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Electricity markets are considered to be the most volatile amongst commodity markets. 
The non-storability of electricity and the need for instantaneous balancing of demand and 
supply can often cause extreme short-lived fluctuations in electricity prices. These 
fluctuations are termed price spikes. In this paper, we employ a multiclass Support Vector 
Machine (SVM) model to forecast the occurrence of price spikes in the German intraday 
electricity market. As price spikes, we define the prices that lie above the 95th quantile 
estimated by fitting a Generalized Pareto distribution in the innovation distribution of an 
AR-EGARCH model. The generalization ability of the model is tested in an out-of-the-
sample dataset consisting of 4080 hours. Furthermore, we compare the performance of our 
best SVM model against Neural Networks (NNs) and Gradient Boosted Machines 
(GBMs). 
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1    Introduction 

In wholesale electricity markets, settlement prices are determined at the intersection between 
the cumulative demand and supply on an hourly and daily basis. Due to the lack of cost effected 
storability, unexpected excesses or shortages in demand or supply are reflected almost 
instantaneously on the electricity prices, leading them into extreme levels. These extreme 
instantaneous changes in the price levels are termed “price-spikes” in view of their shape in the 
data series graph: a sequence of sharp upward and downward movements shaped like a spike. 
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Although these events are short-lived, they can result in significant losses for both producers 
and retailers; a spike forecasting model can mitigate the risk for both sides. 

This paper deals with price-spikes that occur in the German electricity market and how they 
can be forecasted, giving a brief view of the market structure and the basic factors affecting the 
dynamics of the electricity prices. The German electricity market is the most deregulated, 
liberalized in EU, largest and most competitive in Europe. Yet, the most volatile, since the entry 
of the renewable energy sources (RES) in the energy grid, that are causing often imbalances 
between demand and supply. The German energy exchange market is divided in two centralized 
control organizations, the European Energy Exchange (EPEX) spot market where wholesalers 
can buy or sell power in daily, hourly, and quarterly basis, and the European Energy Exchange 
(EEX) market for derivatives. Focusing in the EPEX Spot market, electricity pricing is a more 
complex task than the pricing of other commodities: electricity prices are affected by more 
factors, not all of them controlled by the market forces. These factors can be exogenous, such 
as, the prices of fossil fuels imports, exchange rates, weather conditions, unexpected shortages 
or excesses in power supply, and the introduction of the RES that are highly depended from the 
weather conditions (Sensfuß et al. 2008, Fanone et al. 2013, He et al. 2013), or endogenous as 
the multiple daily, weekly, and yearly periodicities and the evolution of the price dynamics 
(autocorrelation and volatility clustering). Ιn the supply-side, the marginal cost of electricity 
production grows exponentially when the total produced electricity output approaches the full 
capacity of the power plants (Caves et al., 2000; Geman & Roncoroni, 2006; Boogert & Dupont, 
2008).  

Empirical findings from various electricity markets suggest that electricity prices share 
some common characteristics such as mean reversion, long memory, complex seasonality 
patterns, price jumps, and price spikes. Based on these characteristics, a wide class of 
Εconometric and Machine Learning (ML) models have been employed to describe the 
electricity market price spikes. 

Jump-Diffusion models offer an analytical expression of the electricity price dynamics, and 
thus are often used for pricing and valuation of Options and Forward contracts. Barlow (2002) 
examine the ability of Jump-Diffusion models to capture the mean-reversion and the price jump 
behavior of the prices in the electricity markets of Alberta and California. Cartea & Figueroa 
(2005), Seifert & Uhrig-Homburg (2007), and Mayer et al. (2012), offer an extended version 
of Jump-Diffusion models by including a price spike term in their models. As Barlow (2002) 
stated, the main disadvantage of the Jump-Diffusion models is the difficulties arisen from the 
need to carefully select and calibrate all the parameters that represent the different price 
dynamics. 
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Markov Switching Regime (MSR) models is another class of econometric models that have 
been proposed to describe the electricity price dynamics. In MSR models, electricity price 
dynamics are assumed to be governed by different stochastic processes – some states and a 
transition mechanism that defines the probability to switch among these states. A common 
setting to model electricity prices is to use two or three regimes MSR models to capture the 
mean-reverting behavior of the prices, high-low volatility regimes, and price spikes. Huisman 
& Mahieu (2003), De Jong (2006), Haldrup & Nielsen (2006), Mount et al. (2006), Kanamura 
& Ohashi (2008), and Janczura & Weron (2010), proposed three regimes MSR models to 
capture the short-burst behavior of the price spikes. The three regimes of the MRS models 
represent the mean-reversion behavior of the prices, the other two representing the “Up” and 
the “Down” movement of the price spikes, provided that the “Down” regime comes 
immediately after the “Up” regime. 

Statistical learning methods were also used to forecast the occurrences of price spikes. 
Christensen et al. (2012) use an Autoregressive Conditional Hazard (ACH) model and Probit 
classification model to forecast the occurrences of the price spikes in the half-hour Australian 
National Energy spot market. Hagfors et al. (2016) develop a Logit model to forecast the 
occurrences of positive and negative price spikes in the hourly EPEX-spot market. 

Machine Learning (ML) methods are known for their ability to capture non-linear dynamics 
and complex patterns from the data. The requirement for minimal assumptions regarding the 
underlying processes and the excellent forecasting performance for both classification and 
regression tasks made the ML methods attractive for many scientific areas. Samitas and 
Armenatzoglou (2014) examine the ability of the Regression Trees (RTs) and a 2-Regime MSR 
to capture the extreme behavior of the electricity prices in New England’s spot market. The 
empirical findings show that the RTs outweighs MSR models in most cases. Dev & Martin 
(2014) and Sandhu et al. (2016) perform a similar task for the Australian National Energy and 
Ontario electricity Spot markets using NNs. Binary classifiers have been used to forecast the 
occurrences of price spikes in several electricity markets. Zhao et al. (2007) deploy a binary 
classifier based on SVMs to forecast the occurrence of the price spikes in the Australian 
National Energy Spot market. By the same token Amjady & Keynia (2008) and Fragkioudaki 
et al. (2015) employ Probabilistic NNs and Decisions Trees respectively for the PJM and Nord 
Pool Spot markets. 

In this paper, a multiclass SVM model is used to forecast the occurrences of the positive 
and negative prices, along with normal prices in German intraday European Power Exchange 
(EPEX) Spot electricity market. Some of the advantages of the SVM models are that: a) they 
work well even with non-linear problems by choosing an appropriate kernel function and 
projecting the data into higher dimensions where we can efficiently approach any complex 
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problem, b) unlike NNs, the SVM is not solved for local optima, c) they perform relatively well 
to high dimensional data, d) the risk of over-fitting is minimized in the cross-validation process. 
The price spikes are identified under the assumption that the normal prices follow a mean-
reverting process, while the price spikes lying in the tails of the price distribution follow a 
Generalized Pareto Distribution (GPD). 

2    Methodology Explanation 

The employed methodology has two parts. In the first part, we follow the Byström’s (2005) 
two-step method to identify and analyze the price spikes from the intraday EPEX Spot market 
in Germany. In the second part, we tackle the multiclassification problem in order to forecast 
the occurrence of the price spikes and the normal prices. 

Byström (2005) investigated the occurrences of price spikes under the framework of the 
Extreme Value Theory (EVT). In particular, the Peak-Over-Threshold (POT) method was 
selected to distinguish these short-lived extreme fluctuations from the normal prices. The price 
spikes in the POT method are treated as excesses over a sufficient high threshold. Under the 
condition that prices are IID and stationary, the resulted exceedances from the POT method 
follow a Generalized Pareto Distribution (GPD), while their occurrence follow a Poisson point-
process. 

To eliminate the time-dependent components from the electricity prices that violate the 
stationarity and IID assumption, an AR-GARCH model was employed by Byström as a pre-
filtering method. The AR part of the proposed model is set to eliminate the linear 
autocorrelation effects in the error term and the multiple seasonalities from the electricity 
prices, while the GARCH terms are focused on the heteroscedasticity effects in the price-series, 
thus, eliminating non-linear processes in the error term. 

In the proposed methodology, the Byström’s scheme is improved by using the Exponential 
GARCH, proposed by Fong Chan & Gray (2006), that is able to capture the asymmetric effects 
of the price shocks in the conditional volatility. 

3    Descriptive Statistics Analysis for the EPEX Spot Market 

The data from the intraday EPEX 1spot market covers the period between January 1st, 2013, 
and June 11th, 2014. In total, 12,648 hourly observations of electricity prices quoted in euros 
per MWh are used in our sample for this analysis. Before the development of the statistical 
analysis, a logarithmic transformation was applied to the data. The existence of negative prices 
in the data sample requires first to shift the prices from the domain ℝ to the domain (0, +∞), 
before applying the logarithmic transformation to the prices. 

 
1 European Power Exchange https://www.epexspot.com/ 
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Table 1 reports some basic descriptive statistics for the shifted log-transformed electricity 
prices. The negative skewness and the high kurtosis indicate that electricity prices are not 
normally distributed. The non-normality assumption is also supported by the QQ plot in Figure 
1, where the data noticeably deviate from the normal distribution. The 𝑄 and 𝑄  values in Table 
1 denote the statistical values of the Ljung-Box test for the shifted log-transformed, and the 
squared shifted log-transformed electricity prices. The extremely high values of the Ljung-Box 
statistics for 12th and 24th hours refer to the “off” and “on” peak periods within the day and the 
daily seasonality of electricity prices. The squared values of the Ljung-Box test, 𝑄 (12) and 𝑄 (24), can be considered an indication of the existence of heteroscedasticity in the electricity 
prices. 
A clearer view regarding the existing seasonalities in the electricity prices is given in Figure 2, 
with the dominant cycles in the periodogram corresponding to 12 h (half day), 24 h (daily), and 
168 h (weekly) periods.  

The stationarity assumption is the last requirement that must be fulfilled before deploying 
the AR-EGARCH model, and eventually, the POT method. The Phillip-Perron (PP), the 
 
Table 1. Descriptive Statistics for the Shifted log Transformed Hourly EPEX Spot Prices  

Mean Median St. Dev Skewness Kurtosis 𝑄(12) 𝑄(24) 𝑄 (12) 𝑄 (24) 

0.000 0.003 0.120 -97.79 14090 41306 62085 13325 14294 

 

Figure 1. QQ Plot: Comparison of the Actual Data Distribution Against the Normal 
Distribution 
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Augmented Dickey-Fuller (ADF), and the Kwiatkowski–Phillips–Schmidt–Shin) (KPSS) are 
selected as well-known unit-root tests to examine whether the log-transformed electricity price 
series is stationary. According to the p-values in Table 2, the null hypothesis is rejected for the 
PP and ADF unit-root tests supporting the stationarity of the log-transformed series. The KPSS 
test is used under the null hypothesis that the log-transformed electricity prices are level 
stationary (log-prices oscillated around a constant mean). The reported p-value from the KPSS 
test rejects the hypothesis of stationarity at the level 5%, and thus, in this case, the time series 
assumed to be non-stationary. 

Figure 2. Power Spectral Density for the Shifted log Transformed Electricity Price Series 

 
 

Table 2. ADF, PP, and KPSS Unit-Root Tests for the log-Transformed Prices 

 ADF test  PP test  KPSS 
test 

 

Critical 
Values 

Test 
Statistic

Critical 
Values

Test 
Statistic

Critical 
Values 

Test 
Statistic 

1% level -2.57 -12.36 -3.43 -66.74 0.74 0.95 
5% level -1.94  -2.86 0.45  

10% 
level 

-1.62  -2.56  0.35  

 p-values
0.00 0.00 0.01 
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4    Time Dependency Modeling 

Empirical findings from Section 3 indicate the presence of multiple seasonalities and 
heteroskedasticity in electricity prices. Eliminating time-dependencies from the electricity 
prices is a prerequisite for the Peak-Over-Threshold (POT) method that assumes that time series 
is an IID. Therefore, an AR-EGARCH model is employed as a filter method aiming to remove 
these time-dependencies from the electricity prices. The AR terms in the model aims to 
eliminate the 12 h, 24 h, and 168 h seasonalities, including the hourly dependencies from the 
electricity prices. A simple EGARCH(1,1) model is selected to eliminate the conditional 
volatility from the electricity prices (Nelson, 1991). 

The mathematical form of the AR-EGARCH model is presented below: 𝑙 =  𝜑 + 𝜑 𝑙 + 𝜑 𝑙 + 𝜑 𝑙 + 𝜑 𝑙 + 𝜀  

(1) ln(𝜎 ) = 𝜔 + 𝛽 ln(𝜎 ) + 𝛾 𝜀𝜎 + 𝛼 |𝜀 |𝜎 − 2𝜋  

Besides the 𝜑  parameter which denotes the intercept, the rest of the 𝜑  parameters, with 𝑖 =1, 12, 24, 168 , are used to capture the seasonal patterns in the electricity prices. The error 
term 𝜀 , in the first part of Equation 1, equals to 𝜎 𝜂 , where 𝜂  is a Student’s t distributed IID 
random variable defining the error, and 𝜎  is the conditional variance of 𝜀 . The second part of 
Equation 1 represents the EGARCH model of the conditional volatility. The 𝜔 parameter is the 
intercept of the conditional volatility, and 𝛼, 𝛽, 𝛾 are the coefficients related to the evolution of 
the current conditional volatility given the past conditional volatilities. 

The reported AR coefficients in Table 3 suggest a positive correlation between the current 
and the related seasonal components.  

Since the sum of the AR coefficients is less than unity, ∑ 𝜑 ≈ 0.83, this translates as the 
long-term tendency of electricity prices to return to the mean. The high value of the 𝜈 parameter 
(shape parameter for the Student’s t distribution) suggests that the electricity prices distribution 
rather belongs to a “heavily” tailed distribution family. The positive value of the 𝛾 parameter 
in the EGARCH model implies that positive shocks in the electricity prices have a bigger impact 
in the conditional volatility than the negative ones. 

Standardized residuals fulfil the IID requirement of the POT method better than the raw 
residuals and thus considered as more adequate for this analysis. Based on the Ljung-Box values 
in Table 1 and Table 3, the achieved reduction of the autocorrelation effects in electricity prices  
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Table 3. AR-GARCH Estimated Coefficients and Descriptive Statistics for the 
Standardized Residuals 

Coefficients Estimates Robust Standard Rrrors 𝜑  0.000 0.000 𝜑  0.1075  0.009 𝜑  0.042 0.003 𝜑  0.3195 0.005 𝜑  0.3608 0.006 𝜔 -3.129 0.142 𝛼 0.093 0.022 𝛽 0.613 0.018 𝛾 0.701 0.029 𝜈 3.977 0.098 
Mean 0.034 0.000 

Median -0.043 -0.002 
St. dev 1.138 0.374 

Skewness -4.781 -104.7 
Kurtosis 356.85 1163.78 𝑄(12) 186.39 328.88 𝑄(24) 402.85 587.12 𝑄 (12)∗∗ 115.48 2510.8 𝑄 (24)∗∗ 558.79 2710.4 

 
after applying the AR-EGARCH model is ~99% for both the benchmark points (12 h and 24h). 
Similarly, the achieved reduction for the heteroskedasticity for the same benchmark points is 
96% and 99%. 

5    Peak-Over-Threshold method: Tail’s quantile estimations 

In POT method, the separation of the extreme fluctuations from the normal ones are made by 
defining a high threshold 𝑢 , over which the exceedances can be fitted using the GPD. 
Considering that the residuals 𝑅 from the AR-EGARCH model follow an IID and stationary 
process, then the exceedances over a threshold 𝑢 are defined as 𝑦 = 𝑅 − 𝑢. The distribution of 
the exceedances above threshold 𝑢  are assumed to follow an unknown excess distribution 𝐹 (𝑦) that is given by 

 𝐹 (𝑦) = 𝑃𝑟(𝑅 − 𝑢 ≤ 𝑦|𝑅 > 𝑢) = 𝐹 (𝑢 + 𝑦) − 𝐹 (𝑢)1 − 𝐹 (𝑢)  (2) 
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The threshold 𝑢 acts as a cut point which separates the parent distribution 𝐹𝑅 from the excess 
distribution 𝐹 . Balkema and de Haan (1974) and Pickands (1975) show that if the threshold 𝑢 
is high enough then the 𝐹  can be approximated by a GP distribution, 
 

 𝐺 , (𝑦) = 1 − 1 + 𝜉𝛼 𝑦 ⁄ 𝑖𝑓 𝜉 > 01 − 𝑒 𝑖𝑓 𝜉 = 0  (3) 

 
The shape parameter 𝜉 defines the asymptotic decay of the tail, that is, the “heaviness” of the 
tail, while the 𝛼 parameter is the scale parameter for the GP distribution. The tail decay is 
determined as Pareto-type when 𝜉 > 0 , and exponential when  𝜉 = 0 . The cumulative 
distribution for the data points above the threshold 𝑢 can be written as follows, 
 
 𝐹 (𝑢 + 𝑦) = 1 − 𝐹 (𝑢) 𝐹 (𝑦) + 𝐹 (𝑢) (4) 

 
The right side of the Equation 4, can be simplified by replacing the function 𝐹𝑅(𝑢) with (𝑛 −𝑁 𝑛), where 𝑛 denoting the total number of observations, and 𝑁  the number of observations 
above threshold 𝑢, while the 𝑢 + 𝑦 is rewritten as x. The final form of the simplified formula 
is presented below. 
 

 𝐹 (𝑥) = 1 − 𝑛𝑁 1 + 𝜉 𝑥 − 𝑢𝛼 ⁄
 (5) 

 
The estimation of the shape index 𝜉, and the scale parameter 𝛼 can be done using the maximum 
likelihood method in Equation 5. The quantile 𝑞  for a given probability can be now derived 
by inverting the 𝐹𝑅(𝑥): 
 

 𝑞 = 𝑢 + 𝛼𝜉 𝑛𝑁 𝑝 − 1  (6) 

 
With the standardized residuals from the AR-EGARCH model being closer to an IID process, 
the POT method can finally employed in order to extract the extreme prices from the price 
series. The thresholds 𝑢  (left tail) and 𝑢  (right tail) that separates the negative and positive 
price spikes from the normal prices are selected using the Hill plots (Hill, 1975). The estimated 
GPD parameters, given the thresholds 𝑢  and 𝑢 , are presented in Table 4. The positive values 
of the shape indexes 𝜉  and 𝜉  indicate the existence of “heavy” tails on the both sides of the 
distribution. The goodness-of-fit of the modeled left and right tails are depicted in Figure 3. 
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Table 4. Estimated Parameters for the GPD and Tail Quantile Estimations. 

Generalized Pareto Left tail Right tail 

Shape 𝜉 0.208 0.385 
Tail index  4.81 2.60 

Scale 𝛼 0.281 0.346 

Threshold u 1.09 1.19 

Tail quantiles 𝑃(0.95) 1.17 1.95 

Num. of Spikes 708 333 

 

Figure 3. The Unconditional Probability of an Exceedance to Follow the GPD for the Left 
and the Right Tail of the Standardized Residuals Distribution.  

 

 
In both cases, the exceedances are closely following the GPD, except one value in the left tail 
which deviates significantly from the regression line. 

The primary assumption in this paper is that the price spikes are lying above the 95th quantile 
of the GPD. The negative and the positive price spikes represent 5.6% and 2.6% of the sample, 
with the total number of negative spikes being 708 and the corresponding positive spikes being 
333. 

The occurrences of the negative and the positive price spikes seems to follow different 
patterns (Figure 4). Positive spikes are more likely to occur between 5 a.m. - 6 a.m., and 4 p.m. 
- 6 p.m. In contrast, negative spikes are more likely to occur after the sunset, between 7 p.m. 
and 5 a.m., when the economic and the human activity are in decline, and between 9 a.m. and 
2 p.m. 
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Figure 4. Occurrences of Negative and Positive Price Spikes within the Day. 

 
 

6    Support Vector Machines 

Support Vector Machines is a supervised machine learning technique for binary classification 
developed by Cortes and Vapnik (1995). The key idea in the SVMs is to determine a linear 
separating hyperplane into the input space that preserves the maximum distance between the 
two classes. SVMs can expand to non-linear classification problems by projecting the data from 
the input space to a higher dimensional space (feature space) where the two classes are linearly 
separable. The projection of the data into higher dimensional spaces can be made explicitly or 
implicitly via kernel functions. The optimization problem in SVMs is expressed in convex form 
ensuring that the optimal solution can be reached. Also, SVMs can be extended to multi-
classification tasks by splitting the multi-class problem into ( )  binary classification 

problems. 
Considering a set of input vectors 𝐱 ∈ ℝ  with 𝑖 − 1, … , 𝐼, belonging to two classes (output 

targets) labelled 𝑦 ∈ −1, +1 . If the two classes are linearly separable in the input space, then 
the separator can be defined as 𝑓(𝐱) = 𝐰 𝐱 − 𝑏     (7) 
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subject to (𝑦 (𝐰 𝑥) − 𝑏) ≥ 1 − 𝜉    (8) 

in such way that 𝑦 𝑓(𝐱 ) > 0 ∀𝑖. In Equation 8, 𝐰 denotes the weight vector, 𝑏 denotes the 
bias, and 𝜉 is a non-negative slack variable to encounter the erroneously classified instances. 
The optimization problem can be defined as 
 

 𝑚𝑖𝑛𝐰, , 12 ‖𝐰‖ + C 𝑦 (𝑥 𝑤 + 𝑏) − 1 + 𝜉  (9) 

 
The first term of the Equation 9 represents the maximal margin of the decision boundary, while 
the second term represents the minimal error between the output 𝑦  and the prediction 𝑓(𝐱 ). 
Τhe parameter C in the same side of the equation represents the trade-off between the maximal 
margin and the minimization of the training error. A more convenient form of the Equation 9 
is given by solving the dual Lagrangian problem 
 

 ℒ(𝑎) = 𝑚𝑎𝑥𝒂 𝑎 − 𝑎 𝑎 𝑦 𝑦 𝑥 , 𝑥  (10) 

subject to 0 ≤ 𝑎 ≤ C, ∀𝑖,  

 𝑎 𝑦 = 0 (12) 

 
where the parameter 𝑎  is a non-negative Lagrangian multiplier, that satisfying the Karush–
Kuhn–Tucker optimization conditions. The dot product ⟨∙⟩ , in Equation 10, denotes the 
similarity measure between the points in the input space. 

Depending only on the dot product to estimate the optimal solution, SVMs have the 
flexibility to generalize in different metric spaces. This property can be beneficial in cases 
where the two classes are not linearly separable in the input space. A convenient method is to 
use a non-linear mapping function, Φ: ℝ → ℝ , to project the data from the input space to a 
higher dimensional space where the two classes are linearly separable. The embedding of the 
non-linear mapping can be done easily by substituting 𝐱 with Φ(𝐱) in Equation 10. In SVMs, 
the notion of similarity measures can be further generalized to arbitrary high dimensional spaces 
by introducing the Kernel methods. Kernel method provides a set of different measures that can 
compute the dot product without the exact knowledge of the dimensional space. A very 
common non-linear Kernel in SVMs is the Radial Basis Function (RBF), 
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 𝐾 𝐱 , 𝐱 = exp −𝛾 𝐱 − 𝐱 , 𝛾 > 0 (13) 

where 𝛾 is an internal tuning hyperparameter of the RBF kernel. For more details see Hofmann, 
Schölkopf, and Smola (2008). 

6.1    Imbalanced Classes 

The regularization factor 𝐶 in error tolerant SVMs controls the margin width between the two 
classes and the distance of the misclassified points from the hyperplane. In case of imbalanced 
classes, where the data in two classes are skewed, the optimal hyperplane is also displaced over 
the majority class. SVMs offer a straightforward solution by introducing two different cost 
parameters for the two classes. The objective function of the optimization problem can be 
rewritten as follows: 
 

 min𝒘, , 12 ‖𝐰‖ + 𝐶 𝜉 + 𝐶 𝜉  (14) 

 
subject to 

 𝐰 𝐱 − 𝑏 > 0 𝑓𝑜𝑟 𝑦 = +1 𝐰 𝐱 − 𝑏 < 0 𝑓𝑜𝑟 𝑦 = −1 (15) 

 
in such as 𝑦 𝑓(𝐱 ) > 0 ∀𝑖. The 𝐶  and 𝐶  are the different cost parameters for the two classes. 

Assigning a bigger misclassification penalty to minority class leads to a solution where the 
errors of the minority class have bigger impact in the optimal solution. 

6.2    Overfitting 

In a machine-learning model, training may result in overfitting when the model produced is 
perfectly fitted to the data sample, instead of the true underlying relationship that describes the 
phenomenon. Usually, overfitting results in high performance on the training step and a 
significant accuracy drop on the testing step. Overfitting can be avoided using a k-fold cross 
validation procedure: the dataset is cut into k subsets of equal size, and the training-testing steps 
are repeated k times. In each turn, a different subset is used as the test dataset while the rest k-
1 subsets are grouped together to form the training dataset. The procedure is called dataset 
folding. The model is evaluated by averaging the performance of the model on every fold. A 
graphical representation of a 3-fold cross validation procedure is depicted in Figure 5. The 
model’s generalization ability is tested using an out-of-sample set (a subset that did not 
participate in the cross-validation procedure). 
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Figure 5. Overview of a 3-fold Cross Validation Scheme. 

 
 

6.3    Performance Measures 

For imbalanced classification problems, simple accuracy measures tend to benefit the majority 
class over the minority classes. In contrast, Precision, Recall, F1-Score, and G-Mean accuracy 
scores are employed as more appropriate methods for imbalanced classification problems. The 
confusion matrix in Table 5 describes the conditional state of every prediction made by a binary 
classifier. The vertical axis represents the actual states of the classes, while the horizontal axis 
represents the forecasted states. Given the conditional states, the Precision and Recall can be 
calculated as follows 

Table 5. Confusion Matrix for Binary Classification Problem 

 Classified as Positive Classified as Negative 

Real positive True positive (tp) False negative (fn) 

Real negative False positive (fp) True negative (tn) 

 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑡𝑝𝑡𝑝 + 𝑓𝑝 (16) 

 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑡𝑝𝑡𝑝 + 𝑓𝑛 (17) 
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The 𝐹 -score and the geometric mean (G-Mean) are usually adopted to integrate Precision and 
Recall to a single performance measure. The mathematical expressions of 𝐹 -score and G-mean 
are defined as follows 

 𝐹  𝑆𝑐𝑜𝑟𝑒 = (𝛽 + 1)𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑐𝑎𝑙𝑙𝛽 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙  (18) 

 𝐺 − 𝑀𝑒𝑎𝑛 = √𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑐𝑎𝑙𝑙 (19) 

Where 𝛽  parameter defines the relationship between precision and recall, when 𝛽 > 1  the 
impact of recall in 𝐹 -score measure is higher than precision, the opposite holds when 𝛽 < 1. 
In the case where 𝛽 = 1 , the 𝐹 -score can be considered as the harmonic mean between 
precision and recall. 

7    Artificial Neural Networks 

The basic idea behind Neural Networks (NNs) is to imitate how the brain neurons operate. NNs 
are organized in layers committed to perform different functions. Every layer is composed by 
a finite number of nodes, with each node being fully connected only to the nodes of the other 
layers. Schematically, the first layer denotes the input variables, and the last layer denotes the 
output of the decision function, (in our case the choice of class given an input vector). The 
middle layers, or hidden layers, act as a non-linear transformation mapping into the input space. 
Considering the number of nodes in every hidden layer and a proper non-linear mapping, NNs 
can approximate any non-linear function. Τhe output of each hidden node 𝑧  can be estimated 

as follows 
 
 𝑧 = 𝜓(∑ 𝑤 𝑧 + 𝑏 ) (20) 

 
In Equation 20, the value of the activation function z of the jth neuron in the lth layer is estimated 
as the weighted sum of the output from the previous activation functions zi in the (l-1) layer. 
The 𝜓 function denotes the linear or non-linear transformation of the weighted sum. According 
to this formula, the objective in the training phase is to find those weights who reproduce better 
the output value. The training weights are derived through a ‘back-propagation” iterative 
method (Rumelhart, Hinton, and Williams, 1986) by updating the weights of the nodes layer-
by-layer until the estimated output minimizes the total errors. 
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8    Gradient Boosted Machines 

GBMs is a supervised machine learning method that has been successfully implemented in 
many classification and regression tasks. For instance, Chang et al. (2016) use GBMs to assess 
the credit risk for different financial institutions, and Mustika et al. (2019) use multiclass GBMs 
to forecast the risk in the life insurance. In GBMs, the final model emerges as an ensemble of 
a large set of weak learners, usually decision trees of fixed size, which form a strong learner. 
The “Boosted” term implies an iterative learning process wherein each step a weak learner is 
added to slightly improve the overall performance of the model. In this paper, an extended 
version of GBMs developed by Chen & Guestrin (2016), called Extreme Gradient Boosted 
Machines (XGBoost), is used to perform the forecasting of positive and negative price spikes. 
The key difference between GBMs and XGBoost is that the latter introduces the regularization 
parameter Ω(𝑓) that controls complexity of the model. 
 

 𝐿(𝜃) = 𝑙( 𝑦 , 𝑦 ) + Ω (𝑓 ) 
(21) 

 𝑤ℎ𝑒𝑟 Ω(𝑓) = 𝛾𝛵 + 12 𝜆‖𝑤‖  

The L function in Equation 21, is a differentiable loss function measuring the difference 
between the actual values 𝑦  and the forecasted values 𝑦 . In the complexity control function Ω(𝑓), 𝛾 is a regularization parameter that controls the number of leaf’s attached in each weak 
learner 𝑓(𝑥), and 𝜆 is a penalize term for the weights that controls the smoothness of the weak 
learner. 

9   Multiclass SVM Forecasting Performance 

The findings from the Extreme Value Theory (EVT) analysis indicate the existence of “heavy” 
tails on both sides of the filtered electricity prices distribution. The derived positive, and 
negative price spikes and the normal cases are used to design an SVM multiclassification 
problem. The proposed SVM model aims to perform one hour-ahead forecasting using as input 
variables the past values of the log-transformed electricity prices, along with a set of 
explanatory variables. In addition to the explanatory variables, a set of dummy variables that 
simulate the 24 hours of the day are also included in the input variable set.  

The available input variables set with the corresponding lags are reported in Table 6. The 
electricity demand and supply data are obtained from the four Transmission System Operators 
(TSOs): 50Hertz GmbH, Amprion GmbH, Tennet GmbH, and TransnetBW GmbH, which are 
responsible for the distribution of electricity and for balancing the demand and supply between 
the producers and consumers.  
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Table 6. List of Input Variables 

Variable name Lags 
Electricity prices  

(log-prices)
24 

Vertical load (×4) 24
Wind in-feed (×4) 24
Solar in-feed (×4) 24
Total Vertical load 24
Total wind in-feed 24
Total solar in-feed 24

Net exports 24
Dummy Hours -

 
The input variable Vertical Load closely approximates the generated load by the conventional 
generation units (i.e. coal, gas, and nuclear), excluding the in-feeds from wind and solar power 
units (Wagner, 2014). Both Wind and Solar in-feed are related to the electricity production 
from the RES. Net Exports or Imports correspond to the total amount of the exchanged 
electricity between Germany and the neighbor countries. Additionally, total vertical load and 
total wind and solar in-feed are included in the input variable set. 

9.1    Tuning and Evaluation of the SVM Hyperparameters 

The RBF kernel is selected as a robust non-linear kernel function for the SVM model that is 
capable to efficiently model the complex relations between the data. In SVMs, the parameter 
space is defined by the RBF hyperparameter 𝛾 (Equation 13), and the regularization parameter 𝐶. The optimal set of parameters 𝐶 × 𝛾 are determined through a Coarse-to-Fine grid search 
method in coordination with a 10-fold Cross-Validation procedure. The imbalanced classes 
problem introduces an extra layer of complexity in the final solution. SVMs provide a trivial 
solution that incorporates different weights for each class (Equation 14) that aim to mitigate the 
effect of the majority class in the determination of the classification hyperplane. 

9.2    Feature Selection Procedure 

The rule-of-thump in Machine Learning methods dictates to keep 80% of the data sample for 
the training purposes, and the remaining 20% to test the generalization ability of the model in 
the unknown data. In the training phase, a total length of 1200 observations, between November 
2, 2013, and December 22, 2013, are used to find the optimal set of the model’s hypermeter, 
and in the same time, to select the best set of the input variables that gives the highest 
forecasting score.  
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Table 7. Highest Forecasting Scores for the Selected SVM Models 

 Added variable Lags 𝑭𝟏-Score G-Mean Precision Recall 
Step 1 Log-prices 7 0.70 0.70 0.81 0.62 
Step 2 Vertical load (TransnetBW) 1 0.72 0.72 0.79 0.66 
Step 3 Total Wind in-feed 3 0.77 0.78 0.76 0.78 

 
The adopted feature selection method involves an inflated procedure where the best variable 
set is expanded by testing all the available input variables successively. In this procedure, the 
rejection criterion for a candidate variable is whether it increases the in-sample accuracy. Then, 
the generalization ability of the SVM models is tested using a total length of 240 unknown data, 
covering a period from December 23, 2013, to January 2, 2014.  

The feature selection procedure starts by locating the optimal number of the lags for the 
shifted log-transformed electricity prices, and subsequently by expanding the input set with the 
explanatory variables. The final input set after the successive steps of the feature selection 
procedure is presented in Table 7, with the last step representing the SVM model with the 
highest forecasting scores. 

The SVM model derived from the first step of the feature selection procedure resembles a 
seven-order AR(7) autoregressive process. The selected explanatory variables imply that the 
demand data from TransnetBW TSO area and the Total Wind in-feed have positively affected 
the overall forecasting accuracy of the SVM model. The overall 𝐹1-Score 0.77 and G-Mean 
score 0.78, indicates that the model can provide satisfactory forecasts regarding the occurrence 
of the price spikes. 

9.3    Rolling Window Evaluation 

To further investigate the ability of the SVM model to sufficiently forecast the occurrences of 
the price spikes, a rolling window evaluation method is introduced. In every step, the models 
are re-trained and re-evaluated in the unknow data set by shifting both the train and the out-of-
sample test set 240 hours. In total, the proposed SVM model is re-trained and tested in the Out-
of-Sample data 17 times. The overall length of the Out-of-Sample data covers a period from 
January 2, 2014, to June 11, 2014, or 4080 hours. 

9.4    Empirical Results 

Besides the proposed multiclass SVM, two additional ML models are introduced to serve as 
benchmark models. A two-layer NN equipped with a hyperbolic tangent (Tanh) as non-linear 
activation function, and an Extreme Gradient Boosted machines (XGBoost) model. An inflated 
feature selection method similar to the SVMs adopted for NNs models. In the case of the 
XGBoost models, a different feature selection method was selected.  
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Figure 6. Average 𝐹 -Scores for the 17 Test Periods 

 

In XGBoost models, every input variable is checked and ranked for its contribution to the 
forecasting performance of the model. The final feature selection made by choosing the top 
fifteen input features with the most significant contribution in the forecasting score. The 
resulted 𝐹 -scores indicate that the SVM models surpasses both XGBoost and NN-2L based 
models in every test period. In particular, the 𝐹 -Scores for the SVM model range from a 
minimum of 0.56 to a maximum of 0.79. In comparison, the lowest and the highest achieved 𝐹 -scores for the NN-2L are 0.56 and 0.42, respectively. The XGBoost models produced the 
lowest 𝐹 -scores compared to the SVMs and the NNs models, with the achieved 𝐹 -scores 
range from 0.31 to 0.62. 
A closer look at the per-class accuracies in Table 8 indicates that both NN-2L and XGBoost 
forecasting models are often incapable of forecasting the occurrences of price spikes. The 
underlined per class accuracies denote the times in which the models failed to pass the accuracy 
threshold of 0.50. In overall, the multiclass SVM model fails to cross the 0.50 limit only once, 
with the average per class accuracy be 0.86 for the normal prices, 0.75 for the positive spikes, 
and 0.74 for the negative spikes. In contrast, the NN-2L model fails to pass the 0.50 threshold 
16 times for both positive and negative spikes. The XGBoost models failed to exceed the barrier 
of 0.50 threshold in all the 17 test-periods for both positive and negative price spikes. 
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Table 8. Per Class Accuracies Among 17 Periods. 

Date 

SVM NN-2L (Tanh) XGBoost (Depth:3) 
Normal Pos Neg Normal Pos Neg Normal Pos Neg 

23/12 - 02/01 0.88 0.71 0.70 0.88 0.60 0.66 1.00 0.40 0.19 
02/01 - 12/01 0.89 0.67 0.69 0.92 0.79 0.36 0.99 0.36 0.09 
12/01 - 22/01 0.89 0.86 0.64 0.93 0.59 0.50 1.00 0.35 0.13 
22/01 - 01/02 0.93 0.81 0.75 0.86 0.64 0.65 0.99 0.14 0.18 
01/02 - 11/02 0.79 0.71 0.82 0.82 0.67 0.68 0.99 0.13 0.16 
11/02 - 21/02 0.92 0.73 0.84 0.85 0.31 0.32 1.00 0.25 0.05 
21/02 - 03/03 0.90 0.92 0.37 0.89 0.63 0.33 1.00 0.31 0.08 
03/03 - 13/03 0.88 0.87 0.58 0.70 0.83 0.73 0.96 0.33 0.21 
13/03 - 23/03 0.93 0.71 0.70 0.86 0.33 0.50 0.99 0.23 0.25 
23/03 - 02/04 0.84 0.83 0.75 0.93 0.00 0.29 1.00 0.00 0.12 
02/04 - 12/04 0.82 0.40 0.76 0.81 0.50 0.62 0.98 0.50 0.09 
12/04 - 22/04 0.82 1.00 0.65 0.91 0.33 0.24 0.99 0.00 0.00 
22/04 - 02/05 0.80 0.67 0.82 0.86 0.67 0.54 0.99 0.00 0.00 
02/05 - 12/05 0.90 1.00 0.89 0.91 0.43 0.50 1.00 0.14 0.10 
12/05 - 22/05 0.88 0.57 0.80 0.86 0.67 0.54 1.00 0.00 0.00 
22/05 - 01/06 0.83 0.67 0.85 0.91 0.00 0.54 1.00 0.00 0.00 
01/06 - 11/06 0.81 0.67 0.92 0.89 0.00 0.53 1.00 0.00 0.00 

Average 0.86 0.75 0.74 0.87 0.47 0.50 0.99 0.19 0.10 

 

10    Conclusions 

In this paper, we presented a multiclass SVM model to forecast the positive and negative price 
spikes, as well as the normal prices in the German electricity market. The price spikes were 
identified using a theoretical framework based on EVT. The derived price spikes dataset is 
highly imbalanced with the positive and the negative price spikes representing only 2.6% and 
5.6% of the total sample. 

The final input variable set derived from the feature selection procedure implies that demand 
data and Wind in-feed data positively affect the overall accuracy of the SVM model. This 
finding seems to be in line with the literature suggesting the contribution of RES in the increase 
in the electricity price volatility. 

The results from the rolling window process show that the multiclass SVM model can 
provide satisfactory forecasts for all the three classes. In contrast, both NNs and XGBoost 
models failed to classify the positive and negative price spikes correctly. 
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