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Abstract In a world where the means of exchange is convertible into the numeraire 
consumption good at a fixed rate, no one wants to hold money over time – and due to 
convertibility there is no means by which the Friedman rule can generate deflation. This is the 
environment we study in this paper in order to demonstrate that there is still a way to reach the 
first-best: institutionalize the naked shorting of the unit of account, or in other words establish 
a banking system. To motivate the benefits of a banking system, the environment has real 
productivity shocks that are constantly changing the optimal level of economic activity, so the 
optimal quantity of money is inherently stochastic. Efficiency in such an environment requires 
the capacity to expand the money supply on an “as needed” basis. We show how a debt-based 
payments system that relies on banks to certify the individual debtors’ IOUs addresses the 
monetary problem. This model explains (i) central bank monetary policy as a means of 
stabilizing the banking system and (ii) usury laws as means of promoting equilibria that favor 
non-banks over those that favor banks. Furthermore, by modeling a commercial bank-based 
monetary system as an efficient solution to a payments problem this paper develops a theoretic 
framework that may be used to evaluate central bank digital currency proposals. 
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Introduction

This paper studies the nature of money in an environment where the means of payment is 
convertible at a fixed rate into the numeraire consumption good. By focusing on this 
environment we eliminate the possibility that the means of payment changes value over time, 
and deliberately construct a situation where the price level is disabled as a means of 
equilibrating the supply of money with the demand for it. To our knowledge no one else has 
studied such an environment in a Lagos-Wright-type framework. Our goal in this paper is to 
demonstrate that in this environment the first-best can still be attained – if the means of payment 
is effectively a naked short of the unit of account. 
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A naked short has the effect of creating a “phantom” supply of the shorted object that 
disappears when the short is closed out. We demonstrate here that banks can create this 
“phantom” supply of the unit of account in the form of acceptances of private debt.2 This type 
of bank liability is issued when the bank stamps a private commercial bill “accepted,” and the 
bank obligation is put into circulation when the borrower makes purchases. Then, when the 
borrower pays off the loan, the phantom supply of the unit of account along with the 
outstanding, but contingent, bank liability that was used to create it is closed out. 
 Why do we model the means of payment as a naked short of the unit of account? We argue, 
first, that this is the best way to understand the nature of the banking system in its developmental 
stages. Second, by modelling the means of payment in this way our model demonstrates the 
efficiency gains that can be created through the introduction of a banking system. Third, by 
carefully evaluating the incentive feasibility conditions for our bank money equilibria, we are 
able to relate the monetary system to banking stability. We find that the implementation of 
central bank monetary policy via interest rates can be explained by the need to stabilize the 
banking system. Finally, we also find support for the use of usury laws as a means by which 
policymakers choose amongst multiple equilibria to favor the interests of non-banks over those 
of banks. 

The monetary system modelled in this paper is based on the 18th century British monetary 
system as described in Henry Thornton (1802) An enquiry into the nature and effects of the 
paper credit of Great Britain. Privately issued bills function as a means of payment because 
they are “accepted” as liabilities by the banks that underwrite the monetary system. While these 
bills were denominated in a gold-based unit of account,3 as a practical matter there was no 
expectation that they would be settled in gold. Instead, they were used as a means of transferring 
bank liabilities from one tradesman to another. Thus, bills that are simultaneously private IOUs 
and bank liabilities are used to make payment. The non-bank debtor pays off her debt by 
depositing someone else’s bank-certified liability into her account. (The 18th century monetary 
system was the precursor of the checking account system and operates just like a system of 
overdraft accounts.) The bank’s liability on a deposited bill is extinguished when funds are 
credited to the depositor’s account. 

In our model productivity is stochastic, and as a result the demand for money is stochastic. 
We show that the bank-based money described in our model can accommodate this stochastic 
money demand so that a first best is attained. Thus, our model can be viewed as a model of the 

 
2 While it would be easy to reconfigure the means of payment to be deposits or bank notes, we believe 

the monetary function of bank liabilities in this paper is sufficiently different from the existing literature 
that it useful to present it using an unfamiliar instrument.  

3 For the purposes of keeping the exposition simple, assume that we model the monetary system prior to 
1797 (when gold convertibility was suspended). 
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“banking school” view where money is issued on an “as needed” basis at the demand of non-
banks. 

We argue that the convertible currency environment forces a reconsideration of the nature 
of money. Typically the monetary literature views money as “an object that does not enter 
utility or production functions, and is available in fixed supply” (Kocherlakota 1998). Shifts in 
the price of money equilibrate the economy in these environments. Historically, however, 
stabilization of the price of money by tying it to a fixed quantity of gold was a foundation of 
economic success in the early modern period (van Dillen 1964; Bayoumi & Eichengreen 1995). 
Thus, we consider how money functions in an environment where its price is “anchored”. We 
show that a solution is for the means of payment to be a debt instrument that is denominated in 
the anchored unit of account and is certified by a bank. This solution is based on actual market 
practice in the early modern period.  

This approach allows us to reinterpret general results such as Gu, Mattesini, and Wright 
(2014) (GMW)’s finding that when credit is easy, money is useless, and when money is 
essential, credit is irrelevant. While their conclusion is correct given their definitions of money 
and credit, we argue that this standard definition of money is not the correct definition to apply 
to an environment with banks. We argue that the means of payment in an environment with 
banks is a naked short of the unit of account, which would be categorized in GMW’s lexicon 
as “credit”. 

This paper employs the methods of new monetarism. Our model combines an environment 
based on Berentsen, Camera, and Waller (2007) with an approach to banking that is more 
closely related to Gu, Mattesini, Monnet, and Wright (2013) (GMMW) and Cavalcanti and 
Wallace (1999a,b). Our model of banking is distinguished from GMMW because non-bank 
borrowing is supported not by collateral, but by an incentive constraint alone, and from 
Cavalcanti and Wallace because our banks don’t issue bank notes, but instead certify privately 
issued IOUs. We find that for values of the discount rate that accord with empirical evidence, 
such a payments system can be operated with no risk of default simply by setting borrowing 
constraints.4 We start by finding the full range of incentive feasible equilibria of the model, and 
then discuss how, when there are multiple equilibria, a policymaker may choose between these 
equilibria.  

In this environment competitive banking is incentive feasible only when enforcement is 
exogenous. In the case of endogenous enforcement, competition in banking typically drives the 
returns to banking below what is incentive feasible and the only equilibrium will be autarky. 
This result is consistent with many other papers that have found that the welfare of non-banks 

 
4 Indeed, we argue elsewhere that the credit based on precisely such constraints constituted the “safe 

assets” of the monetary system through the developmental years of banking (Sissoko 2016). Treasury 
bills, the modern financial world’s safe assets, were introduced in 1877 and modeled on the private 
money market instruments of 19th century Britain (Roberts 1995: 155). 
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is improved when there is a franchise value to banking (Martin and Schreft 2005, Monnet and 
Sanches 2015, Huang 2017. See also Demsetz et al. 1996).  

Thus, the challenge for a policymaker is how to regulate competition in the banking sector 
so that banking is both incentive compatible – and therefore stable – and also meets the 
policymaker’s goals in terms of serving non-banks. One solution is to treat banking as a natural 
monopoly, allowing an anti-competitive structure while at the same time imposing a cap on the 
fees that can be charged by banks. This solution explains usury laws, which by capping interest 
rates at a level such as 5%, the rate in 18th century Britain, is able to generate both a robust 
franchise value for the banks that provide payments system credit and at the same time to ensure 
that a significant fraction of the gains created by the existence of an efficient means of payment 
accrue to non-banks. An alternate solution is to impose a competitive structure on the banking 
industry, but also to set a minimum interest rate as a floor below which competition cannot 
drive the price. We argue that this is the practice of modern central banks and thus that monetary 
policy should be viewed as playing an important role in preventing competition from 
destabilizing the banking sector. 

Section I introduces the model of a convertible currency. Section II describes the equilibria 
of the model. Section III presents the equilibria using diagrams. Section IV discusses the means 
by which policymakers choose between the different equilibria of the bank-based monetary 
system. Section V concludes. 

1    A Model of Convertible Bills as a Means of Payment 

Time is discrete, indexed by 𝑡 = 0, 1, 2, …, and extends over an infinite horizon. Following 
Berentsen, Camera, and Waller (2007) (BCW) in each period two perfectly competitive markets 
open sequentially. There are two consumption goods, 𝑥 , which is perishable and must be 
consumed during the first market (FM) and 𝑋, which is perishable and must be consumed 
during the second market. The second market will be abbreviated CM, because this market 
plays the same role as the centralized market in the Lagos-Wright (2005) framework upon 
which BCW is built. Note that the model of banking here is very different from the model of 
banking in BCW and is closer in spirit to the model of banking in Gu Mattesini Monnet and 
Wright (2013). 

There is no discounting between the FM and the CM. The discount factor from one period 
to the next is given by 𝛽. 

There are two types of agents, non-banks and banks, and there is a continuum of mass one 
of each type of agent. Non-banks experience a preference shock at the beginning of each period 
such that with probability 𝑛 the agent is a “lender” and with probability 1 − 𝑛 the agent is a 
“borrower.” (This nomenclature anticipates the roles that the two types will play in the model.) 
Lenders can only produce in the FM at cost 𝑐(𝑞) = 𝑞ଶ/2𝐴 where 𝑞 is the amount produced of 
good 𝑥 and 𝐴 is a production shock. The production shock takes one of two values 𝐴 ∈ {1, 𝐴} 
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with 𝑃𝑟൛𝐴 = 𝐴ൟ = 𝜎 and 𝑃𝑟{𝐴 = 1} = 1 − 𝜎. In the CM lenders can only consume, deriving 
utility 𝑈(𝑋) = 𝑋.  Borrowers can only consume in the FM, deriving utility 𝑢(𝑥) = 𝑥ఈ where 𝛼 ∈ (0,1). In the CM borrowers produce at cost 𝐶(𝑄) = 𝑄, where 𝑄 is the quantity of good 𝑋 
produced. Banks do not produce and consume only in the CM, deriving utility 𝑈(𝑋) = 𝑋. Both 
forms of uncertainty, the preference shock and the production shock, are realized at the start of 
each period. These shocks are publicly observable. 

As in BCW, we assume that the goods trades that take place in the FM and the CM are 
anonymous, that agents cannot identify their trading partners, and that trading histories are 
private information. A borrower cannot commit to paying a lender in the future, because he will 
not be able to meet and identify the right lender. Thus, in the absence of some kind of a 
monetary device, anonymity will force the economy to be autarkic in the FM. 

Banks have a technology that makes it possible for them to record the financial history (but 
not the trading history) of each member of the economy. The account-keeping technology is 
operated costlessly. Banks also have a public history: if at the close of the period interbank 
clearing leaves a bank with a negative net worth, then the bank is forced to declare bankruptcy 
publicly. 

Acceptance banking 

Banks offer credit lines to borrowers up to a limit, ℓ, which is endogenous and ensures that 
repayment of debt is incentive compatible for the borrower. Bank liabilities – and therefore the 
credit line and any bills that draw down the credit line – are denominated in the CM good. Not 
only are they denominated in the CM good, but they are anchored to it: they are convertible 
into the CM good at a fixed rate at any point in time. Thus, if a bill circulates from one period 
to the next it represents a promise to pay the same quantity of the CM good in whatever period 
the bill is presented.  

A borrower draws down on the credit line by issuing a bill that is instantaneously accepted 
by the borrower’s bank. This has two effects: it converts the bill into an accepted bill that is a 
liability of the bank similar to a bank note and it draws down the credit line that the bank has 
extended to the borrower. Commercial bills are modeled here as bearer bills, and are payable 
to whoever holds them. 

Thus, in an acceptance banking system a single commercial bill plays two distinct roles. 
First, the commercial bill is a loan that draws down the credit line that a bank has extended to 
the issuer. Second, because an accepted commercial bill is a bank liability, third parties are 
willing to receive it in payment and it circulates as money. Thus, the physical document that is 
an accepted commercial bill is simultaneously both a bank loan and a bank note. 

The distinguishing characteristic of an accepted bill is that there are two parties who are 
both fully liable for payment of the bill, the non-bank issuer and the bank-acceptor. The liability 
to the bank of the issuer of the commercial bill is extinguished when the issuer deposits accepted 
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bills equal in value to his debt in his account. A bank’s liability on an accepted bill is 
extinguished when the accepted bill is deposited into a bank account and thus it no longer 
circulates. The details of how the banks operate a clearing and settlement system are omitted 
from the model.5  

Banks also have the technology to circulate their bills in the CM in order to purchase the 
consumption good. Such a circulation of bills is, however, inherently fraudulent, because in this 
model there is no way for such bills to be paid and their issue guarantees that the issuing bank 
will be bankrupt at the end of the period. Since the banks have the technology to profit from 
such a default, the banks face an endogenous limit on their liabilities, 𝑏ത. At the end of a period 
in which a bank fraudulently circulates bills, the bank will be bankrupt and be forced into 
autarky. This technology is only available to a bank that was active in lending in the FM – a 
restriction that can be viewed as an aspect of the bank’s public history. 

In this model banks offer loans that extend from the FM to the CM of a given period. 
Observe that even after a loan is paid off by its issuer (by depositing funds into his account to 
cover the bill), the accepted bill that created the loan may continue to circulate as a bank liability 
until such time as the holder of the accepted bill chooses to present it to a bank. 

After the realization of the uncertainty at the start of the FM, trade in the first market takes 
place and borrowers issue bills that draw down their bank credit lines. Such loans are denoted 
by ℓ ∈ [0, ℓ], and the interest rate, 𝑖 ≥ 0, is charged on the loan and payable in the CM along 
with the principal of the loan. The punishment for a default on a loan is loss of access to bank 
services in the future. Let 𝑑 ∈ [0, ∞) represent physical holdings of accepted bills. 

The First-Best Allocation: To find the first best allocation we assume that all agents are 
treated symmetrically. The problem is the same in each period except for the production shock. 
We consider the first-best allocation to be the allocation that a social planner would choose in 
each period if she could allocate consumption after learning the outcome of the production 
shock. 

After the realization of the production shock, but before the realization of the preference 
shock, in each period a representative agent has the expected utility: (1 − 𝑛)(𝑥ఈ − 𝑄) + 𝑛 ቀ− మଶ + 𝑋ቁ                                     (1) 

And optimization will be subject to the FM and CM feasibility constraints: (1 − 𝑛)𝑥 = 𝑛𝑞                                                    (2a) 
 

5 The focus on symmetric equilibria and banks that are in all respects identical means that this amounts 
to unnecessary detail here. 
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(1 − 𝑛)𝑄 = 𝑛𝑋                                                   (2b) 

The first order conditions of this problem indicate that optimal FM consumption is 

𝑥∗∗(𝐴) =  𝛼𝑛𝐴(1 − 𝑛)൨ ଵଶିఈ 
optimal FM production is: 

𝑞∗∗(𝐴) = 1 − 𝑛𝑛 𝑥∗∗(𝐴) 
and that all values that satisfy the CM feasibility constraint will be optimal. Thus, the 
quantities that a social planner who could force agents to produce and consume would choose 
in each period are given by 𝑥∗∗(𝐴) and the feasibility constraints. 

2    Symmetric Equilibrium 

Following BCW, we limit our attention to stationary symmetric equilibria where each type of 
agent plays the same pure strategy. We first analyze the choices made by a lender in the second 
market, then in the first market, and then we analyze the borrower’s choices. Only after 
optimizing choices in each of the markets have been established do we fully specify all of the 
relevant value functions.  

To simplify notation, current period variables will be denoted without a subscript, next 
period variables with prime mark and previous period variables with the subscript −1. 

The Lender’s Problem: Observe that a lender – who does not intend to default – derives 
only costs and no benefits from borrowing. For this reason, banks will not extend loans to 
lenders. Then, letting 𝑊(𝑑) represent the value to a lender of entering the CM with accepted 
bills, 𝑑, and 𝑉(𝑑ᇱ) represent the value to a non-bank of starting the next period with accepted 
bills, 𝑑′ we find: 𝑊(𝑑) = max,ௗᇲ 𝑋 + 𝛽𝑉(𝑑ᇱ)                                           (3) 

subject to the budget constraint: 𝑋 + 𝑑ᇱ =  𝑑 
The lender maximizes consumption in the CM and the discounted value of carrying 𝑑′  into the 
next period FM subject to the constraint that the value of the accepted bills carried into the CM 
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must equal the CM goods consumed and the value of the accepted bills carried into the next 
period. Substituting out for 𝑋, we find: 𝑊(𝑑) = 𝑑 + maxௗᇲ −𝑑ᇱ + 𝛽𝑉(𝑑ᇱ) = 𝑑 + 𝑊(0)                            

The first order condition for the choice of 𝑑′  is: 1 ≥ 𝛽𝑉′(𝑑ᇱ)                                                           (4) 
with complementary slackness. Thus, this choice does not depend on the quantity of accepted 
bills brought into the CM. All lenders will carry the same quantity of accepted bills into the 
next period. 
 Observe that the envelop condition for this problem is: 𝑊ௗ = 1 

Now consider the FM and the problem faced by a lender who brings bills, 𝑑, into the FM. After 
the realization of uncertainty at the start of the FM the lender’s problem is 

max − 12𝐴 𝑞ଶ + 𝑊(𝑑 + 𝑝𝑞) 
where 𝑝 is the price of the good in the FM market. That is, the lender chooses 𝑞 to maximize 
the sum of the costs incurred by producing 𝑞 and the value to the lender of carrying the proceeds 
of the sale of 𝑞 into the CM. The first order condition for this problem is: −𝑞/𝐴 + 𝑝𝑊ௗ = 0 
and an optimizing lender will choose: 𝑞∗(𝐴, 𝑝) = 𝑝𝐴                                                      (5) 

Observe that the amount that lenders choose to produce does not depend on the quantity of bills 
that they bring into the market, but only on the value of the product and their productivity this 
period. 

The Borrower’s Problem: Turning to the borrower, observe that the borrower’s value function 
in the CM depends on loans as well as accepted bills brought into the CM: 𝑊(ℓ, 𝑑) = maxொ,ௗᇲ −𝑄 + 𝛽𝑉(𝑑ᇱ) 
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subject to the budget constraint 𝑑ᇱ = 𝑄 +  𝑑 − (1 + 𝑖)ℓ  
 

The borrower maximizes the sum of the cost of producing in the CM and the continuation value 
of carrying 𝑑′  bills into the next period subject to the constraint that the value of the bills carried 
on must equal the quantity produced plus the value of bills less the expense to the borrower of 
paying off the loan. Observe that this expense has two components: the principal of the loan 
which is paid off by producing in exchange for acceptances that will be deposited in the issuer’s 
account and the interest on the loan which may be paid by transferring real goods to the bank. 

Just as in the case of the lender, this problem can be rewritten: 𝑊(ℓ, 𝑑) = 𝑑 − (1 + 𝑖)ℓ + maxௗᇲ −𝑑ᇱ + 𝛽𝑉(𝑑ᇱ)                        = 𝑑 − (1 + 𝑖)ℓ + 𝑊(0,0) 
And we find that once again the assets that are brought into the CM do not affect the choice of 
bills brought out of the CM. As a result both lenders and borrowers solve the same problem in 
the CM, have the same first order condition, and will carry the same quantity of bills into the 
next period. 

The envelop conditions for the borrower are: 𝑊ℓ = −(1 + 𝑖) 𝑊ௗ = 1 
These conditions determine the optimizing choices that a borrower will make when 
transacting with a bank in the FM. When a borrower brings accepted bills into the FM, the 
fact that 𝑖 ≥ 0 ensures that the borrower will prefer to spend the bills that were brought 
into the FM rather than holding them and taking out a loan to make up the difference.  

First, we consider credit equilibria. In a credit equilibrium the borrower’s stock of bills is 
insufficient to purchase the desired quantity and the borrower must take out a loan. Then, the 
borrower’s problem is: max௫ 𝑥ఈ +  𝑊(𝑝𝑥 − 𝑑, 0) 

subject to: 𝑝𝑥 − 𝑑 ≤ ℓത 
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where ℓത is a borrowing constraint that is taken as given by the borrowers. That is the borrower 
maximizes the sum of his current period utility from consumption and the continuation value 
of spending all of his (matured and therefore non-interest bearing) bills and carrying an interest-
bearing loan in to the CM, subject to the constraint imposed by the bank on the size of the loan. 
The first order condition is then: 𝛼𝑥ఈିଵ + 𝑝𝑊ℓ − 𝑝𝜆 = 0 

where λ is the multiplier on the borrowing constraint. The borrower’s optimal choice will be 

𝑥∗(𝑝) = ⎩⎪⎨
⎪⎧൬ 𝛼𝑝(1 + 𝑖)൰ ଵଵିఈ

       if  λ = 0 ℓത + 𝑑𝑝                 otherwise.  

That is, when the borrowing constraint does not bind there is an interior solution, and when the 
borrowing constraint does bind so that λ > 0, the borrower will spend all available funds. Thus, 
there are two types of credit equilibria to consider: those in which there is slackness in the 
lending constraint, and those in which there is not. 

When the lending constraint is non-binding, the market clearing price, 𝑝(𝐴), is:  

𝑝(𝐴) = ቀ 𝛼1 + 𝑖ቁ ଵଶିఈ ൬1 − 𝑛𝐴𝑛 ൰ଵିఈଶିఈ
 

and expenditure on the FM good given 𝐴 is: 𝜋(𝑖)𝐴 ఈଶିఈ 
where  

𝜋(𝑖) ≡ ቀ 𝛼1 + 𝑖ቁ ଶଶିఈ ቀ 𝑛1 − 𝑛ቁ ఈଶିఈ 

Observe that when borrowing takes place unconstrained, a positive lending rate distorts 
consumption relative to the first best allocation: because interest must be paid on the borrowed 
funds, borrowers will prefer to reduce consumption of the FM good relative to the first-best.   

By contrast when the credit constraint binds, the market clearing price, 𝑝ℓ(𝐴), is:  

𝑝ℓ(𝐴) = ቂ(ଵି)(ℓതାௗ) ቃభమ    (8) 

(6)

(7)
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 and expenditure on the FM good given A is: ℓത + 𝑑 

Figure 1 depicts the sequence of events, the movement of commercial bills through the 
economy, and how the holdings of loans and bills change over time. 

Figure 1- Timeline 

 

Banks:  

Banks in our model set interest rates and credit limits, but otherwise respond passively to the 
economy’s demand for accepted bills: they earn iL where L represents the aggregate quantity 
of loans. They are willing to lend to each borrower whatever ℓ ≤ ℓത the borrower demands. 

How is it possible for banks to “meet the needs of trade” by responding passively to the 
demand for bank credit? That is, how it is possible for a bank’s balance sheet to expand to meet 
the demand for loans? This is explained by the fact that the accounting treatment for an accepted 
bill is typically “off-balance sheet.” An accepted bill is a contingent bank liability that will only 
be payable if the original issuer of the bill defaults. Accounting norms in general do not require 
that a contingent liability be reported on balance sheet until it becomes probable that the 
contingency will be realized.6 For this reason, there is no requirement in this model that the 
quantity of loans must be backed by “deposits.”  

 
6 For the off-balance-sheet treatment of accepted bills, see David Sheppard, The Growth and Role of U.K. 

Financial Institutions 1880 – 1962 at 117 Table (A)1.1 n.4 (1971). 
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While under modern accounting practices accepted bills are typically off-balance sheet for 
a bank, an alternate convention that was sometimes followed in the 19th century was to treat the 
accepted bills as both an asset and a liability. Thus, we “stack the deck” against banking by 
taking the more conservative view that accepted bills count against a bank’s debt limit. That is, 
even though the quantity of loans that a bank can accept is not limited by the quantity of deposits 
placed with a bank, there is a limit on the quantity of loans that a bank can accept. This limit is 
analogous to the borrowing limit that is faced by non-banks: there is an endogenous debt limit, 𝑏ത, that constrains the banks’ liabilities – and accepted bills count against this constraint.  

The banks’ debt limit is generated by the fact that in the CM banks have the technology to 
circulate bills that are not related to non-bank transactions in order to purchase the consumption 
good. At the end of a period in which a bank circulates such bills, the bank is bankrupt, is found 
out, and is forced into autarky.  

We analyze two types of equilibria: enforcement equilibria where the debt of both non-
banks and banks is exogenously enforceable, and equilibria without enforcement in which 
lending constraints must be used to guarantee the incentive compatibility of the repayment of 
debt.  

2.1    Stationary enforcement equilibrium  

In an enforcement equilibrium, because the debt of banks is exogenously enforceable, 𝑏ത = ∞, 
and, because the debt of non-banks is exogenously enforceable, ℓത = ∞. There are two types of 
enforcement equilibria with credit to consider. (The derivation of the value functions is 
presented in Appendix 1.)  

Type Ia: 𝑑 ≤ 𝜋(𝑖), borrowing takes place in all states. In a Type Ia environment the value 
function, 𝑉ூ, is: 

𝑉ூ(𝑑) = (1 − 𝑛)ଶିଶఈଶିఈ ቀ 𝑛𝛼1 + 𝑖ቁ ఈଶିఈ 1 − 𝛼 + 𝛼2(1 + 𝑖)൨ ቈ(1 − 𝜎) + 𝜎𝐴 ఈଶିఈ         (9)+ 𝑑 [(1 − 𝑛)(1 + 𝑖) + 𝑛] + 𝑛𝑊(0) + (1 − 𝑛)𝑊(0, 0) 

Type Ib: 𝑑 ∈ 𝜋(0), 𝜋(𝑖)𝐴 ഀమషഀ൨, borrowers borrow only when 𝐴 is realized. In a Type Ib 

environment the value function, 𝑉ூ, is: 

𝑉ூ(𝑑) = (1 − 𝑛)మషమഀమషഀ (𝑛𝛼) ഀమషഀ (1 − 𝜎) ቀ1 − ఈଶቁ + 𝜎 ቂ1 − 𝛼 + ఈଶ(ଵା)ቃ ቀ ଵାቁ ഀమషഀ൩     (10) 

+𝑑 [𝜎(1 − 𝑛)(1 + 𝑖) + (1 − 𝜎(1 − 𝑛))] + 𝑛𝑊(0) + (1 − 𝑛)𝑊(0, 0) 
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In each environment the value function depends on FM consumption, the value that the stock 
of accepted bills, 𝑑, will make it possible to carry into the CM, and the continuation value of 
the game. Observe that in an enforceable credit equilibrium consumption in the FM is 
independent of the level of 𝑑, but that when 𝑖 > 0 borrowers consume less than they would in 
the first best allocation. Observe also that in this environment where liquidity constraints don’t 
bind, the principal effect of 𝑑 > 0 is to reduce the interest costs for borrowers. For this reason 
both value functions are linear in 𝑑 and the solution to the optimization problem, equation (3), 
is well-defined. 

Intertemporal Optimization 

In the Type Ia environment consumption in the FM is independent of 𝑑, and the first order 
condition for the value function is simply: 𝑉ூᇱ(𝑑) = 1 + (1 − 𝑛)𝑖 
Thus, the only effect of an incremental increase in 𝑑 when debt holdings are low is to generate 
a return equal to the value of carrying the bills into the next CM and the expected value of the 
interest that will be avoided by borrowers who increase their holdings of bills. 

Of course, in order for this low level of debt to be a stationary equilibrium it must be the 
case that an agent optimizes in the CM, or that equation (4) is satisfied and therefore that the 
Type Ia agent prefers to spend all but d of his deposits in the CM, or that: 1 ≥ 𝛽𝑉ூ′(𝑑) = 𝛽[1 + (1 − 𝑛)𝑖] 
or 

                                                         𝑖 ≤ ଵିఉఉ(ଵି) ≡ 𝚤ூ̂                                                     (11) 

Observe that only when the banks are able to coordinate on the highest optimizing interest rate, 𝚤ூ̂, is a positive level of bill holdings consistent with equilibrium. Any measure of competition 
in the banking sector that results in a lower interest rate causes optimizing borrowers to prefer 
not to carry bills over time.  

In the Type Ib environment, the Euler equation gives us the only level of 𝑖 that is consistent 
with an equilibrium in which borrowers borrow only if 𝐴 is realized – and therefore carry 
enough bills into the FM to consume when 𝐴 = 1 is realized:  ଵିఉఙఉ(ଵି) = 𝑖 ≡ 𝚤̂ூ                                                  (12) 
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Definition 1: A bank money equilibrium with enforcement and borrowing is a set (𝑖, 𝑝(𝐴), 𝑑, 𝑞(𝐴), 𝑥(𝐴)) such that equations (2), (5), (6), (9) and (11) are satisfied. 

Definition 2: A bank money equilibrium with enforcement and partial borrowing is a set (𝑖, 𝑝(𝐴), 𝑑, 𝑞(𝐴), 𝑥(𝐴)) such that equations (2), (5), (6), (10) and (12) are satisfied. 

Banks: How interest rates are chosen 

As was discussed above, banks do not choose the quantity of loans they wish to make, but 
instead set the interest rate and the borrowing constraints and then allow quantities to adjust 
given the prices that have been set. In an enforcement equilibrium, 𝑏ത = ∞, and as a result there 
are no constraints on the quantity of loans that a bank can make.  

Because banks choose price and not quantity, we analyze bank behavior using the 
framework of Bertrand competition. That is, we assume that each bank sets its interest rate, 
taking what it expects the other banks to do as given, and an equilibrium is found when each 
bank’s strategy is a best response to the other banks’ strategies.   

In each period a bank chooses the interest rate to maximize the expected value of the lending 
rate multiplied by the loans that the bank expects to make, ℓ(𝑖): max 𝐸 𝑖ℓ(𝑖) 

Because the banks under Bertrand competition simultaneously set the interest rate, 𝑖, that 
they will charge non-bankers, non-bankers will bring all of their business to the bank that posts 
the lowest interest rate. We assume that if more than one bank posts the lowest interest rate, 
then the market is split evenly between the banks offering the low rate. As is well established, 
the best response of a bank is to set the rate incrementally below the lowest rate set by the other 
banks if that rate is above cost and to set the rate at cost if the lowest rate is at cost. For this 
reason, the only Nash equilibrium in Bertrand competition is for banks to price their loans at 
cost. That is, the outcome of Bertrand competition is the competitive outcome.  

Given this structure the logic of Bertrand competition will mean that all banks set 𝑖 = 0 
since lending is a costless activity and any bank that expects the other banks to set higher rates 
will try to capture the whole market by setting a lower rate.  

Observe that when banking is competitive, the left hand side of equation (11) is zero, and 
we can conclude that when banking is competitive equation (11) is an inequality and the only 
enforcement equilibrium has 𝑑 = 0. We state this formally as follows: 

Proposition 1: When banking is competitive, 𝑖 = 0, and the only monetary equilibrium with 
enforcement has 𝑑 = 0 and is a bank money equilibrium with enforcement and borrowing. In 
this equilibrium, production and consumption are first-best, 𝑞(𝐴) = 𝑞∗∗(𝐴)  and 𝑥(𝐴) =𝑥∗∗(𝐴). 
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Proof: Because 𝛽 < 1, equation (12) cannot be satisfied when banking is competitive, so there 
are no equilibria with partial borrowing. To evaluate Type Ia equilibrium we substitute 𝑖 into 
(11), find that the left-hand side is zero, and thus that the equation holds as an inequality. Then 
in any equilibrium 𝑑 = 0 . Substituting 𝑑 = 𝑖 = 0  into equations (5) and (6), we find 𝑞(𝐴) = 𝑞∗∗(𝐴) and 𝑥(𝐴) = 𝑥∗∗(𝐴).■ 

Observe also that the monetary equilibrium with enforcement and competitive banking gives 
the first-best outcome even though the Friedman Rule does not hold. In other words, when the 
monetary system is based on the one that existed in the 18th century, the first-best outcome is 
possible in an environment with convertible currency – if debt is enforceable. In short, the 
Friedman Rule is not so much a general result, but instead an artifact of a particular way of 
modeling money. When one views the means of exchange – as it was viewed in the era of 
convertible currency7 – not as an asset, but as a debt on which interest had to be paid, the first 
best is possible as long as the cost of that debt is negligible. 

2.2    Stationary equilibrium without enforcement 

Now consider the case of equilibria without enforcement, where the repayment of debt must be 
incentive compatible for the agents in our economy. The non-bankers will face the credit 
constraint, ℓത, that ensures that they are never able to borrow so much that they would prefer to 
default rather than to pay back the debt. Similarly, the bankers will face the credit constraint, 𝑏ത, which ensures that the value of being a banker is greater than the value of taking advantage 
of the special economic function of a banker in order to defraud the public and then suffer the 
consequences of bank failure. 

Before calculating 𝑏ത and ℓത, we consider the problem faced by non-bankers. There are three 
possible types of environment without enforcement. (The derivation of the value functions is 
presented in Appendix 1.) 

Type I: the non-bank borrowing constraint is slack 
Type II: the non-bank borrowing constraint only binds when  𝐴 is realized 
Type III: the non-bank borrowing constraint always binds 

Within the Type I environment, there may be sub-type “a” equilibria where non-banks borrow 
in every period, sub-type “b” equilibria where non-banks hold enough bills that they borrow 
only when productivity is high, and sub-type “c” equilibria where non-banks hold so many bills 
that they never borrow. A Type Ic equilibrium is the only one in which there is no borrowing. 
In the Type II environment, because the liquidity constraint binds in the high productivity state, 

 
7 See, e.g, Wicksell (1898), Dunbar (1909), Willis (1916). 
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there can only be two sub-types of equilibria, “a” and “b,” similarly all Type III equilibria are 
also sub-type “a” equilibria. The value functions for each of these six types of equilibria differ, 
and we start by focusing on the subtype “a” equilibria. The other types of equilibria will be 
considered at various points in the text. Each equilibrium is described by three equations: an 
intertemporal Euler equation, a non-bank incentive constraint, which both determines the level 
of ℓത  and incorporates the non-bank value function, and a bank incentive constraint which 
determines the minimum interest rate consistent with a bank borrowing constraint sufficiently 
high to support desired borrowing in the high productivity state. 

Type Ia equilibria 

The value function for the environment where the liquidity constraint never binds was derived 
above in the enforcement equilibria section. The relevant Euler equation is: 𝑖 ≤ ଵିఉఉ(ଵି) ≡ 𝚤̂ூ. 

The borrowing constraint for non-banks 

The borrowing constraint for the non-banks ensures that the repayment of debt is always 
incentive compatible. In the case of no default, a borrower pays back the loan with interest 
(after having spent in the FM any bills she brought into the FM) and gets the continuation value 
of the game, or: 𝑊(ℓ, 0) = −(1 + 𝑖)ℓ + 𝛽𝑉(𝑑) 
By contrast, the value to a borrower of entering the CM with loan, ℓ, and accepted bills, d, when 
the borrower intends to default is represented by 𝑊 (ℓ, 𝑑). Default results in a loss of bank 
services and without bank support no other member of the economy will accept the defaulter’s 
debt in payment, so the continuation value of the game is autarky.8 Furthermore, a defaulter 
chooses not to produce at a loss so: 𝑊 (ℓ, 𝑑) = −𝑄 + 𝛽𝑉൫𝑑መᇱ൯ = 0 
Then, the borrowing constraint for non-banks is:  𝑊൫ℓത, 0൯ ≥ 𝑊 ൫ℓത, 𝑑൯ = 0 

 
8 This is similar to Gu, Mattesini, Monnet, & Wright (2013) where the penalty to being caught in default 

is autarky. Note, however, that we do not adopt the whole of their framework. They assume that an 
agent is only caught defaulting with a certain probability. This does not accord with the role of banks 
discussed in this paper, although as a technical matter, such a probability can easily be added to the 
model. 
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When this equation holds with equality, it can be rewritten as a fixed-point problem:  ℓത = ఉ(ௗ;ℓത)ଵା                                                            (13) 

Let ℓത∗  denote the solution to this problem. 

Lemma 1: Given ℓത = ℓത∗, 𝑊(ℓ, 0) is decreasing in ℓ, and 𝑊(ℓ, 0) ≥ 𝑊 ൫ℓത, 𝑑൯ for all  ℓ ≤ℓത. 

Proof:  𝑊(ℓ, 0) = −(1 + 𝑖)ℓ + 𝛽𝑉൫𝑑; ℓത∗൯ and for all cases 𝑉(𝑑; ℓത∗) is independent of ℓ, the 
amount of debt that the borrower carries into the CM in the current period. As 𝑊(ℓ, 0) is 
decreasing in ℓ and is equal to zero at ℓത∗,  𝑊(ℓ, 0) ≥ 0 = 𝑊 ൫ℓത, 𝑑൯ for all  ℓ ≤ ℓത∗. ■ 

Before preceding to discuss the banks’ problem, it is convenient to rewrite d, the bill holdings 
that are carried from one period to the next as a fraction, θ, of the expected expenditure of the 
borrower in the unconstrained case: 

𝑑 = 𝜃𝜋(𝑖) (1 − 𝜎) + 𝜎𝐴 ഀమషഀ൨                                     (14) 

 
Define 𝜃 as the fraction of the expected expenditure that would allow the borrower to purchase 
his optimal bundle in the low productivity state: 

𝜃 ≡ 1(1 − 𝜎) + 𝜎𝐴 ఈଶିఈ < 1 

and define 𝜃 similarly, but for the high productivity state: 

𝜃 ≡ 𝐴 ఈଶିఈ(1 − 𝜎) + 𝜎𝐴 ఈଶିఈ > 1 

Banks: The Problem of Franchise Value 

Recall that banks have the technology to circulate their bills in the CM in order to purchase the 
CM good even though this will leave them insolvent. Recall also that in both the CM and the 
FM banks face the limit on their liabilities, 𝑏ത. At the end of a period in which a bank circulates 
such fraudulent bills the bank is bankrupt and is forced into autarky. Here we discuss the banks’ 
incentive compatibility constraint both under Bertrand competition and more generally. 
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First, consider the steady state value of being a banker at the start of a period, which we will 
represent by 𝑉(𝑖), where 𝑖 is the steady state value of the interest rate. Then,  𝑉(𝑖) = 𝐸𝑊(𝐿) 
where 𝑊(𝐿) is the value of being a banker at the start of the CM, given that loans 𝐿 were 
made in the FM. 𝑉(𝑖) is the expected value of 𝑊(𝐿) over both values of 𝐴. Furthermore  𝑊(𝐿) = 𝑖𝐿 + 𝛽𝑉(𝑖) 
or the value of being a banker in the CM is the real interest owed to the bank plus the discounted 
continuation value of being a banker in the future. And we can conclude that: 

𝑉(𝑖) = 𝑖𝐸𝐿1 − 𝛽 
where 𝐸𝐿 is the expected quantity of loans. 

Let 𝑊෩ (𝐿) be the value of default to a banker who expects payment on loans outstanding, 𝐿, 
in the CM. Then: 𝑊෩ (𝐿) = 𝑖𝐿 + 𝑏ത − 𝐿 
or 𝑊෩ (𝐿) is given by the funds paid to the bank in exchange for the loan plus the value to the 
bank of issuing bills up to the bank’s constraint, as the continuation value of default in the next 
period is autarkic and therefore zero. Recall that a bank must lend in the FM in order to be able 
to issue bills in the CM. 

Banking is incentive compatible only if the bank will prefer not to default, when the bank’s 
loans – and the interest to be paid on them – are at their lowest. In the type Ia environment 
incentive compatibility is given by: 𝑊൫(1 − 𝑛)(𝜋(𝑖) − 𝑑)൯ ≥ 𝑊෩ ൫(1 − 𝑛)(𝜋(𝑖) − 𝑑)൯                     (15) 

In order for the banking system to have the borrowing capacity to support the market it must 
be the case that 𝑏ത, the lending capacity of the banks, is sufficiently high 

𝑏ത ≥ (1 − n) ൬𝜋(𝑖)𝐴 ഀమషഀ − 𝑑൰                                       (16) 

𝑏ത must therefore exceed the mass of borrowers times the maximum amount that they seek to 
borrow. Here we impose this borrowing capacity as a condition that must be met in order for 
the banking system to provide adequate banking services. Thus, after simplifying the banks’ 
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incentive compatibility constraint, substituting in the FM value function, and imposing the 
condition that 𝑏ത must be high enough that the bank can afford to fund the maximum level of 
loans, we find: 𝛽 1 − 𝛽 𝑖𝐸𝐿𝜋(𝑖)(1 − 𝑛)  ≥ 𝐴 ఈଶିఈ − 1                                              (17) 

In a Type Ia equilibrium 𝜃 < 𝜃 < 1 and 

𝐸𝐿 = (1 − 𝑛)(1 − 𝜃)𝜋(𝑖) ቈ(1 − 𝜎) + 𝜎𝐴 ఈଶିఈ 
Plug this into equation (17) and define 𝚤ூ̆ to be the 𝑖 that solves equation (17) when it holds as 
an equality: 𝑖 ≥ ଵିఉఉ(ଵିఏ) ൫𝜃 − 𝜃൯ ≡ 𝚤ூ̆                                              (18) 

Observe that in a Type Ia equilibrium as long as 𝑖 > 0, then there exists some value of β such 
that the incentive compatibility constraint, equation (18), will be met for all β greater than that 
value. Under Bertrand competition, however, i = 0 and the Type Ia incentive compatibility 
constraint for bankers is always violated.  

This indicates that banking is an incentive compatible profession only if bankers earn some 
positive rate of interest on their loans over and above the costs of making them. This is stated 
formally in Lemma 2. 

Lemma 2: Competitive banking, where the interest rate reflects only the zero costs of banking, 
is not incentive compatible in a type I environment. 

In addition, only when the banking sector is structured such that there is a franchise value to 
banking, 𝑉(𝑖) > 0 , is bank provision of a reputation-based money supply incentive 
compatible.9  

Given that under Bertrand competition there can be no equilibrium in a type I environment, 
we now characterize the set of possible equilibria without the assumption that the banking 
sector is competitive, and then in Section IV discuss means by which policy can choose one of 
these equilibria. 

 
9 Charles Goodhart observes that this framework omits an alternative enforcement mechanism: early 20th 

century banking developed in an environment where the assets of wealthy bankers were at risk, and 
there is indeed little doubt that the actual enforcement mechanisms used in the past were more 
complicated than those in the model. 
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Definition 3: A bank money equilibrium with unconstrained credit and borrowing in all states 
(Type Ia equilibrium) is a set (𝑖, 𝑝(𝐴), 𝑑, 𝑞(𝐴), 𝑥(𝐴), ℓത, 𝑏ത) such that the resource and intra-
temporal optimization conditions, equations (2), (5), and (6), intertemporal optimization, 
equation (11), and the incentive compatibility constraints, equations (13) and (18), are satisfied, 𝜋(𝑖)𝐴 ഀమషഀ ≤ ℓത + 𝑑, and 𝑑 < 𝜋(𝑖).  

In a Type Ia equilibrium the Euler, equation (11), tells us that either 𝑑 = 0 and the equation 
sets an upper bound on 𝑖 or 𝑑 > 0 and 𝑖 = 𝚤ூ̂. The bank incentive constraint, equation (18), 
sets a lower bound on 𝑖, 𝚤ூ̆. Lemma 3 then defines some of the characteristics of a Type Ia 
equilibrium. 

Lemma 3: If the non-bank borrowing constraint never binds and 𝑑 = 𝜃 = 0, then when 𝑛 +𝜎 ≥ 1 there exists i such that 𝚤ூ̂ ≥ 𝑖 ≥ 𝚤ூ̆, and when 𝑛 + 𝜎 < 1 ,there exists i such that 𝚤ூ̂ ≥𝑖 ≥ 𝚤̆ூ, if  

𝐴 ≤ ൬2 − 𝑛 − 𝜎1 − 𝑛 − 𝜎൰ଶିఈఈ
 

Proof: When the non-bank borrowing constraint never binds and 𝑑 = 𝜃 = 0, 

1 − 𝛽𝛽 11 − 𝑛 ≡ 𝚤ூ̂  ≥ 𝚤̆ூ ≡ 1 − 𝛽𝛽 𝐴 ఈଶିఈ − 1(1 − 𝜎) + 𝜎𝐴 ఈଶିఈ 
which can be rewritten: 

(2 − 𝑛 − 𝜎)  ≥ (1 − 𝑛 − 𝜎)𝐴 ఈଶିఈ 

The two results follow. ■ 

The steady state value function that incorporates equations (2), (5), and (6) in a Type Ia 
environment is given by: 

𝑉ூ(𝑑) = 11 − 𝛽 (1 − 𝑛)ଶିଶఈଶିఈ ቀ 𝑛𝛼1 + 𝑖ቁ ఈଶିఈ 1 − 𝛼 + 𝛼(1 + 2𝜃𝑖)2(1 + 𝑖) ൨ ቈ(1 − 𝜎) + 𝜎𝐴 ఈଶିఈ 
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Plug this into equation (13) to get: 

ℓത∗ூ = 𝛽1 − 𝛽 (1 + 𝑖) ିଶଶିఈ(1 − 𝑛)ଶିଶఈଶିఈ (𝑛𝛼) ఈଶିఈ 1 − 𝛼 + 𝛼(1 + 2𝜃𝑖)2(1 + 𝑖) ൨ ቈ(1 − 𝜎) + 𝜎𝐴 ఈଶିఈ 

Confirm that the assumption that the non-bank borrowing constraint does not bind is met or 
that 

ℓത∗ ≥ ቂ 𝛼1 + 𝑖ቃ ଶଶିఈ ቈ(1 − 𝑛)𝑛  ିఈଶିఈ ቆ𝐴 ఈଶିఈ − 𝜃 ቈ(1 − 𝜎) + 𝜎𝐴 ఈଶିఈቇ 

This inequality simplifies:  𝛽(1 − 𝑛)1 − 𝛽 ቈ1 − 𝛼𝛼 + (1 + 2𝜃𝑖)2(1 + 𝑖)  ≥ 𝜃 − 𝜃                              (19) 
In the case where no bills are carried from one period to the next, 𝜃 = 0 and the inequality 
simplifies even further:  11 + 𝑖 ≥ 2 ቆ 𝜃1 − 𝑛 1 − 𝛽𝛽 − 1 − 𝛼𝛼 ቇ                                  (20) 

Proposition 2: Given 𝑑 = 𝜃 = 0 and 𝑛 + 𝜎 ≥ 1  or  𝑛 + 𝜎 < 1  and 𝐴 ≤ ቀଶିିఙଵିିఙቁమషഀഀ , then the 

set of interest rates consistent with bank money equilibrium with unconstrained credit is given 
by {𝑖| 𝚤ூ̂ ≥ 𝑖 ≥ 𝚤ூ̆and (20) holds} and there exists a critical value 𝛽መூ such that a bank money 
equilibrium with unconstrained credit exists for all 𝛽 ≥ 𝛽መூ.  
Proof: By Lemma 3 there exists 𝑖 such that equations (11) and (18) hold or 𝚤ூ̂ ≥ 𝑖 ≥ 𝚤ூ̆. The 
Type Ia value function, equation (9), incorporates equations (2), (5) and (6) and, in turn, is 
incorporated with equation (13) into equation (20). Thus, the set of Type 1a equilibrium interest 
rates is described by equations (11), (18), and (20) or {𝑖|𝚤ூ̂ ≥ 𝑖 ≥ 𝚤ூ̆and (20) holds}. 

The right hand side of equation (20) is decreasing in 𝛽, converges to ∞ as 𝛽 converges to 
zero, and converges to a negative number as 𝛽 converges to one. Thus, there exists 𝛽መூ such 
that equation (20) holds with equality when 𝑖 = 𝚤ூ̂. Now consider 𝛽ᇱ ≥ 𝛽መூ. By equations (11) 
and (18), 𝛽ᇱ  defines new values 𝚤ᇱ̂ < 𝚤ூ̂  and 𝚤ூ̆′ < 𝚤ூ̆ , but does not change the relationship 
between them, so 𝚤ᇱ̂ ≥ 𝚤ூ̆′. Plugging 𝚤ᇱ̂ into equation (20) we find that the right hand side has 
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increased and the left hand side has decreased so the equation still holds. Conclusion: a bank 
money equilibrium with unconstrained credit exists for all 𝛽 ≥ 𝛽መூ. ■ 

When bills are held over time in equilibrium, less is borrowed from the banks and as a result 
interest rates must be higher than in the 𝜃 = 0 case in order for the bank incentive constraint to 
hold – as equation (18) demonstrates.  

Lemma 4: If the non-bank borrowing constraint never binds and 𝜃 > 0, then iff  𝜃 ≤ 1 −(1 − 𝑛)൫𝜃 − 𝜃൯ ≡ 𝜃 there exists i such that 𝚤ூ̂ = 𝑖 ≥ 𝚤ூ̆. Furthermore,  𝜃 = 𝜃    if 𝑛 + 𝜎 = 1 𝜃 > 𝜃    if 𝑛 + 𝜎 < 1 𝜃 < 𝜃    if 𝑛 + 𝜎 > 1 

Proof: There exists i such that 𝚤ூ̂ = 𝑖 ≥ 𝚤ூ̆ iff 1 − 𝛽𝛽 11 − 𝑛 ≡ 𝚤̂ூ  ≥ 𝚤̆ூ ≡ 1 − 𝛽𝛽(1 − 𝜃) ൫𝜃 − 𝜃൯ 

which can be rewritten: 1 − (1 − 𝑛)൫𝜃 − 𝜃൯ ≥ 𝜃 

The equation  1 − (1 − 𝑛)൫𝜃 − 𝜃൯ ≤ 𝜃 
can in turn be rewritten 

1 − 𝜎 − 𝑛 ≤ 𝐴 ఈଶିఈ(1 − 𝜎 − 𝑛) 
The three results relating 𝜃 to 𝜃 follow. ■ 

A bank money equilibrium with unconstrained credit can only exist if the non-bank liquidity 
constraint does not bind in the high productivity state. In the case where 𝜃 ≥ 0, we use the 
Euler, equation (11), to determine 𝑖, plug that into equation (19) and solve for 𝜃. This defines 
a function 𝜙, such that a Type Ia equilibrium can exist only if 𝜙 ≤ 𝜃. 
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𝜙൫𝛼, 𝛽, 𝑛, 𝜃൯ ≡ ቂ𝜃 − ఉ(ଵି)ଵିఉ ቀଵିఈఈ − ఉ(ଵି)ଶ(ଵିఉ)ቁቃ (ଵିఉ)ଵାఉ(ଵିଶ) ≤ 𝜃                  (21) 

Proposition 3: Bank money equilibria with unconstrained credit, borrowing in every state, and 𝜃 > 0 are characterized by: 

𝑖 = 𝚤̂ூ = 1 − 𝛽𝛽(1 − 𝑛) 
𝜙(𝛼, 𝛽, 𝑛, 𝜃) ≤ 𝜃 ≤ min൫𝜃, 𝜃൯ 

(i) For 𝛼 < ଶଷ  and 𝜃 ≤ min (𝜃, 𝜃)  there exists a critical value 𝛽መூ  such that a bank money 

equilibrium with unconstrained credit exists for all 𝛽 ≥ 𝛽መூ; 
(ii) For 𝛼 < ଶଷ there exists a critical value, 𝛽෨, below which there is no 𝜃 that will support a Type 

Ia equilibrium. For  𝛼 < ଶଷ   and 𝛽෨ ≤ 𝛽 , there exists a critical value 𝜃෨  such that a Type Ia 

equilibrium exists for all 𝜃෨ ≤ 𝜃 ≤ min (𝜃, 𝜃) 

Proof:  When 𝜃 > 0 , the Euler, equation (11) must hold with equality, fixing 𝑖 = 𝚤ூ̂ . By 
Lemma 4, for 𝜃 ≤ 𝜃,  𝚤ூ̂ ≥ 𝚤ூ̆ and equation (18) is also met. Equations (2), (5), (6) and (13) 
are incorporated into equation (21) which defines a lower bound for 𝜃.  
(i) To find 𝛽መூ, consider equation (21): 𝜙(𝛼, 𝛽, 𝑛, 𝜃) ≤ 𝜃 

When 𝛼 < ଶଷ, 𝜙 is continuously decreasing in 𝛽. As 𝛽 converges to one, 𝜙 converges to −∞ 

for 𝛼 < ଶଷ , and equation (21) is true. As 𝛽  converges to 0, 𝜙  converges to 𝜃  and for 𝜃 ≤min൫𝜃, 𝜃൯ equation (21) is false. Thus, when 𝛼 < ଶଷ for any given 𝜃 ≤ min (𝜃, 𝜃), there exists 

some 𝛽መூ , such that 𝜙൫𝛼, 𝛽, 𝑛, 𝜃൯ = 𝜃 . Because when 𝛼 < ଶଷ,  𝜙൫𝛼, 𝛽, 𝑛, 𝜃൯ is continuously 

decreasing in 𝛽, equation (21) will be true for all 𝛽 ≥ 𝛽መூ.  
(ii) When 𝛼 < ଶଷ, 𝛽෨ is found by setting  𝜙൫𝛼, 𝛽, 𝑛, 𝜃൯ = min (𝜃, 𝜃) 
Using an argument analogous to the preceding argument, we find that a 𝛽෨ which solves this 
equation must exist. Furthermore, because 𝜙൫𝛼, 𝛽, 𝑛, 𝜃൯ is continuously decreasing in 𝛽, when 𝛼 < ଶଷ, 𝜙 will be greater than min (𝜃, 𝜃) for all 𝛽 < 𝛽෨, and thus for such 𝛽 there exists no 𝜃 ≤
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min (𝜃, 𝜃)  such that equation (21) is true. When  𝛼 < ଶଷ   and 𝛽 ≥ 𝛽෨ ,  𝜙൫𝛼, 𝛽, 𝑛, 𝜃൯ ≤min (𝜃, 𝜃). Set 𝜃෨ = max (0, 𝜙). Then equation (21) is true for all 𝜃෨ ≤ 𝜃 ≤ min (𝜃, 𝜃). ■ 

Type Ib and Ic equilibria 

Definition 4: A bank money equilibrium with unconstrained credit and borrowing in the high 
productivity state (Type Ib equilibrium) is a set (𝑖, 𝑝(𝐴), 𝑑, 𝑞(𝐴), 𝑥(𝐴), ℓത, 𝑏ത)  such that the 
resource and intra-temporal optimization conditions, equations (2), (5), and (6), intertemporal 
optimization, equation (12), and the incentive compatibility constraints, equations (13) and 

(17), are satisfied, 𝜋(𝑖)𝐴 ഀమషഀ ≤ ℓത + 𝑑, and 𝜋(𝑖) ≤ 𝑑 < 𝜋(𝑖)𝐴 ഀమషഀ.  

Definition 5: A bank money equilibrium with unconstrained credit and no borrowing (Type Ic 
equilibrium) is a set (𝑖, 𝑝(𝐴), 𝑑, 𝑞(𝐴), 𝑥(𝐴), ℓത, 𝑏ത)  such that the resource and intra-temporal 
optimization conditions, equations (2), (5), and (6), intertemporal optimization, and the 

incentive compatibility constraints for both banks and non-banks are satisfied, and 𝜋(𝑖)𝐴 ഀమషഀ ≤𝑑.  

The value functions for Type Ib and Type Ic equilibria are derived in Appendix 1. The result in 
Lemma 5 is unsurprising: 

Lemma 5: No Type Ic equilibria, in which 𝜃 ≥ 𝜃 and agents never borrow, exist.  

Proof: When 𝜃 > 0, the Euler equation must hold with equality. In this environment where 
there is no borrowing the Euler would be ଵఉ = 1, which is a contradiction. ■ 

In order for a Type Ic equilibrium to exist, non-bankers would have to carry bills from one 
period to the next even though these bills purchase the same quantity of goods in each period. 
Discounting ensures that this is never an optimizing choice. 

In a Type Ib equilibrium, borrowing only takes place in the high productivity state, and as 
a result the economy only needs to support a single level of borrowing. For this reason, it is 
possible to set the bank borrowing constraint equal to the desired borrowing of the non-bankers 
in the high productivity state. Because only banks that lend in the FM can issue liabilities and 
default in the CM, the fact that a tight borrowing constraint can be imposed on the bankers 
ensures that the problem of bank default can be eliminated without adversely affecting the 
allocation of the non-bankers. For this reason, the bank borrowing constraint is not a binding 
constraint in a Type 1b equilibrium. 
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Thus, a Type Ib equilibrium is determined by three equations, 𝜃 < 𝜃 ≤ 𝜃, the Euler, 𝑖 =𝚤ூ̂ , and 𝜙 ≤ 𝜃, where 𝜙  is found by the same procedure as 𝜙: the 𝑉ூ  value function is 
plugged into equation (13), which is solved for ℓത∗. Then the non-binding liquidity constraint 
condition is imposed and the resulting inequality is solved for 𝜃. Finally 𝚤ூ̂ is plugged into the 
equation. From this we find: 
Proposition 4: Bank money equilibria with unconstrained credit and 𝜃 < 𝜃 ≤ 𝜃  are 
characterized by: 

𝑖 = 𝚤̂ூ = 1 − 𝛽𝜎𝛽(1 − 𝑛) 

𝜙൫𝛼, 𝛽, 𝑛, 𝜃൯ ≡ 𝜃 ൬2 − 1𝛼 + 𝚤̂ூ൰ − ൬1𝛼 − 12൰ ൬ 1𝚤̂ூ൰ ቈ𝜃 + 𝜃 (1 − 𝜎)𝜎 ൫1 + 𝚤̂ூ൯ ଶଶିఈ ≤ 𝜃 

 
Proof: When 𝜃 > 𝜃 , the Euler, equation (12) must hold with equality, fixing 𝑖 = 𝚤ூ̂. Equations 
(2), (5), (6) and (13) are incorporated with the condition that the liquidity constraint must not 
bind to find 𝜙 which defines a lower bound for 𝜃. ■ 

Type IIa equilibria 

In the Type IIa environment ℓത only binds when  𝐴 is realized, but borrowing takes place in both 
states. The related value function (derived in Appendix 1) for non-banks is:  

𝑉ூூ(𝑑) = (1 − 𝜎) ቀ 𝑛𝛼1 + 𝑖ቁ ఈଶିఈ (1 − 𝑛)ଶିଶఈଶିఈ 1 − 𝛼 + 𝛼2(1 + 𝑖)൨
+ (1 − 𝜎)𝑑 [(1 − 𝑛)(1 + 𝑖) + 𝑛]+𝜎(1 − 𝑛)ଶିఈଶ ൣ𝑛𝐴(ℓത + 𝑑)൧ఈଶ
+  𝜎 ቈ𝑛𝑑 − (1 − 𝑛)(1 + 𝑖)ℓത + (1 − 𝑛)(ℓത + 𝑑)2  + (1 − 𝑛)𝑊(0, 0)+ 𝑛𝑊(0) 

When VII(d) is lagged one period, simplified, and plugged into the CM optimization problem, 
we get: 
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𝑊(𝑑) = 𝑑 + 𝛽 (1 − 𝜎) ቀ 𝑛𝛼1 + 𝑖ቁ ఈଶିఈ (1 − 𝑛)ଶିଶఈଶିఈ 1 − 𝛼 + 𝛼2(1 + 𝑖)൨
− 𝜎ℓത 1 − 𝑛2 + (1 − 𝑛)𝑖′൨ + (1 − 𝑛)𝑊(0, 0) + 𝑛𝑊(0)൩
+ maxௗᇲ ቐ−𝑑ᇱ+𝛽𝑑ᇱ ൬1 − 𝜎 1 − 𝑛2 ൰ + (1 − 𝜎)(1 − 𝑛)𝑖ᇱ൨
+ 𝛽𝜎(1 − 𝑛)ଶିఈଶ ൣ𝑛𝐴(ℓത + 𝑑′)൧ఈଶቑ 

Before proceeding to solve the optimization problem, observe first that the maximization 
problem solved by borrowers in the CM is the same as that solved by lenders, and second that 
the second derivative in terms of 𝑑ᇱ of the optimization problem is negative, so the solution to 
the problem is well defined. Take the FOC to find the following Euler equation: 

ଵఉ − 1 ≥ (1 − 𝜎)(1 − 𝑛)𝑖′ − 𝜎 (ଵି)ଶ + ఈఙଶ ൫𝑛𝐴൯మഀ ቂ ଵିℓതାௗᇱቃమషഀమ   (22) 

A monetary equilibrium with no accepted bill holdings from one period to the next will exist 
only if the marginal benefit of spending an accepted bill in the CM exceeds the marginal benefit 
of carrying it into the next period. The latter marginal benefit is given by the right hand side of 
equation (22) and is composed of the interest benefit earned by a borrower when productivity 
is low and the cost incurred by a borrower when productivity is high and the bills are not carried 
into the next period together with the incremental benefit due to a higher level of consumption 
when the liquidity constraint binds.  

Equation (22) can be used to define the maximum lending rate that is consistent with 
borrower optimization in a Case IIa equilibrium, 𝚤ூ̂ூ: 

ቊଵఉ − 1 + 𝜎 (ଵି)ଶ − ఈఙଶ ൫𝑛𝐴൯మഀ ቂ ଵିℓതାௗᇱቃమషഀమ ቋ ଵ(ଵିఙ)(ଵି) ≡ 𝚤ூ̂ூ ≥ 𝑖  (23) 

In the Type IIa environment equation (15) still defines bank incentive compatibility. However, 
both the expected loans in the high productivity state and the minimum level of 𝑏ത to support 
the equilibrium are given by (1 − n)ℓത. Thus, the bank incentive constraint is given by: ఉଵିఉ ൣ(1 − 𝜎)(𝜋(𝑖) − 𝑑) + 𝜎ℓത൧ ≥ ℓത − (𝜋(𝑖) − 𝑑)  (24) 
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Definition 6: A bank money equilibrium with partially constrained credit and debt in all states 
(Type IIa equilibrium) is a set (𝑖, 𝑝(𝐴), 𝑑, 𝑞(𝐴), 𝑥(𝐴), ℓത, 𝑏ത) such that the resource and intra-
temporal optimization conditions, equations (2), (5), and (6), intertemporal optimization, 
equation (23), and the incentive compatibility constraints, equations (13) and (24), are satisfied, 

and 𝜋(𝑖) ≤ ℓത + 𝑑 ≤ 𝜋(𝑖)𝐴 ഀమషഀ . 

Type IIa equilibria can only be evaluated numerically by solving jointly for 𝑖 and ℓത. Diagram 2 
(in the next section) shows a typical region of equilibrium for the case where there are no bill 
holdings. Diagram 4 (also in the next section) shows the same for positive bill holdings. Type 
IIb equilibria can also only be found numerically. All efforts to find such an equilibrium have, 
however, failed. 

Type III equilibrium  

The value function for a Type III equilibrium in which the liquidity constraint always binds is: 

𝑉ூூூ(𝑑) = 11 − 𝛽 ቊ(1 − 𝑛)ଶିఈଶ ൣ𝑛ℓത + 𝑑)൧ఈଶ ቈ(1 − 𝜎) + 𝜎൫𝐴൯ఈଶ − (1 − 𝑛) ቆℓത + 𝑑2 + 𝑖ℓതቇቋ 

From this we derive the Euler equation: 

ଵఉ − 1 + (ଵି)ଶ − ఈଶ 𝑛మഀ ቂ ଵିℓതାௗᇱቃమషഀమ (1 − 𝜎) + 𝜎൫𝐴൯మഀ൨ ≥ 0  (25) 

and plugging the value function into equation (13) we get the non-bank incentive constraint: 

ℓത ≤ ఉ(ଵିఉ)(ଵା) ൜(1 − 𝑛)మషഀమ ൣ𝑛(ℓത + 𝑑)൧మഀ (1 − 𝜎) + 𝜎൫𝐴൯మഀ൨ − (1 − 𝑛) ቀℓതାௗଶ + 𝑖ℓതቁൠ  (26) 

In the Type III environment lending in every period is given by (1 − 𝑛)ℓത, and as a result the 
minimum lending capacity of the banks, 𝑏ത, is also (1 − 𝑛)ℓത. This gives the Type III bank 
incentive constraint: ఉ ଵିఉ 𝑖ℓത  ≥ 0    (27) 

Observe that in this environment as in the Type Ib environment the equation used to determine 
the minimum interest rate consistent with bank incentive compatibility tells us nothing. Because 
the bank lending constraint can be set equal to the amount that will be borrowed whenever 
borrowing takes place and banks that do not lend in the FM cannot circulate liabilities in the 
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CM, there is no need for excess capacity upon which banks can default – and even an interest 
rate of 0 is consistent with equilibrium. 

Definition 7: A bank money equilibrium with always-constrained credit (Type III equilibrium) 
is a set (𝑖, 𝑝(𝐴), 𝑑, 𝑞(𝐴), 𝑥(𝐴), ℓത, 𝑏ത)  such that the resource and intra-temporal optimization 
conditions, equations (2), (5), and (6), intertemporal optimization, equation (25), and the 
incentive compatibility constraints,  equations (13) and (27), are satisfied, and ℓത + 𝑑 ≤ 𝜋(𝑖).  

Proposition 5: Given 𝑑 = 0 , there exists a critical value 𝛽መூூூ  such that no bank money 
equilibrium with always-constrained credit exists for all 𝛽 ≥ 𝛽መூூூ.  
Proof: First, solve equation (26) to find ℓത∗ when 𝑑 = 0, and impose the condition that ℓത∗ is less 
than desired expenditure in the low productivity state. Solve this condition for 𝛽 to find: 

𝛽 ≤ 2 ቊ1 + 𝑛𝑖1 + 𝑖 + 𝑛 + 2𝛼 ቈ(1 − 𝜎) + 𝜎൫𝐴൯ఈଶ (1 − 𝑛)ቋିଵ ≡ 𝛽መூூூ 

■ 

3    Equilibria in Diagrams 

Diagrams 2 through 5 allow us to visualize the set of stationary equilibria that exist in this 
convertible currency world. Unsurprisingly the level of bill holdings that supports the broadest 
range of equilibrium interest rates is the corner solution, no bill holdings at all.  

When no bills are carried, the monetary system relies only on the “as needed” issue of credit 
to support the transactions of the economy. Because of the absence of a stock of a monetary 
asset, demand and supply do not fully determine the interest rate in equilibrium. Instead 
incentive constraints place upper and lower bounds on the set of equilibrium interest rates. In 
the next section, means by which the interest rate may be determined are discussed along with 
the policy implications of such choices. 

Diagram 2 shows that when bills are not carried over time, 𝛽 is an important determinant of 
the type of equilibrium that can be supported. For the highest values of 𝛽, the only equilibria 
that exist are Type I equilibria where non-banks never face binding liquidity constraints.  
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Diagram 2- Regions of Equilibrium: No Bill Holdings 

 
 
In a Type I equilibrium the bank incentive compatibility constraint defines a minimum interest 
rate (the blue line) that is adequate to induce the banks not to opt to take one-time advantage in 
the low productivity state of their ability to issue money up to the level needed to support 
production in the high productivity state, consume the proceeds, and then default. Similarly, 
the intertemporal Euler condition defines the level of interest (the yellow line) that is consistent 
with non-banks choosing to carry bills from one period to the next. In equilibria where non-
banks carry no bills over time interest rates may lie below the yellow line. 

The green line, 𝜙 , defines the boundary where ℓത∗ , the minimum non-bank borrowing 
constraint, is just equal to the desired expenditure in the high productivity state. The red line, 𝜙ூூூ , defines the boundary where ℓത∗  is just equal to the desired expenditure in the low 
productivity state. 

When 𝛽 takes on a middling value, the only type of equilibrium with no bill holdings that 
exist are the Type II equilibria where non-banks are liquidity constrained in the high 
productivity state, but not in the low productivity state. For the Type II equilibria it is once 
again the case that the minimum level of the equilibrium interest rate is determined by the bank 
incentive constraint, while the maximum level is defined by the non-banks’ intertemporal Euler 
equation. 

For the lowest values of 𝛽  only Type III equilibria, where non-banks are liquidity 
constrained in all states, can be supported, and virtually any interest rate is a candidate for 
equilibrium. This latter result is due to the fact that on the one hand the same amount is 
borrowed in every state allowing the bank borrowing constraint to be set tightly, giving the 

III II           I 

 𝚤̆  𝚤̂  𝜙  𝜙ூூூ 
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banks no opportunity to issue liabilities in the CM and then default, and making the lower bound 
on the equilibrium interest rate zero; and on the other hand, non-banks are liquidity constrained 
in all states, so at the margin the interest rate doesn’t play a role in the choice of how many bills 
to carry from one period to the next. Thus, in a Type III equilibrium the principal effect of 
raising interest rates is to reduce ℓത∗, the maximum size of the credit line that it is incentive 
compatible for non-banks to repay. (Note that the equilibrium level of ℓത∗ and how it changes is 
not depicted in Diagram 2.) 

Diagram 3 depicts the welfare associated with the equilibria in Diagram 2. Non-bank 
welfare is highest when the interest rate is at the lowest equilibrium level. The blue line 
represents this case, while the green line represents non-bank welfare when the interest rate is 
at its maximum. Bank welfare when the interest rate is at its minimum is represented by the 
yellow line, and bank welfare when the interest rate is at its maximum by the red line. Note also 
that because there is no maximum interest rate in the Type III environment, in this case the 
highest value of the maximum interest rate for the Type II case was used instead.  
The most obvious implication of Diagram 3 is that not only the borrowers, but also the bankers 
are better off in environments where liquidity constraints are slack than where they are binding.  

Diagram 4 depicts the equilibria in which bills are held over time, focusing on the case of a 
moderate value of 𝛽 such that at 𝜃 = 0 the only equilibrium is a Type IIa equilibrium. The red 
line represents the Type IIa equilibria that exist when 𝜃 is low. These exist only up to the green 
dashed line, 𝜙, which is where ℓത∗ equals the desired expenditure in the high productivity state. 
When 𝜃 is high enough to lie on the other side of 𝜙, but is less than  𝜃, the equilibria are Type 
Ia and have 𝑖 = 𝚤ூ̂. (Note that this diagram depicts the case where 𝑛 = 𝜎 = 0.5, so 𝜃 = 𝜃 by 

Diagram 3- Welfare in Equilibrium: No Bill Holdings 
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Diagram 4- Regions of Equilibrium: With Bill Holdings 

Lemma 4.) For 𝜃 < 𝜃 ≤ 𝜃, the only equilibria are Type Ib and have 𝑖 = 𝚤ூ̂. They are depicted 
by the green line. Observe that for the moderate value of 𝛽 depicted here for values of 𝜃 greater 
than but close to 𝜃, there are no Type Ib equilibria, because the ℓത∗ consistent with these values 
of 𝜃 is so low that it would be binding in the high productivity state. 

In short, equilibria with positive debt holdings exist only when the interest rate is set at 
precisely the right level. Diagram 5 depicts welfare in these different equilibria. 

Diagram 5- Welfare in Equilibrium: With Bill Holdings 
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Diagram 5 shows that the steady state welfare of non-banks is increasing in the level of bill 
holdings, but only incrementally. The increase in welfare is generated by the fact that bill 
holdings allow borrowers to consume the same amount while borrowing less and therefore 
reduce interest payments and the cost incurred to make those payments. On the other hand, the 
fact that the Euler equation holds with equality across the Type Ia and the Type Ib equilibria 
indicates that the cost of moving to a higher welfare steady state is offset by the cost of 
producing enough to get there.  

Another way to explain this point is to consider the case where 𝛽 is sufficiently high that 
when 𝜃 = 0, the only equilibria are Type Ia equilibria. In this case when 𝑖 = 𝚤ூ̂, there will be 
equilibria for 0 ≤ 𝜃 ≤ min [𝜃, 𝜃], and as in the diagram above, any steady state at 𝜃 = 𝜃 will 
have higher non-bank welfare than the steady state at 𝜃 = 0. The implication of the Euler 
equation is, however, that any agent in the 𝜃 = 0 steady state has no desire to move to the 
“higher welfare” steady state – because the costs of getting there precisely offset the value of 
the move. That is, despite the fact that Diagram 5 indicates that the highest welfare steady state 
is at 𝜃 = 𝜃, this is only true if the agents start with 𝜃 = 𝜃, not if they have to get there by their 
own means. In short, despite the desirability of a high level of bill holdings that is implied by 
Diagram 5, in a world where agents are born without bill holdings this desirability does not 
exist. 

Finally, observe that shifts from one equilibrium to the next have a very different effect on 
bankers than on non-bankers. Bankers generally lose when bill holdings increase as they receive 
less in interest payments. However, when 𝜃 rises high enough to permit a transition from a 
Type IIa, liquidity constrained, equilibrium to a Type Ia, unconstrained equilibrium, the 
equilibrium interest rate falls dramatically but is more than offset by an increase in consumption 
and thus in interest paid to banks. As a result, it is the bankers who capture most of the welfare 
gains due to the transition – and they would have an incentive to set interest rates so as to 
facilitate this transition.   

The bottom line: This paper models banks as facilitating a means of exchange that is in fact 
a naked short of the unit of account. It demonstrates the welfare benefits of such a monetary 
system and the incentive compatibility of the naked short contract structure for both banks and 
non-banks. By comparing the welfare of the different types of equilibria in this section, we find 
that there is a strong welfare-based impetus for the banks and non-banks in an economy to 
develop the institutions that will support a monetary system that is anchored to a real 
consumption good, but where market participants, instead of storing the good, use credit-claims 
on the consumption good in order to transact. 
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4    How do we choose among equilibria when 𝜽 = 𝟎?  

Since empirical studies typically conclude that annual discount rates are very high, usually 
above 0.95, there is reason to believe that the “good” Type Ia equilibria will be incentive 
compatible for non-banks. The challenge in supporting Type Ia equilibria is the structure of the 
banking system. Lemma 2 states that a competitive banking sector will drive interest rates so 
low that a Type Ia equilibrium cannot be supported. In this section we consider policies that 
will make it possible to achieve a Type Ia equilibrium outcome in the environment of 
endogenous enforcement. 

4.1 Usury Laws 

One solution is to treat banking as a natural monopoly (or oligopoly), taking a permissive 
approach to an anti-competitive structure in the industry, while at the same time capping the 
price at which bank services are offered. Usury laws can be viewed as part of such an approach. 

This paper studies the use of convertible currencies. One of the most important historical 
examples of a convertible currency is Britain’s gold standard which had its origins in the British 
monetary experiments of the late 1690s (Horsefield 1960) and was the foundation upon which 
the classical Gold Standard that anchored world trade in the late 19th century was built. Through 
the developmental stages of this British institution and of the British banking system that grew 
up with it, usury laws capped interest rates at 5% and as a practical matter through the 18th 
century this was the rate charged by banks on bills (Pressnell 1956: 89). The late 18th century 
monetary system as described by Thornton (1802) is the basis for the model of money in this 
paper. Because 18th century British tradesmen typically had bills outstanding, held no gold, and 
preferred to hold as assets interest bearing bills of other tradesmen, they were effectively in 
equilibria with 𝜃 = 0, where no matured (non-interest-bearing) bills are carried over time. 

Given the modern empirical evidence regarding discount factors, a 5% usury rate appears 
to be a very reasonable policy: as diagram 2 indicates a 5% interest rate will be consistent with 
Type Ia equilibrium as long as the discount factor is relatively high (over 0.93 in the diagram) 
– which is consistent with the empirical evidence. For an economy that is in a Type Ia 𝜃 = 0 
equilibrium, a 5% usury rate will function as a constraint on the interest rate charged by a not-
so-competitive banking sector, and will serve only to force this sector to share more of the 
surplus with the non-banks than would have been the case otherwise. In short, a usury rate in 
this model serves, as advertised, to protect the interests of the public at the expense of the 
financiers. 

Of course, the 5% usury rate is found to be reasonable policy here, because it is not a long-
term lending rate. This is instead the rate paid on payments system debt that is to be repaid over 
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the very short-term and that is risk-free due to the careful calibration of borrowing constraints 
to ensure that it is incentive compatible. 

The modern credit card system is testimony to the risk-free nature of payment system debt: 
most people have access to zero-interest payments system debt using their credit cards as long 
as the debt is repaid within 3 to 6 weeks after it is incurred – and they do not have an established 
history of failure to pay. (What makes the nature of the credit card system confusing is that it 
is combined with a system of high-interest rate long-term debt.) This model and the 
extraordinary success of historical financial systems that operated under a tight usury constraint 
indicate that imposing a usury rate on credit cards of 5%-9% might be an effective way of 
transferring value from the banks to consumers. 

4.2 Central bank lending rates 

Usury laws in Britain did not survive long into the 19th century. They were replaced by an active 
central bank lending policy that is the prototype for modern central bank policy. The practice 
of the central bank setting interest rates can also be explained by this model. 

When banks compete too aggressively they may drive the interest rate down so low that 
providing bank services is no longer incentive compatible for the bankers. When this takes 
place, the banks will issue too many liabilities, fail to honor them, and destabilize the monetary 
system. One solution to this problem is to promote competition in the banking sector, but at the 
same time set a floor below which the competitive interest rate may not fall. 

In the model, if policymakers set the interest rate floor at 𝚤ூ̆, then Bertrand competition in 
the banking sector will drive the interest rate to that level, a Type Ia equilibrium will be 
supported, and the policy will favor the interests of non-banks by ensuring that they pay the 
lowest possible equilibrium rate. Such a policy would imitate the current practice of the Federal 
Reserve in paying interest on reserves or the past practice of the Federal Reserve when it 
managed reserves to ensure that banks could lend at the Federal Funds Rate. In both cases, the 
fact that central bank policy ensures that banks can lend safely at a certain rate will have the 
effect of discouraging banks from reducing the rates they charge other borrowers below this 
level. 

In short, this model provides a clear explanation for why central bank policy takes the form 
that it does. Central banks set the short-term interest rate to ensure that competition in the 
banking sector does not drive rates so low that the practice of banking will no longer be 
incentive compatible and that the banking system will be destabilized by banks that issue 
liabilities that cannot be honored.  
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5      Conclusion 

This paper models the role paid by banks in the payments system. Banks impose borrowing 
terms on non-banks that are consistent with incentive compatibility, including excluding them 
from the payments system if they default. By structuring payments system debt in this way 
banks are able to certify that non-bank debt is safe.  

Payments system debt is by its nature short-term. To capture the short-term nature of this 
debt in the model, it is both incurred and paid off within a single period. A natural implication 
of the short-term nature of the debt is then that interest paid on payments system debt does not 
compensate for discounting over time, but instead serves to ensure that payments system debt 
is incentive compatible both for the banks and for the non-banks. 

This model shows how banks can be the fulcra that institutionalize and organize the naked 
shorting of the unit of account.10 By doing so a “phantom” supply of the unit of account is 
created that exists only so long as the short-term payments system debt is outstanding.  

By basing the monetary system on the principle of the naked short and imposing a 
convertible currency structure on our environment, we demonstrate that this function of banks 
is efficiency enhancing: the Euler equation makes it clear that nobody wants to carry over time 
a currency that is convertible at a fixed rate into real goods, and thus that it is efficiency 
enhancing for people living in a gold standard world to transact using credit instruments – as in 
fact was historically the case.  

Indeed, we demonstrate that the first-best can be achieved by such a bank-based monetary 
system in a convertible currency environment with enforceable debt. Thus, this represents an 
alternative to fiat money and the Friedman Rule as a means of optimally addressing transactions 
frictions in an economy. 

The paper focuses mostly, however, on the nature of the second-best equilibria that are 
incentive feasible when debt is not based on exogenous enforcement. In this case, non-bank 
borrowers face an endogenous borrowing limit. When discount rates are high, the borrowing 
limit does not bind, and it is the need to compensate the banks sufficiently that they are not 
incentivized to take advantage of their ability to issue naked shorts that bounds the allocation 
away from the first best. 

A full analysis of the relationship between these second-best equilibria and fiat money is 
left to future work. We note here, however, first, that the fact that productivity is stochastic in 

 
10 The model also illustrates the cartalist principle that accepted bills circulate as money, because they 

are backed by debt. That is, lenders who receive accepted bills in payment do so because they know 
that the structure of the monetary system ensures that the producers in the next sub-period will need to 
pay back their bank loan and therefore will accept in payment the bill, because it can be used to settle 
their outstanding debt. 
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our environment is likely to mean that a simple Friedman Rule will have limited effectiveness, 
and, second, that because bank money allows for both short and long positions in the unit of 
account, whereas fiat money allows for only long positions in the unit of account, it is likely 
that as long as discount rates are not too low bank money will expand the set of implementable 
allocations relative to fiat money and make it possible for higher welfare outcomes to be 
achieved.  

This formal model of bank money as a naked short of the unit of account can also be adapted 
to the study of central bank digital currencies. If central bank digital currency is modeled as 
long only accounts held by non-banks at the central bank that can be spent down to but not 
below zero, then digital currency would be similar to fiat money. As a result, the likely result 
of a comparison between central bank digital money and bank money in this environment is 
that, as long as discount rates are not too low, a shift from bank money to central bank digital 
money would have adverse effects on the set of allocations, and the welfare, that is attainable 
in equilibrium. Thus, in future work we will use this environment to provide a theoretic 
foundation for the commonly voiced critique of central bank digital currencies that their 
adoption would have adverse effects by reducing the availability of bank loans and destabilizing 
the banking system (Broadbent 2016, Lowe 2017, Carney 2018).  
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Appendix 1: Derivation of Value Functions 

It is convenient for purposes of exposition to substitute out the equilibrium price level when 
defining expressions for the optimal consumption of good x, 𝑥∗൫𝑑, ℓത, 𝐴൯,  the optimal supply of 
good x, 𝑞∗൫𝑑, ℓത, 𝐴൯, and the resulting income received from the sale of good x, 𝑝𝑞∗൫𝑑, ℓത, 𝐴൯. 

For optimal consumption, we find:  

𝑥∗൫ 𝑑, ℓത, 𝐴൯ =
⎩⎪⎪
⎨⎪
⎪⎧𝜒(0)𝐴 ଵଶିఈ                                            if 𝜋(0)𝐴 ఈଶିఈ < 𝑑𝑛. 𝑎.                               if 𝜋(𝑖)𝐴 ఈଶିఈ < 𝑑 < 𝜋(0)𝐴 ఈଶିఈ𝜒(𝑖)𝐴 ଵଶିఈ                       if 𝑑 ≤ 𝜋(𝑖)𝐴 ఈଶିఈ < ℓത + 𝑑

ቈ𝑛𝐴(ℓത + 𝑑)(1 − 𝑛) ଵଶ                                                otherwise 
 

where  

𝜒(𝑖) ≡  𝛼𝑛(1 + 𝑖)(1 − 𝑛)൨ ଵଶିఈ
 

The optimal supply of the FM good is given by:  

𝑞∗൫𝐴, 𝑑, ℓത൯ =
⎩⎪⎪
⎨⎪
⎪⎧𝜁(0)𝐴 ଵଶିఈ                                                   if 𝜋(0)𝐴 ఈଶିఈ < 𝑑𝑛. 𝑎.                                      if 𝜋(𝑖)𝐴 ఈଶିఈ < 𝑑 < 𝜋(0)𝐴 ఈଶିఈ𝜁(𝑖)𝐴 ଵଶିఈ                               if 𝑑 ≤ 𝜋(𝑖)𝐴 ఈଶିఈ < ℓത + 𝑑

ቈ𝐴(1 − 𝑛)(ℓത + 𝑑)𝑛 ଵଶ                                            otherwise 
 

 where 
  

𝜁(𝑖) ≡ ቂ 𝛼1 + 𝑖ቃ ଵଶିఈ ቈ(1 − 𝑛)𝑛 ଵିఈଶିఈ 
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And the resulting income received from the sale of the FM good is: 

𝑝𝑞∗൫𝐴, 𝑑, ℓത൯ =
⎩⎪⎪⎨
⎪⎪⎧ 𝜈(0)𝐴 ఈଶିఈ                                     if 𝜋(0)𝐴 ఈଶିఈ < 𝑑𝑛. 𝑎.                           if 𝜋(𝑖)𝐴 ఈଶିఈ < 𝑑 < 𝜋(0)𝐴 ఈଶିఈ𝜈(𝑖)𝐴 ఈଶିఈ              if 𝑑 ≤  𝜋(𝑖)𝐴 ఈଶିఈ < ℓത + 𝑑(1 − 𝑛)(ℓത + 𝑑)𝑛                                            otherwise

 

where  

𝜈(𝑖) ≡ ቂ 𝛼1 + 𝑖ቃ ଶଶିఈ ቈ(1 − 𝑛)𝑛 ଶିଶఈଶିఈ
 

Then the value function for Type Ia: Always borrow, d ≤ 𝜋(𝑖)𝐴 ഀమషഀ, is: 

𝑉ଵ(𝑑) = (1 − 𝜎) ቊ(1 − 𝑛) ቂ𝜒(𝑖)ఈ𝐴 ఈଶିఈ + 𝑊 ቀ𝜋(𝑖)𝐴 ఈଶିఈ − 𝑑, 0ቁቃ+ 𝑛 ቈ− 𝜁(𝑖)ଶ2 𝐴 ఈଶିఈ + 𝑊 ቀ𝑑 + 𝜈(𝑖)𝐴 ఈଶିఈ ቁቋ+ 𝜎 ቊ(1 − 𝑛) ቈ𝜒(𝑖)ఈ𝐴 ఈଶିఈ + 𝑊 ቆ𝜋(𝑖)𝐴 ఈଶିఈ − 𝑑, 0ቇ+ 𝑛 ቈ− 𝜁(𝑖)ଶ2 𝐴 ఈଶିఈ + 𝑊 ቆ𝑑 + 𝜈(𝑖)𝐴 ఈଶିఈ ቇቋ 

And we can rewrite 

 (1 − 𝑛) ቂ𝜒(𝑖)ఈ𝐴 ഀమషഀ + 𝑊 ቀ𝜋(𝑖)𝐴 ഀమషഀ − 𝑑, 0ቁቃ + 𝑛 ቂ− ()మଶ 𝐴 ഀమషഀ + 𝑊 ቀ𝑑 +𝜈(𝑖)𝐴 ഀమషഀ ቁቃ  
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= (1 − 𝑛)  𝛼𝑛(1 + 𝑖)(1 − 𝑛)൨ ఈଶିఈ 𝐴 ఈଶିఈ − (1 + 𝑖) ቌቂ 𝛼1 + 𝑖ቃ ଶଶିఈ ቈ(1 − 𝑛)𝑛  ିఈଶିఈ 𝐴 ఈଶିఈ − 𝑑ቍ
+ 𝑊(0,0)
+ 𝑛 − ቂ 𝛼1 + 𝑖ቃ ଶଶିఈ ቈ(1 − 𝑛)𝑛 ଶିଶఈଶିఈ 𝐴 ఈଶିఈ2 + 𝑑
+ ቂ 𝛼1 + 𝑖ቃ ଶଶିఈ ቈ(1 − 𝑛)𝑛 ଶିଶఈଶିఈ 𝐴 ఈଶିఈ + 𝑊(0) 

= (1 − 𝑛)𝐴 ఈଶିఈ ቈ(1 − 𝑛)𝑛  ିఈଶିఈ  𝛼(1 + 𝑖)൨ ఈଶିఈ − ൬[𝛼] ଶଶିఈ(1 + 𝑖) ିఈଶିఈ൰൩
+ 𝑛𝐴 ఈଶିఈ2 ቈ(1 − 𝑛)𝑛 ଶିଶఈଶିఈ ቂ 𝛼1 + 𝑖ቃ ଶଶିఈ + 𝑑 [(1 − 𝑛)(1 + 𝑖) + 𝑛]+ 𝑛𝑊(0) + (1 − 𝑛)𝑊(0,0) 

= (𝑛𝐴) ఈଶିఈ(1 − 𝑛)ଶିଶఈଶିఈ ቐ 𝛼(1 + 𝑖)൨ ఈଶିఈ − ൬[𝛼] ଶଶିఈ(1 + 𝑖) ିఈଶିఈ൰ + 12 ቂ 𝛼1 + 𝑖ቃ ଶଶିఈቑ+ 𝑑 [(1 − 𝑛)(1 + 𝑖) + 𝑛] + 𝑛𝑊(0) + (1 − 𝑛)𝑊(0,0) 

= ൬ 𝑛𝛼𝐴1 + 𝑖൰ ఈଶିఈ (1 − 𝑛)ଶିଶఈଶିఈ 1 − 𝛼 + 𝛼2(1 + 𝑖)൨ + 𝑑 [(1 − 𝑛)(1 + 𝑖) + 𝑛] + 𝑛𝑊(0)+ (1 − 𝑛)𝑊(0,0) 

Thus we can conclude that Type Ia gives us the following value function: 

𝑉ଵ(𝑑) = ቀ 𝑛𝛼1 + 𝑖ቁ ఈଶିఈ (1 − 𝑛)ଶିଶఈଶିఈ 1 − 𝛼 + 𝛼2(1 + 𝑖)൨ ቈ(1 − 𝜎) + 𝜎𝐴 ఈଶିఈ+ 𝑑 [(1 − 𝑛)(1 + 𝑖) + 𝑛] + 𝑛𝑊(0) + (1 − 𝑛)𝑊(0,0) 

 

Type Ib: Splitting, 𝑑 ∈ 𝜋(0)𝐴 ഀమషഀ, 𝜋(𝑖)𝐴 ഀమషഀ൨ 
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𝑉ூ(𝑑) = (1 − 𝜎) ቊ(1 − 𝑛)ൣ𝜒(0)ఈ + 𝑊൫0, 𝑑 − 𝜋(0)൯൧+ 𝑛 ቈ− 𝜁(0)ଶ2 + 𝑊(𝑑 + 𝜈(0) )ቋ+ 𝜎 ቊ(1 − 𝑛) ቈ𝜒(𝑖)ఈ𝐴 ఈଶିఈ + 𝑊 ቆ𝜋(𝑖)𝐴 ఈଶିఈ − 𝑑, 0ቇ+ 𝑛 ቈ− 𝜁(𝑖)ଶ2 𝐴 ఈଶିఈ + 𝑊 ቆ𝑑 + 𝜈(𝑖)𝐴 ఈଶିఈ ቇቋ 

Following the same method as for Type Ia, we find: 

𝑉ூ(𝑑) = (1 − 𝑛)ଶିଶఈଶିఈ (𝑛𝛼) ఈଶିఈ (1 − 𝜎) ቀ1 − 𝛼2ቁ + 𝜎 1 − 𝛼 + 𝛼2(1 + 𝑖)൨ ቆ 𝐴1 + 𝑖ቇ ఈଶିఈ+ 𝑑 [𝜎(1 − 𝑛)(1 + 𝑖) + (1 − 𝜎(1 − 𝑛))] + 𝑛𝑊(0) + (1− 𝑛)𝑊(0,0) 

 

Type Ic: Never borrow, d ≥ 𝜋(0)𝐴 ഀమషഀ 

𝑉ூ(𝑑) = (1 − 𝜎) ቊ(1 − 𝑛)ൣ𝜒(0)ఈ + 𝑊൫0, 𝑑 − 𝜋(0)൯൧+ 𝑛 ቈ− 𝜁(0)ଶ2 + 𝑊(𝑑 + 𝜈(0) )ቋ+ 𝜎 ቊ(1 − 𝑛) ቈ𝜒(0)ఈ𝐴 ఈଶିఈ + 𝑊 ቆ0, 𝑑 − 𝜋(0)𝐴 ఈଶିఈቇ+ 𝑛 ቈ− 𝜁(0)ଶ2 𝐴 ఈଶିఈ + 𝑊 ቆ𝑑 + 𝜈(0)𝐴 ఈଶିఈ ቇቋ 

Following the same method as for Type Ia, we find: 

𝑉ூ(𝑑) = ቀ1 − 𝛼2ቁ (1 − 𝑛)ଶିଶఈଶିఈ (𝑛𝛼) ఈଶିఈ ቈ(1 − 𝜎) + 𝜎𝐴 ఈଶିఈ + 𝑑 + 𝑛𝑊(0) + (1− 𝑛)𝑊(0,0) 

 

Type IIa: Always borrow and ℓത only binds for 𝐴, 𝜋(𝑖) ≤ ℓത + 𝑑 < 𝜋(𝑖)𝐴 ഀమషഀ 
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𝑉ூூ(𝑑) = (1 − 𝜎) ቊ(1 − 𝑛)[𝜒(𝑖)ఈ + 𝑊(𝜋(𝑖) − 𝑑, 0)]+ 𝑛 ቈ− 𝜁(𝑖)ଶ2 + 𝑊(𝑑 + 𝜈(𝑖) )ቋ
+ 𝜎 ቐ(1 − 𝑛) ቈ𝑛𝐴(ℓത + 𝑑)(1 − 𝑛) ఈଶ + 𝑊൫ℓത, 0൯
+ 𝑛 ቈ− (1 − 𝑛)(ℓത + 𝑑)2𝑛 + 𝑊 ቆ𝑑 + (1 − 𝑛)(ℓത + 𝑑)𝑛  ቇቑ 

After some algebra we get: 

𝑉ூூ(𝑑) = (1 − 𝜎) ቀ 𝑛𝛼1 + 𝑖ቁ ఈଶିఈ (1 − 𝑛)ଶିଶఈଶିఈ 1 − 𝛼 + 𝛼2(1 + 𝑖)൨
+ (1 − 𝜎)𝑑 [(1 − 𝑛)(1 + 𝑖) + 𝑛]+𝜎(1 − 𝑛)ଶିఈଶ ൣ𝑛𝐴൫ℓത + 𝑑൯൧ఈଶ
+  𝜎 ቈ𝑛𝑑 − (1 − 𝑛)(1 + 𝑖)ℓത + (1 − 𝑛)(ℓത + 𝑑)2  + 𝑛𝑊(0) + (1− 𝑛)𝑊(0,0) 

Type IIb: 𝑑 ≥ 𝜋(𝑖), borrow and ℓത binds for 𝐴, 𝜋(𝑖) ≤ ℓത + 𝑑 < 𝜋(𝑖)𝐴 ഀమషഀ 

𝑉ூூ(𝑑) = (1 − 𝜎) ቊ(1 − 𝑛)ൣ𝜒(0)ఈ + 𝑊൫0, 𝑑 − 𝜋(𝑖)൯൧+ 𝑛 ቈ− 𝜁(𝑖)ଶ2 + 𝑊(𝑑 + 𝜈(𝑖) )ቋ
+ 𝜎 ቐ(1 − 𝑛) ቈ𝑛𝐴(ℓത + 𝑑)(1 − 𝑛) ఈଶ + 𝑊൫ℓത, 0൯
+ 𝑛 ቈ− (1 − 𝑛)(ℓത + 𝑑)2𝑛 + 𝑊 ቆ𝑑 + (1 − 𝑛)(ℓത + 𝑑)𝑛  ቇቑ 

𝑉ூூ(𝑑) = (1 − 𝜎)(𝛼𝑛) ఈଶିఈ(1 − 𝑛)ଶିଶఈଶିఈ ቀ1 − 𝛼2ቁ +𝜎(1 − 𝑛)ଶିఈଶ ൣ𝑛𝐴൫ℓത + 𝑑൯൧ఈଶ
−  𝜎(1 − 𝑛) ቈℓത + 𝑑2 + 𝑖ℓത + 𝛽𝑉ூூ(𝑑) 
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Type III: Always borrow and ℓത always binds, ℓത + 𝑑 <  𝜋(𝑖)𝐴 ഀమషഀ 

𝑉ூூூ(𝑑) = (1 − 𝜎) ቐ(1 − 𝑛) ቈ𝑛(ℓത + 𝑑)(1 − 𝑛) ఈଶ + 𝑊൫ℓത, 0൯
+ 𝑛 ቈ− (1 − 𝑛)(ℓത + 𝑑)2𝑛 + 𝑊 ቆ𝑑 + (1 − 𝑛)(ℓത + 𝑑)𝑛  ቇቑ
+ 𝜎 ቐ(1 − 𝑛) ቈ𝑛𝐴(ℓത + 𝑑)(1 − 𝑛) ఈଶ + 𝑊൫ℓത, 0൯
+ 𝑛 ቈ− (1 − 𝑛)(ℓത + 𝑑)2𝑛 + 𝑊 ቆ𝑑 + (1 − 𝑛)(ℓത + 𝑑)𝑛  ቇቑ 

After some algebra we get: 

𝑉ூூூ(𝑑) = 11 − 𝛽 ቊ(1 − 𝑛)ଶିఈଶ ൣ𝑛(ℓത + 𝑑)൧ఈଶ ቈ(1 − 𝜎) + 𝜎൫𝐴൯ఈଶ − (1 − 𝑛) ቆℓത + 𝑑2 + 𝑖ℓതቇቋ 

 


