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Introduction 

The quest for criteria to rank risky alternatives led to the development of the literature on 

stochastic dominance. Given a set of utility functions U and two uncertain prospects 1(.)g

and 2(.)g , the rule of stochastic dominance provides the condition under which an individual 

i will always prefer 1(.)g to 2 (.)g  so long as his utility function is a member of U. The rule of 

stochastic dominance depends on the choice of the set U. Quirk and Saposnik (1962) started 

with the choice of U as the set of increasing utility functions. Hadar and Russell (1969) 

considered the case of U consisting of all concave (risk-averse) utility functions. Whitmore 

(1970) further restricted the choice of utility functions by considering U as the set of declining 

risk-averse utility functions. Meyer (1977) introduced the concept of second degree stochastic 

dominance with respect to a function which generalizes the work of Russell and Hadar. For 

further extension of Meyer's work, the reader is referred to Bradley and Lehman (1985). 

 Here, we look at the rules of stochastic dominance from a different point of view. 

Consider (.) { (.)}ig g= as the set of available lotteries or uncertain prospects and n individuals 

having utility functions (.), 1,2...iu i n= . Suppose the pair of lotteries ( (.), (.))k hg g is such that 

the i-th individual prefers (.)kg to (.)hg . The intersection of the set of all such ordered pairs 

for all the individuals is called the agreement set. If we do not know the specific forms of the 

utility functions ( (.))iu but we know that iu U∈ for all i, we can construct the Minimal 

Agreement Set S(U) such that each element of S(U) is a pair of lotteries, say (.)kg and (.)hg , 

and (.)kg is unanimously preferred to (.)hg by all the individuals so long their utility 

functions belong to the set U. Now we can look at the rule of stochastic dominance (relative 

to U) as the rule which is designed to identify the elements of S(U). A contraction in U results 

in a larger Minimal Agreement Set. We present our discussion on stochastic dominance and 
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comparative risk aversion in this framework, bearing in mind that the Minimal Agreement Set 

may not exist for certain choices of U and (.)g . 

 The literature on comparative risk aversion owes its origin to Pratt (1964). A general 

criterion for comparing risk aversion in the multivariate case was suggested by Khilstrom and 

Mirman (1974) restating a definition formulated originally in a two-state state-preference 

framework by Yaari (1969). The validity of the criterion in the two-commodity case was 

shown in Khilstrom and Mirman and was later generalized to the n-commodity case by 

Biswas (1983). In case of a general outcome set, including all certain and uncertain prospects, 

some risky prospects may not have a certainty equivalent included in the set. The reader may 

think of the outcome set being the union of several disjoint intervals on the real line. In such 

cases the study of comparative risk aversion becomes somewhat complicated. We have not 

dealt with this problem here, but we wish to make the readers aware of the problems involved 

in further generalization (see Nielsen 1986). 

 In this paper, we focus on the rules of stochastic dominance where U contains the utility 

functions of individuals who are comparatively more risk averse than a reference individual j. 

Next, we study the case where U is further contracted to include only the utility functions 

exhibiting declining comparative risk aversion with respect to j. The effort to relate the 

literature on stochastic dominance with that of comparative risk aversion is not entirely new. 

Meyer's (1977) work is an outstanding example. Actually, he worked out the condition for 

stochastic dominance with respect to comparatively risk averse individuals. In this paper, we 

have interpreted the condition in a different way by bringing in the concept of stochastic 

dominance in utility and extended the discussion to the case of declining comparative risk 

aversion. As the natural step towards conclusion, we have discussed the usefulness and 

limitations of the concept of stochastic dominance in utility in the multivariate case. Our 

concluding remarks centre around the importance, as well as the problems, of proving the 

existence of the Minimal Agreement Set in the context of any arbitrary set of risky 

alternatives. 

Rules For Stochastic Dominance And The Minimal Agreement Set 

A lottery is represented as a continuous probability density function 1( ) ( ),g x g x x w∈ ∈ , 

defined on an interval 1[ , ]w a b R= ∈ . The set ( )g x  is the collection of all continuous 

probability functions. A generic Von Neumann-Morgenstern (VNM) utility function is a 

mapping, 0:u w I→ where 0 [0,1]I =  . Any linear transformation of u is also an admissible 

VNM utility function. Without any loss of generality, throughout this paper we shall only 

consider VNM utility functions in their generic forms. Consider the product space of two 

arbitrary lotteries, 
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{ ( ) ( ) ( ), ( ) ( ), }i i j
jg x g x g x g x g x i j∏ = × ∈ ≠  

 
Given a specific utility function u1 , let S1 be a subset of ∏  such that for any element 

1( , )i jg g S∈ ⊂ ∏ , ig  is weakly preferable to ( ) jR g . Clearly, 1S  includes all possible pairs 

of lotteries presented in a way such that the first element of the pair is weakly preferred to the 

second.1 It is also to be noted, throughout this paper we assume that the choice between 

lotteries is made in accordance with the expected utility hypothesis and the results of this 

paper are to be evaluated in that context. 

 Given another utility function 2u , let S2 be defined in a similar way. Define 
1 2 1 2( , )S u u S S= ∩ . For two individuals with utility functions u1 and u2 respectively, 
1 2( , )S u u contains the pairs of lotteries such that the ranking of elements within a pair is the 

same for both individuals. In order to explain the construction of 1 2( , )S u u let us assume that 

( )g x contains only three lotteries, i.e. 1 2 3( ) ( , , )g x g g g= . This is different from what we 

assume elsewhere throughout this paper, namely that ( )g x contains all continuous lotteries. 

Here we assume this simply for the sake of convenience in demonstrating the construction of 
1 2( , )S u u . Suppose there are two individuals with utility functions u1 and u2 respectively and 

their preference ordering over these three lotteries may be described as follows: 
 

1 2 2 3 1 3
1 1 1 1( ) : , ,u x g R g g R g g R g  

2 1 2 3 1 3
2 2 2 2( ) : , ,u x g R g g R g g R g  

 
The weak preference relationship for the i-th individual is denoted by iR  Since iR is 

generated by the expected utility, iR is transitive. In the context of the above example, 
 

1 2 1 2 1 2 2 3 1 3 2 1 2 3 1 3 2 3 1 3( , ) {( , ),( , ),( , )} {( , ),( , ),( , )} {( , ),( , )}S u u S S g g g g g g g g g g g g g g g g= ∩ = ∩ =
 

The above implies that so far as pairs 2 3( , )g g and 1 3( , )g g are concerned, both individuals 

prefer 2g to 3g and 1g to 3g . What about the possibility of 1 2( , )S u u  being empty? For 

example, if 2 2 1 3 2 3 1
2 2 2( ) : , ,u x g R g g R g g R g then 1 2( , )S u u = ∅ . Fortunately, this problem 

does not arise, if ( )g x contains all continuous lotteries (i.e. continuous probability density 

functions) and we impose some mild restrictions on utility functions. For example, if the 

utility functions 1( )u x and 2 ( )u x have positive first order derivatives, and ( )g x contains all 

continuous lotteries (which our example violates), then any pair of lotteries 1 2( , )g g  such that 

21 ( )). .(
x

a

x

a
g x x g x dxd † ,will be included in 1 2( , )S u u . It is obvious that an infinite number 

of such lottery pairs are available. The above condition is known as the first order stochastic 
dominance rule (Quirk and Saposnik 1962). In all our subsequent discussions, we shall only 
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be concerned with classes of utility functions satisfying strict positive monotonicity, so that 

the agreement set 1 2( , )S u u is non-empty. 

 

Definition 1.   Let 1 2( ) ... nS u S S S= ∩ ∩ ∩ , 1 2( , ... )nu u u u= . ( )S u  is defined as the Agreed 

Set of Preference or, briefly the Agreement Set for a finite number of individuals ( 1,2... )i n=

with utility functions iu . 
 
In Definition 1, we assumed that individuals have specific and known utility functions, 

1 2, ... nu u u . Suppose the specific forms of the utility functions are not known but we know that 

they belong to a certain class of utility functions U . Then for any arbitrary selection of n 

utility functions from U, we define the Minimal Agreement Set as follows. 
 
Definition 2.  ( )

i

i

u U
S U S

∈
= ∩ , is called the Minimal Agreement Set defined with respect to U. 

It is the intersection of all possible iS such that iu belongs to U. Note, the Minimal 

Agreement Set is valid for any arbitrary set of individuals whose utility functions belong to 

the set U. 
 

( )S U consists of those pairs of lotteries for which the preference within any pair is 

unanimously agreed upon by an arbitrary set of individuals for any arbitrary selection of their 

utility functions from U. 
 
Theorem 1.  The Minimal Agreement Set ( )S U satisfies the following properties: 

 
i) ( )S U is a convex subset of ∏  

ii) ( ') ( '')S U S U⊆ if ' ''U U⊇  

 
Proof. Consider two arbitrary pairs of lotteries ( )1 2 3 4( , ), , ( )g g g g S U∈ . By construction, 

1 2g Rg and 3 4g Rg where R symbolizes the weak preference unanimously agreed by each 

individual. Now, 
 

1 2 3 4 1 3 2 4 5 6( , ) (1 ).( , ) {( (1 ) ), ( (1 ) )} ( , ), 10g g g g g g g g g g gλ λ λ λ λ λ λ= + − = + − + − = † †  

 
5g is equivalent to a compound lottery with λ  probability of holding 1g and (1 )λ−

probability of holding 3g . Similarly, 6g is equivalent to a compound lottery with λ
probability holding 2g and (1 )λ− probability of holding 4g . Since 1 2g Rg and 3 4g Rg , by the 

expected utility hypothesis, 5 6g Rg , i.e. 5 6( , ) ( )g g g S U= ∈ . 
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ii) The second property follows from the definition of the Minimal Agreement Set. Since 

' ''i i

i i

u u u u
s s

∈ ∈
∩ ⊆ ∩ for ' ''u u⊇ , by definition ( ') ( '')S u s u⊆ .                        (QED) 

 
The minimal agreement set is largest when U is a singleton. This is the case when all 

individuals have the same utility function so that ( )S U includes all possible pairs of lotteries 

arranged in a way that the first element in the pair is weakly preferred to the second element 

by everyone. 

 Consider two lotteries 1 2,g g and a set of n individuals each of whom have utility 

functions belonging to a set U . How can we test that the ranking (ordering) of these two 

lotteries will be unanimously agreed by all individuals? In other words, how can we 

characterize a pair of lotteries 1 2( , )g g such that 1 2( , ) ( )g g S U∈ ? This is where the rules of 

stochastic dominance becomes important. Let 1U be the set of utility functions having positive 

first order derivatives defined everywhere in the interior of [ , ]w a b= . If 1 2( , )g g satisfies the 

first order stochastic dominance rule (FSD), i.e. 
 

21 ( ).( ), ,
x

a

x

a
g x dxg x dx x w∀ ∈ † , 

 
then 1 2 1( , ) ( )g g S U∈ . As noted earlier, this result follow from Quirk and Saposnik (1962). In 

a similar way, if a pair of lotteries 1 2( , )g g satisfy the second order stochastic dominance 

conditions (SSD), i.e. 
 

21 ( ). .). . ,(
y yy

a a

y

a a
g x g x dxd dy x y wx dy ∀ ∈   †  

 
then 1 2 2( , ) ( )g g S U∈ where 2U is the set of twice differentiable concave utility functions 

with positive first order derivatives. This result follows from Hadar and Russell (1969). 
 
Definition 3.   Given a rule of stochastic dominance ( )r , the set of lottery-pairs 

( , ) ,i jg g i j∈∏ ≠ , which satisfy the rule with i jg Rg , is called the admissible set of lottery-

pairs under the rule, or, simply the admissible set, ( )A r . 
 
Remark 1.   Given a set of permissible utility functions U , if a rule is both necessary and 

sufficient for stochastic dominance with respect to all individuals having u U∈ , then 

( ) ( )A r S U= . If the rule is only necessary then ( ) ( )A r S U⊃ . If the rule is only sufficient then 

( ) ( )A r S U⊂ . Since the FSD and SSD rules are both necessary and sufficient, 
1( ) ( )A FSD S U= and 2( ) ( )A SSD S U= . 
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Remark 2.   The admissible set under the second order stochastic dominance rule includes 

the admissible set under the first order stochastic dominance rule. This can be shown in the 

following way. 2 1 2 1( ) ( )U U S U S U⊆ → ⊇ . Since, 1( ) ( )A FSD S U= and 2( ) ( )A SSD S U= , 

being necessary and sufficient rules, ( ) ( )A SSD A FSD⊇ . 
 
We have already noted, 1( )S U ≠ ∅ . Therefore, by Theorem 1, ( )tS U ≠ ∅ for any 1tU U⊆ . 

In other words, for any arbitrary class of differentiable monotonic increasing utility functions, 

the minimal agreement set is non-empty. The structure of this set will depend upon the 

properties of the class of functions tU . The problem is to define a rule ( )tr such that the 

admissible set under the rule, ( )tA r , coincides with ( )tS U . The principal challenge of 

research in the area of stochastic dominance is to find a rule in the context of a reasonable 

class of utility functions such that ( ) ( )t tA r S U⊆ . For example Whitmore (1970) considered 

the set of utility functions 3( )U satisfying decreasing absolute risk aversion. He found the 

necessary and sufficient conditions as, 
 

i) 1 2( ( ) ( )) 0.
z y

a a
G x G x dx dy−  † , , ,x y z w∈  where ( ) ( ). .

x
i i

a
G x g x dx=   

 

ii)  1 2( ( ) ( ))
b

a
G x G x− 0dx †  

 
Since we are restricting the freedom of individuals by forcing them to choose from a smaller 

set of utility functions, the minimal agreement set contains more lottery-pairs, i.e., 
1 2 3( ) ( ) ( )S U S U S U⊆ ⊆ . 

 In the next section, we shall consider the question of stochastic dominance for a class of 

utility functions which has recently attracted a lot of attention, namely, the class of utility 

functions which are concave transformations of a particular concave utility function, ( )ju x . 
 

4 0, ( ) { is weakly con( ( ), ' 0, '' }cave in jjU u u v u x v u x x wv= = > ∈† . 

 
The economic interpretation of 4U is that any individual i with 4iu U∈ and i ju u≠ , is 

comparatively more risk averse than an individual with ju as his utility function. The concept 

of comparative risk aversion, introduced by Pratt (1964) has recently attracted considerable 

attention. In the next section, we shall examine a rule of stochastic dominance which is 

compatible with unanimous ordering of lotteries by a group of individuals who are 

comparatively more risk averse than a certain individual j . 

Stochastic Dominance in Utility and Comparative Risk Aversion 
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Consider the set 1U which includes all differentiable utility functions with positive first order 

derivatives. For 1 2 1,u u U∈ , representing the utility functions of individuals 1 and 2 

respectively, we may write 2 1( ), ' 0u v u v= > . Let j
iu− represent the expected utility of 

individual j from lottery i . By using integration by parts, the following relation can be easily 

established: 
 

1 2
1 2 ( )[ ( ) ( )].

b
j j j

a
u u u x g x g x dx− −− = −    (1)

 

1 2[ ( ) ( )].
b

a
G x G x dx= − −  

where ( ) ( ).
b

i i

a
G x g x dx=          

 

The expected utility maximizing individual weakly prefers 1( )g x to 2 ( )g x if and only if 

1 2[ ( ) ( )] 0.
b

j

a
G x G x du− † . Since ( )ju x and x have one-to-one correspondence ( ( )ju x being 

a monotonic, increasing function) we may define a lottery also as a probability density 

function on the utility space. Let ( )i jH u be the probability that if lottery i is chosen by 

individual j , he will end up with utility not more than ju . By definition ( ) ( ( ))i j i jH u G x u=  

From (1) the next lemma follows immediately. 
 

Lemma 1. Let 1( )jg u and 2 ( )jg u be two lotteries defined on the -thj individual’s utility 

space 0 [0,1]I = . Individual j will prefer 1g to 2g if and only if, 

 
1 1

1 2

0 0
( ) ( )j j j jH u du H u du≤  ,   0ju I∈  

 
Note, the limits of integration have changed from [a,b] to [0,1] in comparison with (1) 

because 0:ju w I→ and 0jdu > . 
 
Definition 4. Lottery 1 has first order stochastic dominance in utility (FSDU) over lottery 2 

for individual  j, if and only if 21
0( )( ) jj IH H uu u∀ ∈† . 

 
Definition 5. Lottery 1 has second order stochastic dominance in utility over lottery 2 for 

individual  j if and only if, 
 

21
0

0 0
( )( ). ,.

u
j j

u
j jH u H u ddu u Iu ∀ ∈ †  
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It is well known that FSD implies SSD. Similarly, it can easily be seen that FSDU implies 

SSDU. Since utility functions are monotonic and increasing, FSDU implies FSD and vice 

versa. Next we show that SSD implies SSDU if the utility function is weakly concave 
2 2 0)( / 0, /j jdu dx d u dx> † but the converse is not true. 

Theorem 2. If a lottery 1( )g x has second order stochastic dominance (SSD) over 2 ( )g x , then 

for any weakly risk averse individual j , 1( )g x has second order stochastic dominance in 

utility (SSDU) over 2 ( )g x . The converse is not true. 

Proof.   Consider 
ˆ

1 2

0
ˆ( ) [ ( ) ( )]

ju
j j j jD u H u H u du= −  

 

ˆ
1 2 ˆ ˆ[ ( ( )) ( ( ))]( / ).  where ( )

x
j j j j j

a
H u x H u x du dx dx u u x= − =  

 

ˆ
1 2[ ( ) ( )]( / ).

x
j

a
G x G x du dx dx= −  

Integrating by parts, 

 

ˆ1 2ˆ( ) [( / ) ( ( ) ( )). ]
x

j j x
a

a
D u du dx G y G y dy= −            (2)

 

 

ˆ
2 2 1 2( / ) [ ( ) ( )]

x x
j

a a
d u dx G y G y dydx− −        

  
We used the notation y instead of x in order to avoid confusion between the variable and the 

limits. Second order stochastic dominance of 1( )g x over 2 ( )g x implies that, 

1 2( ) ( ( ) ( )) 0
x

a
C x G y G y dx x w= − ∀ ∈ † 0  

Since ( / ) 0jdu dx > and 2 2/ 0jd u dx † , it is clear from (2) that ˆ( ) 0jD u † for any 0ˆ ju I∈ , if 

the SSD rule holds. But the converse is not true. Even if for some values of x , ( ) 0C x > , 

( )jD u may be non-positive for all 0ˆ ju I∈ . Although this should be apparent from (2), it may 

be worthwhile to provide an example. 

 Consider an utility function 2, 0, 0j j ju du d u> < and a partition of w such that 

1 [ , ]w a b δ= − and 2 [ , ]w b bδ= − where δ is a small positive value. Let us assume 

( ) 0 when C x x a= =  

( ) 0 when C x a x b δ< < < −  
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( ) 0 when C x x b δ= = −  

00 ( )  when C x K bb xδ< < − < †  

Rewriting (2) as 

ˆ
ˆ 2 2ˆ ˆ( ) ( ( )) [( / ). ( )] ( / ). ( ).

x
j j j x j

a
a

D u D u x du dx C x d u dx C x dx= = −    (3) 

It is clear that, ˆ ˆ( (0)) 0 and ( ( )) 0 for 0j jD u D u x x b δ= < < ≤ − . 

That is, for 1 1ˆ, ( ( )) 0 and ( ( )) 0j jx w D u x D u b Kδ∈ ≤ − = < . 

For 2x w∈ , 
ˆ

ˆ 2 2
1 0

( )

ˆ( ( )) [( / ), ( )] ( ).
x

j j x j
b

b
D u x K du dx C x K d u dx dxδ δ− −−

< + − −  

 
1 0

( )

[( / )( ( ) )]j x
bK du dx C x K δ−

−
= + −       (4) 

By construction, 0 00 ( ( ) )C x K K≤ − ≤ for b x bδ− ≤ ≤ . Then given (4), we can always 

construct the utility function ju  with /jdu dx so small in the regions of b x bδ− < ≤ , that 

for 2 ˆ, ( ( )) 0jx w D u x∈ < . For such a utility function ( ) 0jD u ≤ for all 0
ju I∈ but ˆ( ) 0C x >  

for 2x w∈ , violating the SSD rule. 
          (QED) 

The relationship between different types of stochastic dominance discussed so far, may be 

represented as follows: 
 
 FSD SSD

FSDU SSDU
↑↓ ↓

→
→

 

 

Two important features of SSDU are to be carefully noted. First, it is weaker than SSD in the 

sense that it has a larger admissible set, A(SSD) ⊂ A(SSDU). Second, it is dependent on the 

utility function of a particular individual j . Next, consider two weakly risk averse individuals 

j and k  with ju and 2ku U∈ . As noted earlier, we may write ( ), ' 0k ju v u v= > . Following 

Pratt (1964) and others (see, Khilstrom and Mirman 1974; Biswas 1983), we may say that k

is comparatively more risk averse than j if '' 0v ≤ for all 0
ju I∈ . Given a lottery, k is willing 

to pay a higher risk premium than that of j . 

Theorem 3. Consider a weakly risk averse individual j with utility function 2ju U∈ and a 

class of utility functions 4 { ( '( )), ' 0, '' 0}jU u u v u x v v= = > ≤ . Every individual k with 
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4ku U∈ weakly prefer 1g to 2g if and only if, 1g has second order stochastic dominance in 

utility over 2g . 

Proof. (Sufficiency) By (1) and lemma (1), 

1
1 2

1 2
0

'( ( ) ( ))k k j j ju u v H u H u du− −− = − −  

Integrating by parts, 

1 1
1 2 1 1 2 1

1 2 0 0
0 0 0 0

[ ' ( ( ) ( )) ] '' ( ( ) ( )) [ ' ( )] ''. ( )
j ju u

k k j j j ju u v H y H y dy v H y H y dydu v D u v D u du− −− = − − + − = − +          
(5) 

where 1 2

0
( ) ( ( ) ( ))

ju
jD u H y H y dy= −  

If 1g has SSDU over 2g for individual j , ( ) 0jD u ≤ for all 0
ju I∈ . 

Now, 

 
1
0[ ' ( )] '(1) . (1) '(0) . (0)jv D u v D v D= − and, 

i) (1) (0) 0D D≤ = because (1) 0D ≤  

ii) ' (1) ' (0)v v≤ because '' 0v ≤  

Therefore, 1
0[ ' ( )] 0jv D u ≤  

Again, 
1

0
'' ( ) 0j jv D u du ≥ , because '' 0v ≤ and ( ) 0jD u ≤ . So, 

1
1

1 2 0
0

[ ' ( )] '' . ( ) . 0k k j j ju u v D u v D u du− −− = − = ≥  

(Necessity) 

Let 1 2
0

0
( ( ) ( )) 0 for ( , )

ju
jH y H y dy u I m n I− > ∈ = ⊂  

We can always construct a concave utility function ( )k ju v u= such that 0'( ) 0jv u c= > for 

[0, ], ''( ) 0j ju m v u∈ <  for ju I∈  and 1 1 0'( ) ,0jv u c c c= < < for [ ,1]ju n∈ . Since 4ju U∈ , 
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individual j prefers 1g to 2g . Therefore by lemma 1, 
1

1 2

0
[ ( ) ( )] 0j j jH u H u du− ≤ . Since by 

construction, 0'(0) 0v c= > , 

1
1 2 1 1 2

0 1
0 0

[ ' [ ( ) ( )] ] [ ( ) ( )] 0
ju

j j j j j jv H u H u du c H u H u du− − = − − ≥   

Noting '' 0v ≤ and particularly 0'' 0 for ( )jv u I I= ∈ − , by (5), 

1
1 2 1 2

1 2 1
0 0
[ ( ) ( )] '' [ ( ) ( )]  

jn u
k k j j j j

m
u u c H u H u du v H y H y dy du− −− = − − + −     (6) 

The first term in (6) is non-negative by lemma 1. Since by construction '' 0v <  over the range 

(m,n) and 1 2

0
( ( ) ( )) 0

ju
H y H y dy− > for ( , )ju m n∈ , the second term in (6) is strictly 

negative. Now, we can modify our function ( )jv u by choosing 1c  arbitrarily small so that by 

(6), 1 2 0k ku u− −− < , i.e., the individual k prefers 2g to 1g . The same kind of contradiction may 

be reached when SSDU is violated over any countable union of intervals. 
          (QED) 

Theorem 3 bridges an important gap between the literature on comparative risk aversion and 

the literature on rules for stochastic dominance. From theorem 2, we know that SSDU is a 

broader rule than SSD in the sense that A(SSDU) A(SSD)⊃ . As expected by theorem 1, the 

class of utility functions 4U , for which it is both a necessary and a sufficient rule, is a subset 

of 2U . The following result is worth mentioning. 

Theorem 4. If j is a risk neutral individual (extreme case of weak risk aversion) with utility 

function . , 0ju t x t= > , for whom 1g has SSDU over 2g , then all risk averse individuals 

will prefer 1g over 2g . 

Proof. If . , 0ju t x t= > , then by (2) in theorem 2, 

ˆ1 2ˆ( ) [ ( ( ) ( )) ]
x

j x
a

a
D u t G y G y dy= − =    (7)

 

ˆ
1 2( ( ) ( ))

x

a
t G y G y dy−   

SSDU implies ˆ( ) 0jD u † for all 0ˆ ju I∈ . Since there is one to one correspondence between 
ju and x , by (7), SSDU implies, 
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ˆ
1 2 ˆ( ( ) ( )) 0 for all 

x
G y G y dy x wα − ≤ ∈ . 

This is precisely the SSD rule. Therefore, if 1g has SSDU over 2g with respect to a risk 

neutral individual, then 1g has SSD over 2g . This implies, all risk averse individuals prefer 
1g over 2g .          

(QED) 

This theorem is helpful in explaining why in another sense SSDU is a more general rule than 

SSD. If the (reference) individual j is risk neutral, then 4U comprises of all (weakly) risk 

averse individuals and the SSDU rule coincides with the SSD rule. Therefore, SSD rule may 

be considered to be an application of the SSDU rule in a special case. 

Stochastic Dominance and Declining Comparative Risk Aversion 

 
Consider a group of individuals who are comparatively more risk averse than a particular 

(weakly) risk averse individual j . The additional feature of this group is that the difference in 

the degree of (absolute) risk aversion between any member of the group and the individual j  

declines with increases in wealth x . This is quite a reasonable group characteristic. At a 

lower level of wealth one may be strikingly more risk averse than another, but when both are 

put in a higher wealth bracket, the difference in the degree of risk aversion is likely to be 

smaller and may even be negligible. 
 
Theorem 5. Let ku represent the monotonic increasing utility function of a risk averse 

individual who is strictly more risk averse than another (weakly) risk averse individual j with 

the characteristic that the difference in the absolute degree of risk aversion declines with 

increases in x w∈ . Then ku may be expressed as a function of ju satisfying the 

following relationship: 
 

( ), ' 0, '' 0, '  '' 0k ju v u v v v= > < >  

 
Proof. ' 0v >  because the utility functions of both the individuals are monotonic and 

increasing. '' 0v <  because k is strictly more risk averse than j . We prove that '  '' 0v > . 
 

Using  0( ), ' 0, '' 0 for k j ju v u v v u I= > < ∈ , 

 / '( / )k jdu dx v du dx=  

 
2 2 2 2 2/ '( / ) ''( / )k j jd u dx v d u dx v du dx= +  
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Therefore, ( ''/ ')( / )j
k jR R v v du dx= −  

Where iR is the degree of absolute risk aversion for the i-th individual ( , )i j k= . Since ' 0v >
and '' 0v < , k jR R> . Declining comparative risk aversion implies that, 

 

''
. 0

'

jd v du

dx v dx

 
> 

 
 

 
The above relationship requires '  '' 0v >  
 
The class of utility functions exhibiting declining comparative risk aversion in comparison 

with ju is defined as, 
 

5 { / ( ), ' 0, '' 0jU u u v u v v= = > < and 
''

. 0}
'

jd v du

dx v dx

 
> 

 
 

 

We assume that derivatives of v up to the third order are continuous in ju . 
 
Theorem 6. Consider a weakly risk averse individual j with utility function 2ju U∈ and the 

class of utility function 5U associated with ju . Each individual k with 5ku U∈ , weakly 

prefer 1g to 2g if and only if, 
 

(i) 
1

1 2

0
[ ( ) ( )] 0j j jH u H u du− ≤ , and, 

(ii) 1 2

0 0
[ ( ) ( )] 0

ju z
H y H y dydz− ≤  for all 0

ju I∈ . 

 
Proof. Before proceeding to the details of the proof, we note that by lemma 1, condition (i) 

simply means, individual j prefers 1g to 2g . Since 5ju U∉ , because 5U contains only 

(strictly) declining comparatively risk averse individuals, we had to bring in condition (i). In 

this section, we are considering a narrower class of utility functions because strictly declining 

comparative risk aversion is presumed to have an appeal to economic intuition. If we assume 

the weaker case of '' 0v ≤ and non-increasing comparative risk aversion, condition (i) is 

eliminated because 5ju U∈ . 
 
A. (Sufficiency) By integrating the second term in (5) 
 

1 2 1
1 2 0

0
[ ' ( ) [ ( ) ( )] ]

ju
k k ju u v u H y H y dy− −− = − − +  
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1 2 1
0

0 0
[ '' ( ) ( ( ) ( )) ]

ju z
jv u H y H y dydz− −   

1
1 2

0 0 0
' '' ( ) ( ( ) ( ))

ju z
jv u H y H y dydz−         

 (8) 
 
Since condition (i) holds, by applying the same kind of reasoning as in theorem 3, we can 

show that the first term in (8) is non-negative. Again, since '' 0v < and condition (ii) holds, we 

can use a similar reasoning to show that the second term is non-negative. Since ' '' 0v > and 

condition (ii) holds, the third term is obviously non-negative. Therefore 1 2 0k ku u− −− ≥ . 
 
B. (Necessity) The proof for necessity is divided into two parts. First, we prove that condition 

(i) is necessary. Second, we show that given condition (i), condition (ii) is also necessary. 
Condition (i) is necessary by the continuity argument. To be explicit, suppose 

1
1 2

0
( ( ) ( )) 0j j jH u H u du− > . Now think of ~ ( )k ju v u=  where 'v q= (a positive constant).  

 
Apparently, 
 

1
1 2

0
' ( ( ) ( )) ( ) 0j j j k kv H u H u du u u− = − − >     

 

i.e. k prefers 2g to 1g . We can always construct a function ( )k ju v u= such that ku is 

extremely close to ~ .k ju q u= with '' 0v < and ' '' 0v > (via small perturbations from 

'' 0 and ' '' 0v v= = )such that 
1

1 2
1 2

0
' ( ( ) ( )) ( ) 0j j j k kv H u H u du u u− −− = − − > . Though 5ku U∈

k prefers 2g to 1g which contradicts our assumption. Hence 
1

1 2

0
( ( ) ( ))j j jH u H u du= must 

be non-positive. 
To show that condition (ii) is also necessary, we use the same kind of argument used in the 

necessity part of theorem 3. Let a pair of lotteries 1g and 2g be such that 
 

1 2
0

0 0
( ) ( ( ) ( )) 0  for ( , ) [0,1]

ju z
j ju H y H y dydz u I m n Iψ = − > ∈ = =   

 

Then consider a utility function ( )k ju v u= such that ' 0v > and, 

(a) 0''( ) 0 for [0, ]j jv u c u m= < ∈  

(b) ''( ) 0 and ' '' ( ) 0 for ( , )j j jv u v u u I m n< > ∈ =  
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(c) 1 1 0'( ) , 0  for [ ,1]j jv u c c c u n= > > ∈  

By (a), '(0)v is finite and therefore, 

1 2 1
0

0
[ ' ( ) ( ( ) ( )) ]

ju
jv u H y H y dy− − =

1
1 2

0
' (1) [ ( ) ( )] 0v H y H y dy− − >  

By condition (i) of this theorem which has been shown to be necessary, (8) may now be 

written as, 

1
1 2

1 2 1 0
0

' (1) ( ( ) ( )) (1) (0) ' '' ( ) ( )
n

k k j j j j j j

m
u u v H u H u du c c v u u duψ ψ ψ− −− = − − + − − 

 (9) 
Given our hypothesis  that ( ) 0 for ( , ) and ' '' 0j ju u m n vψ > ∈ > (by construction), the third 

term in (9) is negative. We can always choose 1'(1),v c and 0c so small that 1 2 0k ku u− −− < . 

Therefore, if ( ) 0juψ > for ( , )ju m n∈ , there exists 5ku U∈ such that 1 2 0k ku u− −− < . This 

completes the necessity part of the proof. 
          (QED) 

The conditions (i) and (ii) are generalizations of Whitmore's (1970) conditions for third order 

(degree) stochastic dominance. If the individual j is a risk neutral person, then 5U contains all 

utility functions with strictly decreasing risk aversion. As expected, one can easily show that 

in this particular case, conditions (i) and (ii) reduce to Whitmore's conditions. However, in 

theorem 6, the weakly risk averse individual j may, over a range of x , even exhibit 

increasing risk aversion and consequently 5U contain utility functions ku which may exhibit 

increasing risk aversion somewhere in that range. Therefore, the class of utility functions 5U , 

need not be a subset of the class of utility functions exhibiting declining risk aversion. 

Multivariate Extensions 

For a better appreciation of the concept of stochastic dominance, we are required to extend 

our discussion to the n-variables case. Obviously, given the utility function of our reference-

individual j  (and hence the set of indifference or iso-utility curves) we may formally define 

FSDU and SSDU with respect to ju as previously. However, in the multivariate case, FSDU 

with respect to a particular utility function ju does not imply FSD. Since FSD is associated 

with the choice of 1U as the set of all possible utility functions, we have to take into account 

all possible sets of non-negatively sloped indifference curves for the reference individual. 

  Define a subset S of nw as a comprehensive set if  and ,  imply nb S a w a b a S∈ ∈ ≤ ∈ . 

The set nw , on which the lotteries are defined, is a compact and convex subset of nR . 
According to Levhari, Paroush and Peleg (1975), FSD in the multivariate case requires that 
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1 2( ( ) ( )) 0
S

g x g x dx− < for all comprehensive subsets nS w∈ . Loosely speaking, the area 

below any negatively sloped indifference curve is a comprehensive set. Therefore, the above 

requirement asserts that if 1( )g x  has FSDU over 2 ( )g x for all 1ju U∈ then 1( )g x has FSD 

over 2 ( )g x . The multivariate extension of SSD is much more complicated. The interested 

reader is referred to Russell and Seo (1978). 
 As we have already noted, we may formally define FSDU and SSDU in the multivariate 

case as we did in the univariate case. But these concepts have operational meaning only if we 

consider a group of individuals with utility functions { }ku such that ( )k ju v u= . In 

other words, we are restricted to the case of individuals having different generic VNM utility 

functions but the same set of underlying indifference curves. However, this is not an 

additional restriction if we remember that in the multivariate case, this condition must be 

satisfied when comparing the degree of risk aversion among individuals in a group. The 

reader is referred to Khilstrom and Mirman (1974), Biswas (1983) and Karni (1985, ch. 6). If 

the underlying preference orderings on nw are same for all individuals, we can write 

( ), ' 0k ju v u v= > . If k is more risk averse than j , then '' 0v <  and declining comparative risk 

aversion requires ' '' 0v > . Since the conditions of stochastic dominance in utility are stated in 

the utility space, it is clear that theorems 3 and 6 can easily be extended to the multivariate 

case provided individuals have identical preference orderings defined on nw to enable us to 

compare risk aversion among individuals as required by these theorems.2 

Concluding Remarks 

We started our discussion on the rules of stochastic dominance describing them as the rules 

designed to identify the elements of the Minimal Agreement Set ( )S U defined on the set of 

available lottery-pairs, given a set of utility functions U . We know that this Minimal 

Agreement Set may be very small and even may not exist. Whether such a set exists or not 

depends on the set U and the set of available lotteries ( ) { ( )}ig x g x= . For example, if ( )g x

contains all continuous lotteries defined on nw and 1U U= , then the Minimal Agreement Set 

( )S U ≠ ∅ . However, if ( )g x is a proper subset of the set of continuous lotteries, the Minimal 

Agreement Set may be empty. For example, let ( )g x be a set of symmetric, two-parameter, 

continuous probability density functions (lotteries) with the same mean but differing 

variance.3 With 1U U= , ( )S U does not exist, because the ranking made by the risk-averse 

individuals will be exactly opposite to that of the risk-loving individuals. On the other hand 

with 2U U= (concave utility functions) the ranking of any two lotteries will be same across 

all the individuals. It is, therefore, interesting to examine the class of possible restrictions on 

( )g x and U which guarantee the existence of the Minimal Agreement Set. Since ( )g x and U
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are sets of functions, the existence theorems are likely to be quite complicated and are 

certainly beyond the scope of the present paper. 

Footnotes 

 
1 S1 is the graph (without the diagonal elements) of the pre-order induced by u1 on g(x). Note, 

the diagonal of the graph is eliminated by assuming that ∏ does not include pairs of identical 

lotteries. For the definition of graphs of a preordering and the diagonal see Nachbin (1965). 

 
2 In the multivariate case, the implication of FSDU is as follows. Consider a group of 

individuals having different positive monotonic VNM utility functions but identical 

underlying preference orderings (indifference curves). If 1 ( )g x has FSDU over 2 ( )g x for an 

individual within the group then 1 ( )g x is preferred to 2 ( )g x by everyone in the group. 

 
3 For example, consider the class of uniform distribution functions defined within the range 

[a,b] with mean (b+a)/2. 
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