other learning models, including the Bayesian 

Method of Moments (BMOM) model are derived as solutions to optimization problems. 

See also the 2001 doctoral dissertation “Information and Learning,” by D.R. Just, Dept. of 

Agricultural and Resource Economics, U. of California, Berkeley for additional 

information processing rules and their use in explaining anomalous behavior in 

psychological learning experiments. It should be appreciated that the BMOM model 

permits investigators to obtain posterior and predictive densities when likelihood functions 

and prior densities are not available. 

II.    References for the Theory and Applications of BMOM 

Zellner, A. (1994), “Bayesian method of moments (BMOM) analysis of mean and regression 

models,” in J.C. Lee, W.D. Johnson and A. Zellner (eds.), Prediction and Modeling 

Honoring Seymour Geisser, New York: Springer-Verlag, 61-74, reprinted in AZ (1997), 

pp. 291-304. 

 Green, E. and W. Strawderman, “A Bayesian Growth and Yield Model for Slash Pine 

Plantations,” J. of Applied Statistics, 23 (1996), 285-299. [The authors did not have 

enough information to specify a likelihood function and thus used the BMOM in the first 

serious application of the method.] 

Zellner, A. (1997), “The Bayesian Method of Moments (BMOM): Theory and Applications,” 

Advances in Econometrics, 12, 85-105. [The BMOM approach is applied to a wide range 

of models.] 

Zellner, A., J. Tobias and H. Ryu, “Bayesian Method of Moments (BMOM) Analysis of 

Parametric and Semi-Parametric Regression Models,” in 1997 Proceedings of the Section 

on Bayesian Statistical Science, Am. Stat. Assoc., 211-216 and in South African Statistical 

Journal, 31 (1999), 41-69. 

Zellner, A. (1998), “The finite sample properties of simultaneous equations’ estimates and 

estimators: Bayesian and non-Bayesian approaches,” J. of Econometrics, 83, 185-212. 

[The BMOM approach is applied to multivariate regression, unrestricted reduced form and 

structural estimation problems and results are compared to those yielded by traditional 

Bayesian and non-Bayesian estimation approaches, e.g.  ML, 2SLS, etc.] 

Zellner, A. (1998), “On Order Invariance of Maximum Entropy Procedures,” ms., 5pp., 

H.G.B. Alexander Research Foundation, Grad. School of Business, U. of Chicago. [It is 

shown that maximum entropy procedures are order invariant. Arguments to the contrary in 

the literature are shown to be defective.] 
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La France, J. (1999), “Inferring the nutrient content of food with prior information,” 

American J. of Agricultural Economics, 81,728-734. [An impressive analysis of an 

important problem using the BMOM approach and comparing it to other possible 

approaches.]  

Zellner, A., J. Tobias and H. Ryu (1997), “Bayesian Method of Moments Analysis of Time 

Series Models with an Application to Forecasting Turning Points in Output Growth 

Rates,” published in Estadistica, J. of the Inter-American Statistical Institute with 

discussion by Prof. Enrique de Alba, Vols. 49-51, Nos. 152-157, 1997-1999, 3-63.   

 van der Merwe, A. and Viljoen, C. (1998), “Bayesian Analysis of the Seemingly Unrelated 

Regression Model,” ms., Dept. of Mathematical Statistics, U. of the Free State, 

Bloemfontein, S.A., presented to the annual meeting of the S.A. Statistical Association, 

November, 1998. 

Geisser, S. and T. Seidenfeld (1999), “Remarks on the ‘Bayesian’ method of moments,” J. of 

Applied Statistics, 26, 97-101 and Zellner, A. (2001), “Remarks on a ‘critique’ of the 

Bayesian Method of Moments,” J. of Applied Statistics, 28, No. 6, 775-778, published 

version of  my 1997 working paper. [It is pointed out that Geisser and Seidenfeld 

introduced an erroneous assumption that led to their negative conclusion.] 

Soofi, E. (2000), “Principal information theoretic approaches,”  J. of the American Statistical 

Association, 95, 1349-1353.  [Comments on information processing derivations of 

learning models and the BMOM.] 

Mittelhammer, R.C., Judge, G.G. and Miller, D.J. (2000) Econometric Foundations, 

Cambridge: Cambridge U. Press, pp. 688-693. [A brief introduction to the BMOM 

analysis of the multiple regression model.] 

Zellner, A. and J. Tobias (2001), “Further Results on Bayesian Method of Moments Analysis 

of the Multiple Regression Model,” International Economic Review, 42, No. 1, 121-140. 

van der Merwe, A.J., A.L. Pretorius, J. Hugo and A. Zellner (2001), Traditional Bayes and the 

Bayesian Method of Moment Analysis for the Mixed Linear Model with an Application to 

Animal Breeding,” South African Statistical Journal, 35, 19-68. 
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Macroeconomic Dynamics, 5, 673-700. [BMOM estimation and forecasting techniques 

are employed, along with others, to forecast annual output growth rates for 11 sectors of 

the U.S. economy. Sector forecasts are aggregated to produce forecasts of aggregate U.S. 

GDP growth rates and such forecasts are compared with those derived from aggregate data 
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