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This study models the trading intensity in European Allowances (EUA) futures contracts in 
the European Climate Exchange (ECX) using various specifications and investigates the 
forecasting ability of observable versus unobservable factors. This set up tests empirically 
the impact of the evolving market structure through regulatory updates, captured by trading 
volume fluctuations, to the intensity of trading in the European Carbon market. The findings 
suggest that observable market characteristics capture better the dynamics of trading 
intensity than their latent counterparts, which implies that regulatory changes that enhance 
transparency would also improve market efficiency. 
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1  Introduction 

This study investigates explicitly the modelling of trading intensity in the last two phases of 
regulatory amendments in the European Carbon market, prior to the introduction of MiFID II 
(January 2018). The primary objective is to identify whether observable factors, such as trading 
volume (Dufour and Engle, 2000) and trading frequency (e.g., Engle and Russell, 1998), or 
unobservable factors, captured by distributions with progressively nesting properties, contribute 
more to trading intensity clustering (e.g., Kalaitzoglou and Ibrahim, 2013a). According to the 
empirical findings it is the observable factors that exhibit a higher explanatory power of the data 
generation process of trading intensity, suggesting that greater market transparency – the main 
objective of MiFID II – would ameliorate the predictive power of liquidity models and thus, it 
would contribute through liquidity to higher market efficiency (Kalaitzoglou and Ibrahim, 2015) 
and better price discovery (Medina et al. 2014).1 
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1  For more information about MiFID II please refer to the European Commission updated rules, https:// 
ec.europa.eu/info/business-economy-euro/banking-and-finance/financial-markets/securities-markets/ 
investment-services-and-regulated-markets-markets-financial-instruments-directive-mifid_en, as well as 
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In more detail, the European Carbon market, known as the “European Union Greenhouse Gas 
Emission Trading System” (EU ETS), is the regulatory response of the European Union to the 
Kyoto Protocol (1997) and creates a new “commodity” market that has become the most 
important mechanism in reducing emissions.2 The EU ETS exhibits some distinctive features that 
are associated with its relative illiquidity. It is a “cap and trade” market, where a certain number 
of allowances (i.e., EUAs) is allocated to only specific industrial sectors and each company can 
trade its surplus/deficit, while it allows Over-The-Counter (OTC) EUA holders to enter and 
register their positions. Consequently, the overall quantity of available EUAs is politically 
influenced and their trading is affected both by the organised venues, as well as by the OTC 
market. Recently, the introduction of the MiFID II regulation, with its suggested increased 
transparency, is expected to affect market liquidity (e.g., Rannou and Barneto, 2016) and through 
it market efficiency (Kalaitzoglou and Ibrahim, 2015) and price discovery (Medina et al. 2014). 
Consequently, an empirical investigation of intraday trading patterns could provide a further 
insight on the expected impact of increased transparency on liquidity. 

Several studies, in early stages of the market, have discussed several stylized factors and 
provide a general description of the trading mechanism (e.g., Mansanet-Bataller and Pardo, 2008; 
Chevallier, 2009), as well as of price evolution (e.g., Christiansen et al., 2005; Uhrig-Homburg 
and Wagner, 2006; Mansanet-Bataller et al., 2007), mainly on a daily frequency (e.g., Daskalakis 
et al., 2009). However, other studies (e.g., Benz and Trück , 2009) examine the same issue on an 
intraday basis and report the existence of trading patterns (e.g., Kalaitzoglou and Ibrahim, 2013b) 
that can be employed to identify the existence of different groups of traders (e.g., Kalaitzoglou 
and Ibrahim, 2013a), as well as their interaction with price discovery (e.g., Bredin et al., 2014), 
trading costs (e.g., Ibrahim and Kalaitzoglou, 2016) and order to trade ratios (e.g., Galariotis et 
al., 2018). All these suggest that liquidity, especially on that level, has a significant impact on 
market quality in the form of frictions (e.g., Medina et al., 2014) and overall efficiency (e.g., 
Ibikunle et al., 2016). Consequently, the identification of observable or latent factors that might 

                                                                                                                                           
 
 

on the report from the Commission to the European parliament and the council, https://eur-
lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52015DC0576. 

2 The majority of countries (Annex I) have ratified a treaty – “The Kyoto Protocol” – aiming at their 
emissions’ reduction. The agreement defines three periods for countries to meet their targets. Phase I 
(2005-2007) is the pilot period, Phase II (2008-2012) is the commitment period and Phase III (2013-
2020) is the post commitment period for re-evaluation and further adjustments. There are three 
“flexibility mechanisms” for achieving emission targets: (i) Joint Implementation (JI), (ii) Clean 
Development Mechanism (CDM) and (iii) Emission Trading Scheme (ETS). Each one provides units – JI 
provides Emission Reduction Units (ERUs), CDM provides Certified Emission Reduction Units (CERs), 
while Allocated Allowance Units (AAUs) are allocated according to national allocation plans –that can 
be used for compliance. 
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improve liquidity forecasting ability, would improve market quality and help the market achieve 
its emission reduction targets. 

Unlike when using daily data, an intraday analysis using Ultra-High-Frequency (UHF) data 
poses some challenges with respect to the arrival time of events, which is irregularly spaced and 
might depend on various factors. According to Engle and Russell (1998), the time between two 
consecutive trades, namely duration, might convey price relevant information, as it measures 
economic and not calendar time. They model the Data Generation Process (DGP) of durations as 
a dependent point process, with an autoregressive model named Autoregressive-Conditional-
Duration (ACD) model, in which the conditional mean varies over time as a function of past 
durations, while an associated distribution with positive support must be specified. Many studies 
challenge the simplicity of the conditional mean specification (e.g., Dufour and Engle, 2000; 
Zhang et al., 2001), as being inadequate in capturing non-linear asymmetries, and of the 
conditional density function (e.g., Grammig and Maurer, 2000; Hujer and Vuletić, 2007), as 
insufficient in capturing duration’s higher moments. Combining the two empirical challenges, 
Bauwens et al. (2004) suggest that the ACD framework could be used to distinguish between the 
impact of observable (i.e., conditional mean specification) and unobservable (i.e., conditional 
density specification) factors on fitting of the model and, consequently, on the drivers of the 
intraday liquidity formation. 

Towards that direction, several studies try to identify observable factors that might affect 
intraday liquidity, with volume, duration and price change being the most widely discussed 
observable factors. In the context of the EU ETS, several studies (e.g., Bredin et al., 2014; 
Ibrahim and Kalaitzoglou, 2016) examine the interaction between duration, volume and price and 
report a positive correlation between the intensity of trading and price change. Kalaitzoglou and 
Ibrahim (2015) unify volume and duration into a new, rescaled time variable, proxy for trading 
intensity and report that deviations from the conditionally expected levels are associated with 
information inflow and the induction of uncertainty in the price discovery process. Following the 
propositions of Easley and O’Hara (1992), Kalaitzoglou and Ibrahim (2013a) investigate this 
further and report a link between these deviations and the existence of different types of market 
participants with respect to their association to information. Informed trading cannot be 
identified, but it could be inferred from the trading activity. This is usually done by assuming that 
the DGP of trading intensity consists of distinct groups of traders. Modelling-wise, this is usually 
modelled with an increasing flexibility of the conditional density function (e.g., Hujer and 
Vuletic, 2007; Kalaitzoglou and Ibrahim, 2013; Rannou and Barneto, 2016). Therefore, the 
empirical practice so far considers observable factors affecting the conditionally expected trading 
intensity (i.e., conditional mean specification), while latent factors are assumed to be manifested 
in the distribution of the trading intensity (i.e., captured by a more flexible conditional density 
specification). 
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This is the primary concern of this study. An empirical investigation of the drivers of intraday 
liquidity, in the form of duration and volume, is conducted, aiming at identifying the main 
determinants of the trading intensity process, with respect to observable or unobservable market 
factors. This is done by testing the fitting of different specifications of trading intensity using the 
Autoregressive-Conditional-Weighted-Duration (ACWD) framework (Kalaitzoglou and Ibrahim, 
2015). This framework describes the DGP of trading intensity, modelled as a rescaled point 
process, combining both duration and volume into one variable. 

The empirical findings suggest that the trading activity in the EU ETS can be better described 
by enhanced conditional mean specifications, rather than by more flexible conditional density 
specification. This implies that trading history, which is observable, is an important determinant 
of subsequent trading activity. In contrast, inferred information about trading activity, such as the 
existence of better informed agents, usually captured by the distributional assumptions, does 
improve the fitting of the models, but not to the extent of the conditional mean specification 
improvements. Consequently, latent-unobservable-inferred factors, have a lesser contribution to 
determining subsequent trading activity. This finding has a direct regulatory implication, in 
favour of MiFID II, suggesting that greater transparency, which would enhance the quantity and 
quality of available information, can lead to a better understanding of the fundamentals that drive 
trading activity and thus, to a market with less frictions. This can lead to a better balance between 
market innovation and liquidity needs. According to Viswanathan (2010), this would provide the 
foundations of more accurate pricing and would help the market to serve its purpose of reducing 
emissions. A more precise modelling of trading activity could also improve market making 
practices in EU ETS. Market makers can better manage risk if they know how long (i.e., 
expected duration) they are going to be exposed to it, and this would result in narrower spreads. 
Limit order traders can also benefit from a better trading intensity model, since they can develop 
better trading strategies by managing the time dimension of “execution” risk. 

The remainder of the paper is organized as follows. The next section presents the 
methodology and a description of the data collection and manipulation. The next section 
discusses the empirical findings, and the last section concludes. 

2  Methodology and Data Sample 

2.1   The ACDW Model  

Engle and Russell (1998) propose the Autoregressive Conditional Duration (ACD) models for 
modelling the inter-trade intervals, durations  𝑥 = 𝑡 − 𝑡  (where  𝑡  is the time stamp of a 
trade), and thus, liquidity, as a dependent stochastic process. Following Kalaitzoglou and Ibrahim 
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(2015), this is complemented by a measure of relative volume (number of contracts, v~𝑁(v, σ )), K u  = exp  , where u = (v − v)/σ , which is used to rescale time and form a new proxy 

for trading intensity, 𝑆 = 𝑥 ∗ K(u ). The new variable, i.e., trading intensity 𝑆  is then modelled 
following the ACWD framework: 𝑆 = 𝛩 𝜀 (1)

𝛩 = 𝛩(𝑆 , … , 𝑆 ; 𝜑 ) (2)
𝜀 ~ 𝑖. 𝑖. 𝑑. 𝑤𝑖𝑡ℎ 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑓(𝜀 ; 𝜑 ) (3)

where, 𝛩  is the expected trading intensity, conditioned on past trading intensity, 𝜀  is the 
standardized volume weighted durations, and 𝜑  and 𝜑  are vectors of parameters. Both the 
conditional mean, 𝛩(𝑆 , … , 𝑆 ; 𝜑 ), as well as the conditional density function of 𝑆, 𝑓(𝑆 ), can 
be modelled using various specifications in order to capture various market stylized factors.  

2.1.1  Conditional Mean Specifications 

In order to account for the impact of observable trading history on expected trading intensity, the 
following enhanced version of the original ARMA-like specification is introduced: 

𝛩 = 𝜔 + (𝑎 + 𝜁 ∗ 𝛪 )𝑆 + 𝛽 𝛩  (4)
which considers the impact of lagged, observable variables Ι on expected trading intensity. 
Considering previous literature that recognizes the asymmetric impact of volume (e.g., 
Kalaitzoglou and Ibrahim, 2013b; Rannou and Barneto, 2016) on subsequent trading activity, 
volume is introduced as a determinant of subsequent trading intensity.3  Previous transactions of 
differing volume revise the coefficient of the past values of trading intensity, a.  Compared to the 
linear model, a represents the “average” impact of previous transactions, while ζ is adjusts its 

                                                 
3 This is not an identification statement, but it serves the purpose of investigating whether observable 

variables have a greater forecasting ability than unobservable, summarized in the conditional density. 
Other variables could also be introduced alongside or instead of volume, but the objective of this study is 
to investigate which part of the modelling, i.e., the conditional mean specification that captures 
observable information or the conditional density specification that captures inferred/unobservable 
information, contributes more to describing trading intensity. 
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value according to the magnitude of the volume of lagged transactions. When ζ>0 (ζ<0) market 
activity slows down (accelerates) with higher volume, in the form of longer (shorter) expected 
duration and/or lower (larger) expected volume. Various economic explanations, mainly related 
to information and liquidity, might be proposed to link the sign of ζ to an economic context. This 
is relevant to the modelling of trading intensity in the sense that, given the depth and the size of 
the market, large trades are expected to influence the floor trading. A positive ζ could possibly 
mean that when large trades appear in the market, market members might perceive this as 
information inflow and might abstain from trading in the fear of losing money by trading with 
informed traders. Another explanation could be that larger trades might exhaust liquidity, at least 
on the best bid-ask level and therefore, trading activity might need some time to recover. 
Whatever the reason, this empirical specification should be able to capture the impact of 
observable market factors on subsequent market activity. 

In addition, in order to address potential non-linearities, a Box-Cox transformation (Hautsch, 
2004), i.e., BCACWD, is also introduced: 

𝑙𝑛𝛩 = 𝜔 + (𝑎 + 𝜁 ∗ 𝛪 ) ∗ (𝜀 ) + 𝛽 𝑙𝑛 𝛩  (5) 

In this model, two types of non-linearities are introduced. First, it is a logarithmic transformation 
of the expected trading intensity, which places a greater weight on low values of Θ, which 
capture a high expected trading activity. This is also measured in relative terms, i.e., ε, with 
respect to the actual duration, S. Second, the impact of these relative innovations might be 
asymmetric, of higher or lower order δ, determined by the data. In fact, if δ<0, larger shocks have 
a lower impact on expectations and this implies a tendency to return to a “normal” stage of 
market activity, e.g., mean reversion, after stages of excessive activity or inactivity. In contrast 
when δ>0, larger shocks have a stronger impact on subsequent trading intensity, which implies a 
tendency to prolong trading intensity episodes. This specification, could potentially capture a 
more complex structure of trading intensity. 

2.1.2  Conditional Density Specifications  

Previous literature (e.g., Hujer and Vuletic, 2007; Kalaitzoglou and Ibrahim, 2013b) suggests that 
the impact of latent variables can be captured by the conditional density specification, assuming 
that it is manifested by the trading activity of different groups of traders. Because the trading 
intensity is a positive-support variable, it is customary for 𝑓(𝜀 )  and consequently 𝑓(𝑆 ) =𝛩 𝑓(𝜀 ) , to be modelled using density functions belonging to the family of generalized 
Exponential distributions. The conditional density specifications employed in this study are: 
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Exponential (E) Distribution: 𝑓( 𝑆 ∣∣ 𝑆 , … , 𝑆 ; 𝜏 ) = 1 𝛩⁄ exp (− 𝑆 𝛩⁄ )   (6) 
Weibull (W) distribution: 

𝑓( 𝑆 ∣∣ 𝑆 , … , 𝑆 ; 𝜏 ) = 𝛾 𝑆⁄ 𝑆 𝛤(1 + 1 𝛾) 𝛩 exp(− 𝑆 𝛤(1 + 1 𝛾) 𝛩 )       (7)
where, Γ(:) is the gamma function of the distribution parameter 𝛾, 𝛾 > 0. When 𝛾 = 1, W nests 
E. More specifically, E is a decreasing function, while W assigns higher (lower) probability in 
extreme values (very short or very long durations) when 𝛾 < 1 (𝛾 > 1). In addition, in order to 
account for a mixture of market participants, assuming that their trading is captured by a different 
distribution, a mixture of Weibull distributions (S) is also employed:  

𝑓(𝑆 |𝐽 ; 𝜏) = (𝛾 𝑆⁄ )[𝑆 𝛤(1 + 1 𝛾⁄ ) 𝛩⁄ ] 𝑒𝑥𝑝(−[𝑆 𝛤(1 + 1 𝛾⁄ ) 𝛩⁄ ] )         (8)
The overall shape parameter of W, 𝛾 = 𝛾(𝐽 : 𝝉) = 𝛾 + (𝛾 − 𝛾 ) ∗ 𝐺 (𝐽 : 𝑔 , 𝑗 ) + (𝛾 − 𝛾 ) ∗𝐺 (𝐽 : 𝑔 , 𝑗 ), is a function of a threshold variable, 𝐽 , represented by 𝑆, and a vector of parameter 
coefficients 𝝉 = (𝛾 , 𝛾 , 𝛾 , 𝑔 , 𝑔 , 𝑗 , 𝑗 ). 𝛾 , is the weighted average of 𝛾 , 𝛾  and 𝛾 , i.e., the 
shape parameters in the respective three regimes determined by the threshold variable 𝐽 , and the 
weights are determined by the smooth transition functions, 𝐺 (𝑆 : 𝑔 , 𝑗 ) = (1 + 𝑒𝑥𝑝 −𝑔 ∗(𝐽 − 𝑗 ) ) , with smoothness parameters 𝑔 , 𝑘 = 1,2.  

2.1.3  Estimation and Performance 

The estimation method used is maximum likelihood using the Broyden–Fletcher–Goldfarb–
Shanno (BFGS) (1970) algorithm with numerical derivatives. In addition, in order to deal with 
heteroskedasticity of known form, the models have been estimated using robust errors that 
account for it. 4 In addition, the different specifications are fitted using the Box-Jenkins 
methodology. 5  Then the performance of the models is tested, by examining the in-sample 
“forecasts”, as another “goodness of fit” test. The “short-term’ (1-step) forecasts are generated 

                                                 
4  The market gained complexity and liquidity gradually. Duration has been decreased over the years, while 

volume has been increased. Consequently, the values of the trading intensity measure we use are 
consistently lower over the years, introducing heteroskedasticity of known form. 

5  The null hypothesis is that there is no remaining autocorrelation after 15 lags. The Q-stat (15) test statistic 
is distributed as a chi  with a 5% critical value (for the Q-stats(15)) of 25. 
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according to the conditional mean specification, while “long-term” (10-step) forecasts are 
computed according to Dufour and Engle (2000).6 

Their performance is evaluated, first, with the correlation (CORR) between the actual and the 
forecasted values of trading intensity, as well as by using a comparing the percentiles of their 
respective distributions (Q-Q plots). These are measures of the ability of the models to forecast 
large/small values when they are observed. Practically, they capture the ability of the models to 
forecast the level of liquidity. That could be very important for active traders, for dealers and for 
policy makers since liquidity is an important component of the price/cost of an asset. The second 
measure of performance is: 

𝑈𝑁𝐿 = 𝑀𝑆𝐸 �̅� , 𝑤ℎ𝑒𝑟𝑒 𝑀𝑆𝐸 = 1 (𝑁 + 1) 𝑥 −𝑥 , (9)
where, UNL is the Unitized Loss, which measures the average squared error for every unit of 
forecasted values. MSE is the mean squared error, while  x is the realised trading intensity, x ̂ is 
the forecasted trading intensity, and N_T is the number of observations. This measure captures 
the proportional error for every unit of forecasted value and it is important for active traders, such 
as market makers, who condition their signed price setting on expected incoming liquidity on 
each side of the spread. 

Finally, previous literature (e.g., White, 2000; Hansen, 2005) considers performance measures 
that focus on the first moment of forecasts, such as the above, to be biased because they ignore 
their distributional assumptions. This is a relevant critique to the forecasting exercise above 
because it employs many competing models, which might consistently over- or under-forecast 
the actual series. For these purpose, an additional two tests are employed in order to investigate 
whether a model or a family of models exhibits a statistically significant improvement in overall 
performance. The first test is the Reality Check (RC) introduced by White (2000) and the second 
is the Superior Predictive Ability (SPA) test of Hansen (2005). Both are consider the differential 
function:  
                                                 
6  The long-term forecasts of the linear ACWD are given by: 𝐸 [𝑥 ] = 𝜔 ( )( ) + (𝛼 + 𝛽) 𝜓 . 

When OTC transactions are taken into account (ACWD-OTC) the following formula is used instead. 𝐸 [𝑥 ] = 𝜔 (( ∗ ) )(( ∗ ) ) + ((𝛼 + 𝜁 ∗ 𝐷 ) + 𝛽) 𝜓 , where 𝜔, 𝛼, 𝛽  and 𝜁  are the estimated 
parameters of the respective ACWD model. The long term (10-step) forecasts for non-linear models are 
given by: 𝐸 [𝑥 ] = 𝜉 . 𝜉 . … . 𝜉 𝑒𝑥𝑝 𝜔 + 𝛽 ln (𝜓 ) , where 𝜔, 𝛼   and 𝛽  are the 
estimated parameters from the ACD models and 𝑠 = 10  is the forecasting horizon, and 𝜉 =𝐸 [𝑒𝑥𝑝 𝛽 𝑔(𝜀 ) ] are parameters that are used to correct biased forecasts and can be 
estimated using the following sample moment; 𝜉 = 1/𝑅 ∑ 𝑒𝑥𝑝 𝛽 𝑔(𝜀 ) , where m=1, … , s-
1 and 𝑔(𝜀 ) = (𝑎 + 𝜁 ∗ 𝐷 )𝜀 , where 𝛿 = 𝛿 + 𝛿 ∗ 𝐷 . 
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𝑑 , = 𝑈𝑁𝐿 , − 𝑈𝑁𝐿 ,     (10) 
which 𝑑 , > 0 if model 𝑘 has a better performance than a benchmark model 0, at transaction 
time 𝑖 = 1, … , 𝑛 . The two statistics examine whether one or a group of models exhibits a 
performance that is statistically different from 0. White (2000) suggests using the differential 
functions themselves, �̅� = ∑ 𝑑 , , while Hansen (2005) proposes the following standardized 

version: 𝑅𝐶 = max ,.., √𝑛�̅� , … , √𝑛�̅�    (11) 
𝑆𝑃𝐴 = 𝑚𝑎𝑥 max ,.., √ √ , 0    (12) 

Then the moments of the distributions of 𝑅𝐶  and 𝑆𝑃𝐴  are estimated by using the stationary 
bootstrap of Politis and Romano (1994), by drawing 𝑏 = 1, … , 𝐵  samples and re-estimating 
empirically equations (12) and (13).7    Then the rejection probabilities, are computed as: 

𝑝 = 1 ,𝐵 𝑜𝑟 𝑝 = 1 ,𝐵 (13)
where the null hypothesis of 𝐸(𝑅𝐶 ) = 𝐸 max ,.., √𝑛�̅� , … , √𝑛�̅� ≤ 0 is rejected for high 
values of 𝑝. 

2.2  Sample  

The data sample consists of all transactions and best-quote revisions of EUA Futures contracts 
with December maturity, traded on the European Climate Exchange (ECX), extracted from the 
Thomson Reuters Tick History (TRTH) database. Due to lack of prior information the dataset 
covers a period from 29/09/2008 until 30/04/2016. The information collected is the time stamp at 
millisecond accuracy, the price and the volume of each transaction. According to market 
microstructure practice the following data manipulation is applied. 

First, observations with no or erroneous inputs, such as a 0 price, and/or out-of-trading-hours 
are omitted. Second, in order to consider the main price discovery process only the contracts with 
the highest trading volume are considered. The roll over dates from one maturity to the next are 
chosen using the following criterion: when the new contract exhibits higher daily volume for at 
                                                 
7  For estimating 𝑣𝑎𝑟 √𝑛�̅� , Hansen (2005) suggests various assumptions for the null distribution of 𝑆𝑃𝐴 . Because of the nesting property of the models employed here, the expected value of 𝑆𝑃𝐴  is 

considered to be 0. The moments of the statistics are based on a number of 1,000 samples, with a sample 
rate of 10% and dependence parameter of 25%. 
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least two consecutive days. The rollover days are 09/12/2008, 04/12/2009, 16/12/2010 and 
14/12/2011 for phase II and 13/12/2013, 12/12/2014, 11/12/2015 for phase III. This produces two 
datasets, namely ECX II and ECX III, with 1,206,114 and 1,517,191 transactions, respectively. 
Third, trades with identical price, time stamp and trade direction are considered as one segmented 
trade and are aggregated. This thinning process results in two datasets of 864,368 and 835,289 
transactions, for ECX II and ECX III, respectively. Fourth, the trade initiation is computed 
according to the ‘EMO’ rule (Ellis et al., 2000) and assigns a +1 (-1) to buyer- (seller)-initiated 
trades. Finally, the remaining durations are diurnally adjusted according to Dufour and Engle 
2000).8 

Table 1 presents the descriptive statistics of the two rolling series; ECX II and ECX III. The 
first notable observation is that the main asset traded in each phase is the contracts with the 
maturity in the same phase. Until the end of 2012, the number of trades in the ECX II series is far 
superior to ECX III. In addition, the number of observations before 2012 for ECX III accounts 
for about 10% of the total trades, but with an increasing number every year. Consequently, the 
price discovery for EUA Futures is expected to occur in the contracts with the closest maturity. 
The large difference in overall liquidity between the two series is also observed in the decreasing 
duration over the trading years. In both phases, the duration in the early trading period is 
significantly higher compared to the main trading period of each asset. For example, the average 
duration in 2010 for ECX III is 2,753 seconds and it drops to 35.61 seconds in 2013 – 
comparable to 40.74 seconds in 2012 for ECX II – when Phase III contracts become the main 
asset. The transaction size does not change significantly, so the differences are observed due to a 
higher number of transactions. 

                                                 
8  First, each trading day has been divided into five time intervals, each two hours long. The nodes (time 

benchmarks) used were 09:00:00 (32400), 11:00:00 (39600), 13:00:00 (46800), 15:00:00 (54000), 
17:00:00 (61200). The values in parentheses are seconds after midnight. In order to avoid problems with 
convergence to infinity when the log-transformation is used, a unit, i.e., 1, is added to all raw durations. 
Then duration (dt) was regressed on the following time function, in order to obtain the expected duration, 𝐸 𝑑 𝑓(𝑡) . 𝑓(𝑡) = 𝛽 + ∑ ∑ 𝛽 𝑡 − 𝑛 , where j=1...5 and stands for the five nodes used and 
h=1...3. In addition, 𝑛 ’s are five dummy variables which are calculated as: 𝑛 = 𝑡 − 𝑘 , 𝑤ℎ𝑒𝑛 𝑘 < 𝑡 < 𝑘0, 𝑒𝑙𝑠𝑤𝑒𝑟𝑒 . Then, after estimating 𝛽 ’s, the expected durations (𝐸 𝑑 𝑓(𝑡) ) 

are calculated. Finally, using the following ratio, the durations are normalized (diurnally adjusted),  𝑥 = 𝑑 𝐸 𝑥 𝑓(𝑡)⁄ , where, 𝑥  stands for the diurnally adjusted durations, 𝑑  stands for the raw 
durations and 𝐸 𝑥 𝑓(𝑡)  is the expected duration derived by regressing the raw durations on the cubic 
spline 𝑓(𝑡). 
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Table 1: Descriptive Statistics  
    Duration Volume Price Price Chg Duration Volume Price Price Chg 

Total 
ECXII 

#864,368 
ECXIII 

#835,289 

Avg 44.90 10.09 12.27 0.00 68.04 15.51 6.16 0.00 
Med 6.51 4.00 13.12 0.00 5.46 5.00 5.83 0.00 
Max 24878 2000 24.39 0.95 35742 5000 20.22 0.64 
Min 0.00 1.00 5.61 -1.09 0.00 1.00 2.46 -0.95 
 Std 129.26 21.81 3.56 0.02 430.22 44.58 2.08 0.01 

2008  
ECX II 
#36,645 

Avg 64.27 4.76 18.92 0.00  
Med 8.20 2.00 18.25 0.00  
Max 23901 216 24.39 0.92  
Min 0.00 1.00 13.50 -1.09  
 Std 223.24 7.37 2.79 0.03  

2009  
ECX II 

#202,288 

Avg 45.39 6.03 13.24 0.00  
Med 6.06 2.00 13.54 0.00  
Max 24878 478 16.04 0.95  
Min 0.00 1.00 8.05 -0.95  
 Std 134.29 9.99 1.63 0.02  

2010  
ECX II 

#190,012 
ECX III #3,108 

Avg 48.31 10.73 14.56 0.00 2572.65 19.90 16.57 0.00 
Med 7.03 4.00 14.80 0.00 174.05 10.00 16.63 0.00 
Max 19584 995 16.73 0.27 35742 995 19.19 0.64 
Min 0.00 1.00 12.25 -0.26 0.00 1.00 14.53 -0.59 
 Std 137.95 21.30 1.02 0.01 5254.79 40.81 0.91 0.07 

2011  
ECX II 

#216,302 
ECX III 
#23,912 

Avg 42.36 11.56 13.03 0.00 383.07 14.28 13.60 0.00 
Med 6.55 5.00 12.91 0.00 25.95 5.00 13.73 0.00 
Max 18002 689 18.18 0.51 24783 995 20.22 0.61 
Min 0.00 1.00 6.73 -0.88 0.00 1.00 7.26 -0.79 
 Std 116.73 22.34 2.99 0.01 1069.67 28.19 3.37 0.03 

2012  
ECX II 

#219,121 
ECX III 
#58,973 

Avg 40.74 12.72 7.53 0.00 156.28 17.13 7.88 0.00 
Med 6.16 5.00 7.51 0.00 18.60 5.00 7.83 0.00 
Max 3744 2000 9.63 0.24 17448 2000 10.45 0.39 
Min 0.00 1.00 5.61 -0.21 0.00 1.00 5.93 -0.32 
 Std 104.29 29.31 0.76 0.01 378.51 47.92 0.85 0.02 

2013  
ECX III 
#258,745 

Avg   35.61 14.81 4.46 0.00 
Med   4.60 4.00 4.47 0.00 
Max   11755 5000 6.84 0.43 
Min   0.00 1.00 2.46 -0.95 
 Std   104.29 44.83 0.71 0.01 

2014  
ECX III 
#241,635 

Avg   38.16 15.56 5.90 0.00 
Med   4.78 5.00 5.93 0.00 
Max   5102 5000 7.57 0.43 
Min   0.00 1.00 3.71 -0.42 
 Std   109.11 47.09 0.69 0.01 

2015 
ECX III 
#166,877 

Avg   55.44 16.75 7.56 0.00 
Med   5.99 5.00 7.49 0.00 
Max   5088 3685 8.71 0.15 
Min   0.00 1.00 6.28 -0.18 
 Std   151.36 47.38 0.58 0.01 

2016 
ECX III 
#82,039 

Avg   33.80 14.11 5.68 0.00 
Med   5.29 5.00 5.37 0.00 
Max   2130 2000 8.33 0.17 
Min   0.00 1.00 4.62 -0.17 
 Std   81.74 29.08 0.89 0.01 

Note: Table presents the descriptive statistics of Duration (sec), volume (#contracts), Price (£) and 
Price Change (€) for the full sample and for each year over the sample period. This study uses the 
same sample as in Galariotis et al. (2018) and this table is an extract from this study. Source: 
Galariotis et al. (2018) paper.  
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In addition, prices consistently decrease over the years due to macroeconomic factors (e.g., 
Chevallier, 2009), and this pattern is also followed by price volatility. Average prices move from 
18.92 in 2008 to 5.68 in 2016, while price change volatility decreases from 0.03 in ECX II and 
0.07 in ECX III to 0.01, when the contracts are most actively traded. They too suggest that the 
main price discovery occurs when the contracts with the closest maturity are traded. 

Combined, the descriptive statistics suggest that the overall liquidity of the market is a very 
important in price discovery. These unconditional, basic statistics suggest that information about 
the carbon market is resolved into the closest maturity asset and this is reflected on liquidity 
levels.  

Consequently, liquidity fluctuations in these assets could be associated with patterns of 
observable or unobservable factors and their modelling could further assist in improving market 
efficiency in the form of a better price discovery due to identifiable patters. Some partial 
evidence of that is the impact of the improved overall liquidity over the years on uncertainty. 
Price change volatility, i.e., uncertainty, decreases over the years alongside an increase in overall 
liquidity. Consequently, liquidity contributes to efficiency and therefore, a proper modelling of 
liquidity should be able to contribute to lower uncertainty and thus, better price discovery. The 
objective of this paper is aligned with this observation and it tries to identify which aspects of the 
trading activity, observable trading history or inferred signals from observing past trading 
history, contribute more in liquidity modelling. 

3  Empirical Results  

Estimation results are presented in Tables 2a and 2b for ECX phase II (ECX II) and ECX phase 
III (ECX III), respectively. With respect to modelling, almost all parameter estimates are 
statistically significant. In particular, estimates of α and β for ACWD in all four tables add up to 
less than, but close to, one. This indicates stationarity with high persistence, underlying 
autoregressive dynamics, and hence the appropriateness of the ARMA/ACD modelling 
framework, for trading intensity. Thus, intensity shocks have prolonged subsequent effects, in the 
sense that a shock does not die out quickly, but it persists over time. 

The BCACWD specification also investigates persistence, but of higher order due to the 
implied non-linearities. δ is consistently less than one, in all estimations and this shows that 
larger shocks do not have a prolonged effect. Therefore, large illiquidity deviations in the form of 
lower actual market activity than expected, i.e., ε>1, should not be expected to last for very long, 
since its impact on subsequent trading activity is asymmetrically less pronounced. This is an 
indication of a mean reversion process. In the opposite case, when the actual trading activity is 
more intense than expected, i.e., ε<1, the impact of high liquidity shocks seems to be prolonged, 
due to an implied shorter expected trading intensity due to δ<1. This, asymmetric effect suggests 
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that slow markets are not expected to last for long, but an increased liquidity shock is expected to 
create an “episode” of more intense trading. This might be due to increase association with 
information (e.g., Kalaitzoglou and Ibrahim, 2013a, 2013b) and is consistent with prior literature. 
For example, Easley and O’Hara (1992) suggest that informed trading is manifested into higher 
trading intensity due to exploitable arbitrage opportunities, which should be expected to last until 
information is price resolved. Engle (2000) reports that there is also a significant price impact 
mainly due to increased frequency of trading, i.e., lower duration, but recent literature report that 
volume might also have a comparable impact (e.g., Bredin et al., 2014; Ibrahim and Kalaitzglou, 
2016). 

Another main result relates to the question whether other observable factors, such as prior 
volume, or any other variable of interest, spur a different, than average, level of trading intensity 
for transactions that immediately follow. The hypothesis is that an increased volume might be 
associated with the arrival of price unresolved information and therefore it might cause a more 
intense subsequent trading. In parallel, given the illiquid character of the market, a high volume 
transaction, especially when it exceeds the available quantity on the opposite side of the spread, it 
might consume fast available liquidity and therefore, it might slow down temporarily the trading 
activity. The estimate of the coefficient for volume is consistently positive, i.e., 0 < 𝑥 activity. 
The estimate of the coefficient for volume is consistently positive, i.e., 0<ζ<1, and suggests that 
larger volume leads to slower subsequent trading, in the form of increased duration, reduced 
volume or both.9    This is closer to the second hypothesis and partially explains the observations 
derived from the basic statistics. According to the basic statistics, price discovery improves with 
higher liquidity. The estimates of ζ suggest that this might be due to a significant adverse impact 
of requested volume on subsequent available liquidity. This should be expected to be less 
pronounced as overall liquidity improves. This is indeed the case with the estimates of ζ in ECX 
III being consistently lower than in ECX II. 

Furthermore, the importance of volume, and extrapolating on this idea of other observable 
factors, on subsequent trading activity is also captured by the improvement in the values of the 
log-likelihood function, reported in the middle panel in each table. There is an improvement in 
the log-likelihood function and the associated BIC between the ACWD-volume and ACWD. This 
means that, according to log-likelihood, the ACWD-volume is a better model than the ACWD – a 
result that supports the hypothesis that volume is a significant determinant of the DGP of trading 
intensity and therefore, it improves the fitting of the model. 

                                                 
9  The variable used to proxy trading intensity is the volume weighted durations. Lower values (short 

duration or large volumes) indicate an active market. On the contrary, higher values refer to a decreased 
liquidity. Therefore, the positive ζ indicates a higher Θ, and thus the market is expected to be less liquid. 
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Table 2a: Estimation Results ECX II  

Note: Table 2a consists of three panels. The first presents the estimation results for the linear ARMA 
specification (ACWD), the volume augmented ARMA specification presented in equation (4) 
(ACWD-volume) and its non-linear extension (BCACWD-volume), using the Exponential (E), the 
Weibull (W) or a mixture of Weibull (STM) distributions. The values in (:) are 𝑡-statistics. The second 
panel presents the Bayesian information Criterion (BIC) and the log-likelihood function value (L). The 
last panel presents the hypothesis testing of the estimated values of the parameters δ and γ, with values 
in (:) being the 𝑝-values. 

 ACWD ACWD-volume BCACWD-volume 
 E W STM E W STM E W STM 
ω 0.0216 0.0353 0.0681 0.0242 0.0364 0.0765 -0.1738 -0.3676 -1.4281 

 (3.88) (7.06) (9.91) (5.12) (9.32) (16.91) (-5.44) (-9.44) (-6.67) 
α 0.0962 0.1480 0.2661 0.0766 0.1098 0.1671 0.2050 0.4201 1.5474 

 (5.43) (9.87) (13.45) (6.37) (10.81) (18.34) (5.25) (9.31) (6.97) 
ζ    0.0403 0.0682 0.1217 0.0391 0.0672 0.1999 

    (5.79) (10.75) (17.25) (5.38) (8.95) (21.73) 
δ       0.3827 0.3236 0.1047 
       (15.96) (19.08) (7.72) 
β 0.8840 0.8149 0.7014 0.8832 0.8220 0.7111 0.9693 0.9392 0.8632 

 (40.37) (42.89) (33.39) (50.27) (54.36) (54.24) (57.69) (46.77) (30.02) 
γ  0.6325 0.5693  0.6340 0.5740  0.6339 0.5711 

(or γ1)  (25.10) (44.41)  (31.06) (38.34)  (26.63) (46.77) 
γ2   4.3632   4.1097   3.9931 

   (17.85)   (40.47)   (22.90) 
γ3   1.5326   0.9604   1.2185 

   (14.26)   (14.12)   (16.21) 
j1   0.6958   0.6874   0.6874 

   (8.25)   (9.25)   (8.93) 
j2   0.7521   1.1914   1.6405 

   (5.81)   (7.24)   (7.61) 
g1   1.1601   0.8698   1.1615 

   (6.15)   (8.43)   (9.54) 
g2   0.1856   0.2308   0.1934 

     (2.70)     (2.78)     (9.32) 
-L 64541 43090 40438 64144 42858 40026 63701 42388 38481 

BIC 1.5156 1.0124 0.9504 1.5065 1.0072 0.9409 1.4964 0.9964 0.9044 
H(0)          
ζ=0    33.49 115.62 297.40 28.93 80.17 472.03 

    (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 
δ=1       292.56 1115.5 2080.7 

       (0.00) (0.00) (0.00) 
γ1=1  2987.18 133.35  138.63 161.28  2526.46 154.65 

  (0.00) (0.00)  (0.00) (0.00)  (0.00) (0.00) 
γ2=1   156.64   253.53   168.56 

   (0.00)   (0.00)   (0.00) 
γ3=1   4.84   1.26   3.55 

     (0.05)     (0.11)     (0.06) 
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Table 2b: Estimation Results ECX III 
 ACWD ACWD-volume BCACWD-volume 

 E W STM E W STM E W STM 

ω 0.0468 0.0700 0.1233 0.0459 0.0675 0.1265 -0.4228 -0.8570 -0.3417 
 (10.34) (11.30) (18.31) (8.12) (11.89) (20.91) (-8.60) (-10.23) (-28.23) 

α 0.1363 0.1855 0.2726 0.1302 0.1689 0.2251 0.5334 0.9928 0.3944 
 (16.87) (18.66) (27.02) (14.38) (18.89) (26.57) (9.26) (11.14) (26.03) 
ζ    0.0235 0.0680 0.1332 0.0215 0.0189 0.0644 
    (4.35) (19.79) (20.04) (2.79) (2.82) (9.87) 

δ    0.2861 0.2022 0.1174 
    (12.91) (12.19) (6.95) 

β 0.8283 0.7508 0.6375 0.8306 0.7568 0.6417 0.9151 0.8741 0.6699 
 (68.24) (51.52) (46.20) (63.05) (56.34) (51.39) (64.79) (32.93) (53.82) 
γ  0.6372 0.5480 0.6370 0.5427 0.6415 0.5478 

(or γ1)  (32.74) (61.71) (44.60) (49.51) (34.49) (61.79) 
γ2   3.8028 2.6642 3.8397 
   (16.19) (17.53) (19.29) 

γ3   1.3262 1.0878 1.3692 
   (13.38) (13.84) (14.93) 

j1   0.8892 0.6601 0.8919 
   (21.84) (37.92) (21.43) 

j2   1.0287 0.9022 1.0840 
   (7.71) (9.20) (10.40) 

g1   1.3293 1.2690 1.3406 

   (10.96) (10.83) (10.74) 
g2   0.1850 0.2445 0.1839 
     (13.04) (12.39) (13.19) 

-L 83456 61053 56294 83418 60983 56041 81895 59996 56354 

BIC 1.8293 1.3384 1.2343 1.8286 1.3370 1.2287 1.7953 1.3157 1.2358 

H(0)     
ζ=0    33.49 115.62 297.40 28.93 80.17 472.03 

    (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 
δ=1    292.56 1115.5 2080.7 

    (0.00) (0.00) (0.00) 
γ1=1  2987.18 133.35 138.63 161.28 2526.46 154.65 

  (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 
γ2=1   156.64 253.53 168.56 

   (0.00) (0.00) (0.00) 
γ3=1   4.84 1.26 3.55 

     (0.05) (0.11) (0.06) 

Note: Table 2b consists of three panels. The first presents the estimation results for the linear 
ARMA specification (ACWD), the volume augmented ARMA specification presented in equation 
(4) (ACWD-volume) and its non-linear extension (BCACWD-volume), using the Exponential (E), 
the Weibull (W) or a mixture of Weibull (STM) distributions. The values in (:) are t-statistics. The 
second panel presents the Bayesian information Criterion (BIC) and the log-likelihood function 
value (L). The last panel presents the hypothesis testing of the estimated values of the parameters δ 
and γ, with values in (:) being the p-values. 
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Another main result relates to the level of generality required of the underlying distribution in 
order to take into account necessary features of the data’s higher moments. Estimates of the 
coefficients γ and γ_k are statistically significant in all tables. Moreover, hypotheses tests reported 
in the bottom panels, reveal that γ = 1 can all be rejected apart from the low trading intensity 
regime, identified in the STM-(BC)ACWD. This shows that the Weibull (W) distribution is more 
appropriate than its reduced form of Exponential (E) distribution. More importantly, the optimum 
log-likelihood function value (L) reported in the middle panel of the tables is significantly 
(statistically) greater for models estimated with the mixture of Weibull distributions (STM) than 
with the W distribution than with the E distribution, in this order.10    In the Weibull models, 
always is 0<γ<1 in a very narrow range. This indicates a monotonically decreasing hazard 
function. That means that the probability of a transaction to occur decreases with time. This is 
consistent with the findings in the non-linear version of the conditional mean specification, 
episodes of more intense 
trading. Here, the probability of a transaction decreases with time, indicating that it is more likely 
for transactions to be observed together with short time intervals in between. The probability to 
observe another transaction when time lapses decreases, suggesting that transactions might be 
clustered together with a persistent shorter trading intensity. 

Next, the various combinations of models and distributions are examined, using the measures 
of in sample fit and forecasting accuracy. The empirical findings are presented in the three 
sections, a., b. and c., of Table 3. The major outcome is that a higher complexity, either in the 
form of a more sophisticated specification of the conditional mean or the conditional density is 
rewarded with better fitting and higher forecasting accuracy. However, a secondary finding, 
which is also the main proposition of this study is that, although the density specification 
improves performance, it is the conditional mean that determines the ranking of the model. 

More specifically, the values of Q-stat(15) are all insignificant when volume is included as an 
explanatory variable and indicate the non-linear BCACWD-volume as the best fitting model. 
This shows that the contribution of volume to subsequent trading is very important, and 

                                                 
10 The nesting property of W to E facilitates testing using the Likelihood Ratio, which is distributed as chi-

squared with a degree of freedom equal to the difference in the number of parameters between pairs of 
models. For example, in Table 2 the optimal Log-likelihood function values, L, are -43089.8 for W and -
40438.0 for STM. These values give a Likelihood Ratio test statistic of 5303.46, which is far larger than 
the 5% critical value of 3.84. This indicates that the ACWD model with the mixture of Weibull 
distributions is significantly better (statistically and on the basis of likelihood) than with the same model 
with the Weibull distribution. The same is true in all tables for the ACWD-volume, which is a linear 
model, and the BCACWD-volume, which is a non-linear model. Thus, the STM provides a statistically 
better estimation in both phases and across linear and non-linear models.  

   Strictly speaking, the Likelihood Ratio cannot be used to test whether the non-linear BCACWD-volume   
fits better than the ACWD-volume because the former does not directly nest the latter. However, 
comparison is conducted later on the basis of in-sample forecast performance. 
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extrapolating on this idea, the contribution of observable variables and the patterns that they 
might create capture better the dynamics of the DGP of trading activity. In contrast, when volume 
is not considered some autocorrelation remains unaccounted for by the model. This ranking of 
the performance of the models considered is also consistent in all other measures in both 1-step 
and 10-step forecasts. More specifically, the empirical findings presented in Table 3a show that 
The UNL is consistently lower in models that consider observable factors as an integral part of 
the modelling process and this is consistent across samples and forecasting length. According to 
Tables 3b and 3c, the cross model differences in performance are significant and therefore, a 
more appropriate modelling of the conditional mean specification can contribute to forecasting 
accuracy in a statistically significant manner. 

Furthermore, although the performance measures employed so far focus on the “average” 
performance of each model, they seem to point towards the right direction with respect to the 
superiority of the predicting ability of each model, even if the full distributional properties, e.g., 
the higher moments, of the forecasts are taken into consideration. This concern was raised in the 
literature (e.g., White, 2000) with respect to cross-model comparisons based on the same datasets 
and thus, of biased estimates due to data snooping. To this extend, the last panel of Table 3a 
presents the results of the RC and SPA tests, which test whether the “presumed” superior 
predicting ability is due to data snooping or because a model, or a family of models predicts 
better the original series than a benchmark model. As an additional level of robustness check, 
these tests are run with each one of the models as the benchmark model, alternatively. The 
findings suggest that the rejection probabilities significantly increase when the simple linear 
specification (ACWD) is employed as a benchmark, suggesting that it is really likely that another 
specification is superior in its ability to predict the original series. The rejection probabilities 
decrease significantly when the volume-enhanced specification is employed (ACWD-volume) 
and they reach their lowest level when the non-linear specification is used as a benchmark. This 
finding highlights that the probability of finding a better model (from the ones employed) in 
forecasting better the original series is at its lowest level when the non-linear specification is 
employed. This confirms that that a more sophisticated modelling of the conditional mean, 
explicitly modelling observable factors (e.g., volume) or patterns (non-linearity) can significantly 
(e.g., Tables 3b and 3c) improve liquidity modelling.    

In addition, focusing on the density functions, increased flexibility is also rewarded with 
better ranking. STM performs better than W, which is better than E. However, the main 
improvement in fitting and forecasting comes from the mean equation specification. This is 
apparent in all tests employed so far, presented in Table 3. A more sophisticated distribution 
should be able to capture in a more flexible way the empirical distribution of trading intensity, 
because it should be more flexible, due to the additional parameters considered, in capturing the 
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Table 3a: Performance Evaluation  

   Q-stat (15)
    Rank ECX II P-value Rank ECX III P-value 

ACWD E 9 71.40 (0.00) 9 69.78 (0.00) 
W 8 67.12 (0.00) 8 58.25 (0.00) 
STM 7 17.79 (0.27) 7 41.54 (0.00) 

ACWD-volume E 6 12.81 (0.62) 6 6.49 (0.97) 
W 4 2.57 (1.00) 4 5.77 (0.98) 
STM 2 0.42 (1.00) 2 4.99 (0.99) 

BCACWD-Volume E 5 8.23 (0.91) 5 6.26 (0.98) 
W 3 1.22 (1.00) 3 5.37 (0.99) 
STM 1 0.40 (1.00) 1 4.59 (1.00) 
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ACWD E 5 9.1653 8 7.5821 8 0.0889 (0.01) 6 0.2169 (0.00)
W 7 9.6919 9 7.7088 5 0.0924 (0.00) 8 0.2153 (0.00)
STM 9 10.5178 7 7.5573 3 0.0954 (0.00) 5 0.2175 (0.00)

ACWD-
volume 

E 6 9.2627 3 6.5539 7 0.0890 (0.00) 3 0.2179 (0.00)
W 8 10.3353 6 6.9941 6 0.0921 (0.00) 4 0.2175 (0.00)
STM 2 6.1559 5 6.8021 4 0.0953 (0.00) 9 0.2103 (0.00)

BC-
ACWD-
Volume 

E 3 6.4320 2 6.4694 9 0.0881 (0.01) 7 0.2166 (0.00)
W 4 7.0481 4 6.7937 2 0.1001 (0.00) 2 0.2182 (0.00)
STM 1 5.9759 1 6.4358 1 0.1132 (0.00) 1 0.2182 (0.00)

10
-s

te
p 

Fo
re
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sts

 

ACWD E 9 11.8853 9 25.7027 9 0.0127 (0.36) 9 -0.0025 (0.40)
W 8 8.1354 8 22.7088 8 0.0169 (0.34) 8 0.0013 (0.40)
STM 4 4.4104 7 18.8300 7 0.0187 (0.33) 7 0.0058 (0.39)

ACWD-
volume 

E 6 5.6463 5 5.6463 6 0.0619 (0.05) 5 0.2031 (0.00)
W 7 6.4553 6 6.4553 5 0.1003 (0.00) 6 0.1437 (0.00)
STM 5 5.4895 4 5.4895 4 0.1110 (0.00) 4 0.2578 (0.00)

BC-
ACWD-
Volume 

E 3 2.8811 2 4.9802 3 0.2737 (0.00) 2 0.3131 (0.00)
W 2 2.7701 3 5.0156 2 0.2915 (0.00) 3 0.2872 (0.00)
STM 1 2.4146 1 4.3988 1 0.4078 (0.00) 1 0.5278 (0.00)

   AWD ACWD-volume BCACWD-volume
      E W STM E W STM E W STM

ECX II 
  

1-step RC 0.77 0.76 0.87 0.65 0.81 0.27 0.26 0.31 0.15
SPA 0.78 0.76 0.87 0.70 0.83 0.27 0.25 0.33 0.15

10-step RC 0.92 0.71 0.36 0.41 0.47 0.06 0.08 0.05 0.04
SPA 0.94 0.72 0.36 0.40 0.45 0.07 0.10 0.05 0.03

ECX III 
  

1-step RC 0.89 0.90 0.89 0.37 0.48 0.47 0.19 0.19 0.18
SPA 0.90 0.85 0.85 0.36 0.49 0.46 0.17 0.20 0.19

10-step  RC 0.99 0.96 0.96 0.46 0.35 0.34 0.20 0.27 0.16
SPA 0.99 0.95 0.93 0.47 0.33 0.34 0.22 0.25 0.12

Note: Table 3a consists of three panels. The first panel presents the in-sample ranking of the different 
specifications, presented in equations (4)-(8), according to the Q-statistic at 15 lags, with the initial hypothesis 
that there is no autocorrelation in the first 15 lags. The second panel presents the ranking of the models according 
to their 1-step and 10-step forecasting accuracy according to the unitized loss (UNL) and correlation (CORR, the 
values in (:) are t-statistics of H(0): CORR=0) performance measures. The last panel presents the rejection 
probabilities of the Reality Check (RC) and Superior Predictive ability (SPA) tests, Eq. (13), considering the 
model in each column as the benchmark model. 
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Table 3b.2: 2-Tail Tests of Cross-Model Performance Comparison-UNL 

   ACWD ACWD-volume BCACWD-volume 
   E W STM E W STM E W STM 

EC
X

 II
 

A
CW

D
 

E –   7.76 7.76 -62.97 -36.01 -47.77 -68.14 -48.28 -70.20 
– (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

W 32.25 – -9.28 -70.72 -43.77 -55.52 -75.90 -56.04 -77.96 
(0.00) – (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

STM 32.25 50.57 – -61.44 -34.49 -46.25 -66.62 -46.76 -68.68 
(0.00) (0.00) – (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

A
CW

D
-v

ol
um

e E 5.96 -26.29 -76.86 – 26.95 15.20 -5.17 14.69 -7.23 
(0.00) (0.00) (0.00) – (0.00) (0.00) (0.00) (0.00) (0.00) 

W 71.65 39.40 -11.17 65.69 – -11.76 -32.13 -12.27 -34.19 
(0.00) (0.00) (0.00) (0.00) – (0.00) (0.00) (0.00) (0.00) 

STM -184.29 -216.54 -267.11 -190.25 -255.93 – -20.37 -0.51 -22.43 
(0.00) (0.00) (0.00) (0.00) (0.00) – (0.00) (0.61) (0.00) 

BC
A

CW
D

-v
ol

 E -167.38 -199.63 -250.20 -173.34 -239.03 16.91 – 19.86 -2.06 
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) – (0.00) (0.04) 

W -129.65 -161.90 -212.48 -135.62 -201.30 54.63 37.72 – -21.92 
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) – (0.00) 

STM -195.31 -227.56 -278.13 -201.28 -266.96 -11.03 -27.93 -65.66 – 
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) – 

EC
X

 II
I 

A
CW

D
 

E – -183.34 -183.34 -1228.20 -1178.66 -1237.80 -1268.99 -1266.82 -1304.59 
– (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

W -229.63 – -237.53 -1044.86 -995.32 -1054.46 -1085.65 -1083.48 -1121.25 
(0.00) – (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

STM -229.63 -228.11 – -807.33 -757.80 -816.94 -848.13 -845.96 -883.73 
(0.00) (0.00) – (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

A
CW

D
-v

ol
um

e E -382.06 -152.42 75.68 – 49.54 -9.60 -40.79 -38.62 -76.39 
(0.00) (0.00) (0.00) – (0.00) (0.00) (0.00) (0.00) (0.00) 

W -332.52 -102.88 125.22 49.54 – -59.14 -90.33 -88.16 -125.93 
 (0.00) (0.00) (0.00) (0.00) – (0.00) (0.00) (0.00) (0.00) 
STM -391.66 -162.03 66.08 -9.60 -59.14 – -31.19 -29.02 -66.79 

(0.00) (0.00) (0.00) (0.00) (0.00) – (0.00) (0.00) (0.00) 

BC
A

CW
D

-v
ol

um
e E -551.39 -321.76 -93.65 -169.33 -218.87 -159.73 – 2.17 -35.60 

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) – (0.03) (0.00) 
W -558.19 -328.55 -100.45 -176.13 -225.67 -166.53 -6.80 – -37.77 

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) – (0.00) 
STM -579.96 -350.33 -122.22 -197.90 -247.44 -188.30 -28.57 -21.77 – 

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) – 

Note:Table 3b presents the empirical results of cross-model comparison 2-tail t-tests for both samples 
employed and across models, presented in equations (4)-(8). The lower triangular matrix presents the results 
for 1-step forecasts (H(0): UNLrow=UNLcolumn), while the upper triangular matrix, in italics, presents the results 
for 10-step forecasts (H(0): UNLcolumn=UNLrow). The values in (:) are the associated p-values. 
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Table 3c: 2-Tail Tests of Cross-Model Performance Comparison-CORR 

Note: Table 3b presents the empirical results of cross-model comparison 2-tail t-tests for both samples 
employed and across models, presented in equations (4)-(8). The lower triangular matrix presents the 
results for 1-step forecasts (H(0): CORRrow=CORRcolumn), while the upper triangular matrix, in 
italics, presents the results for 10-step forecasts (H(0): CORRcolumn=CORRrow). The values in (:) are 
the associated p-values. 

   ACWD ACWD-volume BCACWD-volume 
   E W STM E W STM E W STM 

EC
X

 II
 

A
CW

D
 

E – -5.20 -5.20 3.11 1.94 -20.98 -0.86 4.06 4.16 
– (0.00) (0.00) (0.00) (0.05) (0.00) (0.39) (0.00) (0.00) 

W 11.13 – 7.09 8.31 7.14 -15.78 4.34 9.26 9.36 
(0.00) – (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

STM 11.13 9.32 – 1.21 0.05 -22.87 -2.75 2.17 2.26 
(0.00) (0.00) – (0.22) (0.96) (0.00) (0.01) (0.03) (0.02) 

A
CW

D
-v

ol
 E 0.13 -11.00 -20.32 – -1.17 -24.08 -3.97 0.96 1.05 

(0.90) (0.00) (0.00) – (0.24) (0.00) (0.00) (0.34) (0.29) 
W 10.15 -0.98 -10.29 10.02 – -22.92 -2.80 2.12 2.22 

(0.00) (0.33) (0.00) (0.00) – (0.00) (0.01) (0.03) (0.03) 
STM 20.13 9.01 -0.31 20.01 9.98 – 20.11 25.04 25.13 

(0.00) (0.00) (0.76) (0.00) (0.00) – (0.00) (0.00) (0.00) 

BC
A

CW
D

-v
ol

 E -2.64 -13.77 -23.08 -2.77 -12.79 -22.77 – 4.93 5.02 
(0.01) (0.00) (0.00) (0.01) (0.00) (0.00) – (0.00) (0.00) 

W 35.28 24.15 14.83 35.15 25.13 15.14 37.92 – 0.09 
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) – (0.93) 

STM 76.95 65.82 56.50 76.82 66.80 56.81 79.59 41.67 – 
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) – 

EC
X

 II
I 

A
CW

D
 

E – 11.87 11.87 650.01 462.21 823.11 998.12 916.18 1676.89 
– (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

W 13.41 – 14.50 638.13 450.33 811.24 986.25 904.31 1665.02 
(0.00) – (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

STM 13.41 5.42 – 623.63 435.83 796.74 971.75 889.81 1650.52 
(0.00) (0.00) – (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

A
CW

D
-v

ol
um

e E 155.70 142.30 136.87 – -187.80 173.10 348.11 266.17 1026.89 
(0.00) (0.00) (0.00) – (0.00) (0.00) (0.00) (0.00) (0.00) 

W 277.14 263.73 258.31 121.44 – 360.90 535.91 453.97 1214.69 
 (0.00) (0.00) (0.00) (0.00) – (0.00) (0.00) (0.00) (0.00) 
STM 310.83 297.42 292.00 155.13 33.69 – 175.01 93.07 853.78 

(0.00) (0.00) (0.00) (0.00) (0.00) – (0.00) (0.00) (0.00) 

BC
A

CW
D

-v
ol

um
e E 825.22 811.82 806.40 669.52 548.09 514.39 – -81.94 678.77 

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) – (0.00) (0.00) 
W 881.49 868.09 862.67 725.79 604.36 570.67 56.27 – 760.71 

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) – (0.00) 
STM 1249.52 1236.11 1230.69 1093.82 972.38 938.69 424.30 368.03 – 

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) – 
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existence of observations that might arise due to unobservable factors, evidently not included in 
the conditional mean specification. Therefore, a increasing level of sophistication in the 
conditional density function should be a better proxy for latent or “invisible” factors in 
modelling, assuming that they will be manifested in the empirical distribution. According to 
Table 3, higher degrees of complexity indeed improve the fitting and forecasting of the model. 
Q(15), UNL and CORR are significantly (e.g., Tables 3b and 3c) improved progressively from E 
to W and to STM, with the latter exhibiting the best fitting in each conditional mean 
  

Figure 1a. Q-Q Plots ECX II  
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Note: Figure 1a presents the Q-Q plots of the empirical distribution versus the distribution of forecasts 
generated by each model for the ECX II sample. This figure consists of 9 graphs for 1-step forecasts and 
another 9 graphs for the 10-step forecasts. Each graph compares the quantiles of the empirical distribution 
on the bottom axis to the quantiles of the distributions of the forecasts generated by the models in equations 
(4)-(8). The straight line (45o) represents a perfect fit. 
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Figure 1a continued. Q-Q Plots ECX II  
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specification. However, it is the conditional mean specification that warrants a better 
performance and not the distributional assumption. For example, the STM distribution is 
undeniably a better fit across models and datasets, but the STM-ACWD does not fit and forecast 
better than a E-BCACWD-volume specification, suggesting that the model enhancements that 
come from modelling observable factors are superior to those that come from a better proxy for 
latent factors.    

This is also confirmed in Figure 1, which compares the distribution of the actual trading 
intensity versus the distribution of the forecasts generated by each model. This is another full-
distribution robustness check of the empirical findings that also considers whether a model 
systematically over- (above the straight line on the top quartiles or below the line on the bottom 
quartiles of the empirical distribution) or under-(below the straight line on the top quartiles or 
above the line on the bottom quartiles of the empirical distribution) forecasts the original series. 
Again, an enhanced conditional density function improves the fitting of the model (Q-Q plot line 
is closer to the straight line), but the main improvement comes from the conditional mean 
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specification. This also confirms Bauwens et al. (2004), in the sense that inferred latent signals 
summarized in a density function might not be sufficient in describing the DGP duration (or 
weighted duration), while variations of the conditional mean specification should contribute 
more. 

This finding is of outmost importance for liquidity modelling in the Carbon market and 
constitutes the major contribution of the current study. The implications of this result is that a 
more sophisticated specification of the conditional mean (of observable factors that can be 
considered in the structure of deterministic function that describes the DGP of trading activity) 
carry more weight in describing how the market activity evolves than a more sophisticated 

Figure 1b. Q-Q Plots ECX III 
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Note: Figure 1b presents the Q-Q plots of the empirical distribution versus the distribution of forecasts 
generated by each model for the ECX III sample. This figure consists of 9 graphs for 1-step forecasts 
and another 9 graphs for the 10-step forecasts. Each graph compares the quantiles of the empirical 
distribution on the bottom axis to the quantiles of the distributions of the forecasts generated by the 
models in equations (4)-(8). The straight line (45o) represents a perfect fit. 
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Figure 1b continued. Q-Q Plots ECX III 
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specification of the density function (of unobservable factors that describe the range and the 
frequency of the outcomes of the decisions (transactions) of various types of market participants 
and how they are captured by the market-wide frequency distribution of trading activity). 
Consequently, any microstructure aspect that could increase the transparency of trading, would 
also increase the quantity and the quality of available observable factors and, therefore, it would 
also improve liquidity modelling. According to prior literature, this would have a beneficial 
impact on market efficiency in the form of lower frictions (e.g., Medina et al., 2014) and faster 
uncertainty resolution (e.g., Kalaitzoglou and Ibrahim, 2015). 

This becomes increasingly important with the introduction of MiFID II, which aims at 
increasing transparency in the derivatives market, including EUA futures too. According to the 
findings presented in this study, the anticipated impact of this legislation in the carbon market, 
with respect to liquidity, is that it would improve the quantity and quality of available 
information, which could then be used to develop better liquidity forecasting models. This would 



KALAITZOGLOU   Intensity of Trading in the European Carbon Market 
 

 
141 

 

evidently improve liquidity based strategies – necessary for market making activities – which in 
turn would reduce execution risk – necessary for developing an optimal order-type selection 
strategy (e.g., Kalaitzoglou and Ibrahim, 2018; Galariotis et al., 2018) – and ultimately would 
narrow spreads – a sign of improved market efficiency and reduced trading frictions.  

4    Conclusion  

The EU ETS has evolved significantly since its inception in April 2005 from a rather illiquid 
trading environment to a reference point for carbon pricing in the future. Especially, the 
European Climate Exchange (ECX) hosted by the Intercontinental Exchange (ICE), which clears 
the majority of EUA futures transactions. The importance of this market in achieving European 
and in extension global emission targets is also important, but several market frictions, either in 
the form of macroeconomic implications (e.g., Daskalakis et al., 2009) or market structure issues 
(e.g., Chevallier, 2009), have posed significant challenges to the efficient functioning of the 
market. One of the main factors that has been found to determine the price discovery in the EU 
ETS is liquidity and its evolution (e.g., Bredin et al., 2014; Medina et al., 2014; Kalaitzoglou and 
Ibrahim, 2015). To that extent several studies consider its interactions with other factors, 
especially pricing, but no prior study has investigated whether it is observable or inferred 
information that determines the evolution of trading activity.  

The current study focuses exactly on this idea and extends prior work done on liquidity 
modelling in the European Carbon market (e.g., Kalaitzoglou and Ibrahim, 2015). More 
precisely, the main objective of this paper is to empirically evaluate which factors are more 
significant in modelling liquidity. The direct distinction is between observable and inferred 
factors and their contribution to the fitting and forecasting of the different models is evaluated. 
This is done following recent advancements in duration modelling (e.g., Engle and Russell, 1998) 
and the debate about whether the specification of the conditional mean or the conditional density 
better describes the DGP of duration (e.g., Bauwens et al., 2004). In the current study the 
conditional mean specification is associated with the deterministic pattern of duration and thus, 
with the observable factors that can explain the evolution of trading activity. In parallel, drawing 
on previous literature (e.g., Hujer and Vuletic, 2007), the conditional density function is 
associated with the manifestation of the trading activity of different types of market participants 
and therefore it is used as a proxy for inferred-unobservable information.  

The empirical findings suggest that both the conditional mean and density specifications 
improve the performance of the models, but it is the conditional mean specification that 
determines the overall performance. With an eye on MiFID II, the implications of this finding are 
increasingly important. It suggests that observable factors have a higher predicting power on 
subsequent liquidity and therefore they are its main determinants. Unobserved/inferred factors, 
summarized in the conditional density, have only a marginal contribution to fitting and 
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forecasting. Consequently, any market structure amendment that increases transparency, as 
MiFID II intends to do, would increase the quantity and the quality of the available observable 
factors and therefore, it would improve liquidity modelling. This in turn could improve market 
making practices, could enhance liquidity motivated trading strategies, could result in narrower 
spreads and in general, it could improve market efficiency. According to Viswanathan (2010), 
who argues that regulation needs to ensure viability and efficiency, by sustaining liquidity in 
functional levels, while allowing for trading innovation due to information asymmetry, this 
would assist the EU ETS in achieving its emission reduction targets.   
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