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Abstract. Existing theoretical and empirical evidence on the determinants of students’ 
performance reveals a direct link between pre-primary education and achievement test scores 
in primary school. Relying on the first-of-its-kind 2015 wave data from the Programme of 
International Student Assessment (PISA), the present study analyses the associations between 
students’ performance in science and a broad set of variables, including regressors that proxy 
pre-primary education. Employing a Gini Regression Bayesian Model Averaging (BMA) 
approach to account for model uncertainty, it is found that non-attendance in pre-primary 
education is a robust determinant with a negative impact on students’ performance in science. 
This result is confirmed both under Gini-BMA and OLS-BMA methodology. 
Keywords: students’ performance, pre-primary education, Gini regression coefficient, BMA 
methodology, PISA.  
JEL classification: C11;C38;I21;J24 
 

1  Introduction 

Formal education is without any doubt one of the major concerns for policy makers since it 
determines an individual’s income and amplifies inequalities of economic and social opportunities. 
A study by Carniero and Heckman (2003) points out that investments in human capital have 
dynamic complementarities and that skills obtained in the child’s lifetime expedite the 
development of additional future skills. So, “learning begets learning” and generates important 
benefits in terms of medium and long-term schooling and socio-economic outcomes, including the 
promotion of productivity and economic efficiency. Among all educational stages, there is an 
emerging consensus that early childhood education interventions provide a cognitively simulating 
environment that enhance school readiness, academic performance, social integration, and long-
term skill development (Myers (1995), Entwisle and Alexander (1993), Waldfogel (2002), Brooks-
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Gunn (2003), Carniero and Heckman (2003)). Becker (1964) is of the view that early childhood 
investments bring higher returns compared to future investments because recipients have a longer 
time to enjoy the benefits. Along the same lines, a study by Heckman (2006) reveals that pre-
primary education generates the highest possible annual return that gradually fades at higher levels 
of education program. 

This study investigates the associations between students’ performance in science and a set of 
variables that are classified into 14 categories, including attendance and non-attendance in pre-
primary education. These indicators are relative to students’, families’ and schools’ characteristics. 
To test this, a large cross-national dataset, the 2015 round of the Programme for International 
Student Assessment (PISA) is applied. Due to the limited number of observations, Principal 
Component Analysis is applied to reduce the dimensionality of the dataset, while retaining as much 
as possible of the variation present in it. Therefore, motivated by the proliferation of possible 
explanatory variables in explaining students’ performance in science and the relative absence of 
guidance from economic theory, 43 variables are taken simultaneously into consideration. To 
ensure a comprehensive search, Gini-BMA methodology and OLS-BMA methodology are 
employed.  

Bayesian Model Averaging (BMA) approach constructs estimates that do not depend on a 
particular model specification, but rather they are conditional on the model space. Thus, inference 
is averaged over models, forming a weighted average of model specific estimates where the 
weights are given by the posterior model probabilities. This framework permits to consider a wider 
range of possible explanatory variables and to end up with those that can effectively explain the 
relationship. To estimate the coefficients, Gini regression methodology is incorporated into the 
BMA. The Gini methodology is a rank-based methodology that takes into consideration both the 
variate values and their ranks and it is based on the Gini Mean Difference (GMD) as a measure of 
dispersion. Among the two types of Gini regression coefficients that can be attributed to GMD, the 
focus has been on the semi-parametric approach. The semi-parametric nature of the Gini regression 
coefficient is justified because it does not rely on the linearity assumption nor on any distributional 
assumptions and the regression coefficients can simply be interpreted as weighted average of 
slopes. Even though both the OLS and Gini share an underlining linear structure, they differ in that 
the estimated marginal responses (i.e., the BMA unconditional posterior means (PSE) as presented 
in Table 5) are generated differently and in the case of the Gini in a much more robust fashion. 
This fits well in using a BMA approach that relies on the uncertainty that surrounds the estimates 
of beta coefficients (i.e., the BMA unconditional posterior means (PSE) as presented in Table 5). 
Using alternative semi-parametric methods based on local smoothers (Pagan and Ullan (1999)) 
would not lend themselves directly to the use of BMA since the estimation of marginal effects 
would not be expressed in a single coefficient as in the case of both OLS and Gini.       
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A comparison between the Gini-MA results and the OLS-MA ones suggests that the 
determinants that are important under Gini analysis are not necessarily similar to the ones that are 
important under OLS analysis. Among the most important outcomes found in this study is the 
effect of pre-primary schooling on students’ test scores. In particular, the results grounded in both 
Gini and OLS coefficients suggest that the “percentage of students who had not attend pre-primary 
education” has a negative impact on science test scores. Also, the regressor “attendance in pre-
primary education” was found to be strongly robust with a surprisingly negative effect on students’ 
performance and only under the Gini-MA analysis. As was argued, that apparent negative result 
may conceal the significant variation in years of pre-primary education and the potential benefits 
and costs between too many or too few years of pre-primary education. In other words, the apparent 
negative result of the “attendance in pre-primary education” variable reflects the significant trade 
–offs that may exist between entering pre-primary education at a very early age and missing out 
on parental care at these very early ages, while it is clear that some pre-primary education is crucial 
and important, but not at all costs. (Entwisle and Alexander (1993), Myers (1995), Waldfogel 
(2002), Brooks-Gunn (2003), Carniero and Heckman (2003), Velez et.al (1993), Wößmann (2005), 
Bjorklund and Salvanes (2011), Waldfogel and Washbrook (2011, and press b)). 

Children tend to reap the greatest benefits if preschool programs are of high quality (Carneiro 
and Heckman (2003). Most of the economic research on this topic recognizes that pre-primary 
education of exclusive quality is a high-yield investment with longstanding benefits (Gormley et. 
al. (2005), Heckman and Lochner (2000), Reynolds et. al. (2011)). Also, along with the early 
childhood interventions, many studies have found that home conditions are another crucial 
determinant of child’s educational achievement (Bjorklund and Salvanes,2011). Both Velez et.al 
(1993) and Wößmann (2005) agree that, apart from preschool attendance, parental involvement 
and family features are key components in students’ performance. Becker (1981, 1985) and Becker 
and Tomes (1986) embrace the theory of family to provide a reasonable justification for the failure 
of preschool education. 

Apart from pre-primary education, there are also other factors that stand out for their influence 
on students’ performance. In a recent study, Helal et. al. (2019) identify three classes of factors 
that lead to lower academic performance: the socio-demographic factor, which involves all students 
from indigent socio-economic background and those with special entry requirements, the academic 
one which includes all students with limited access to the course resources and forum and the 
course assessment factor, which refers to students with low level contributions to the course level 
activities or to students who study-off campus or part-time. According to Tinajero et. al (2012), 
Brazilian university students’ academic achievement is significantly enhanced by cognitive style 
and learning strategies. Hanushek and Wößmann (2006) take into consideration institutional 
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differences by splitting schools into differing and non-differing ability systems and examine their 
impact on students’ mean performance.   

The contribution of this paper to the current literature is threefold. First, it is a contribution to 
the narrow literature that focuses on the factors that affect students’ performance in science. For 
this purpose, 43 variables, classified into 14 categories, are taken simultaneously into 
consideration. Most importantly, it attempts to shed a light on the following question: Does pre-
primary education comprise a crucial factor for students’ performance in science? Second, this is 
among the very first studies that exploit OECD’s PISA 2015 dataset. Third, it is the first time that 
Gini regression methodology is incorporated into the BMA one, to calculate the variables’ 
coefficients. 

The remainder of this paper is structured as follows. The second section is the literature review 
for the pre-primary education. The third section presents the literature review for BMA 
methodology. The fourth section describes the BMA methodology with particular emphasis on 
prior model and parameter structures. The fifth section describes the theory for Gini regression 
coefficient. The sixth section describes the PISA data. The seventh section discusses the empirical 
results. The final section concludes. 

2  Literature Review for pre-primary education 

A growing literature is increasingly acknowledging the importance of early childhood 
interventions as an indispensable tool in nations building, as it has been argued that early 
interventions determine educational and labour market outcomes later in life (Cunha, Heckman, 
Lochner and Masterov,2006). As early childhood is considered a susceptible period for brain 
development and language acquisition (Heckman, Krueger and Friedman (2002); Knudsen, 
Heckman, Cameron and Shonkoff (2006)), pre-primary education assures a smooth transition to 
primary education and establishes the basis for later learning. A study by Carniero and Heckman 
(2003) points out that investments in human capital have dynamic complementarities and that skills 
obtained early in the child’s lifetime expedite the development of additional future skills. So, early 
learning makes subsequent learning easier and generates important benefits in terms of medium 
and long-term schooling and socio-economic outcomes. 

Early exposure to pre-primary schooling engenders supportive environment for the new intakes 
to easily adjust to formal school and develop essential social skills that lead to peer acceptance and 
academic achievement. (Myers 1992; Knight and Hughes 1995). Evidence abounds in the literature 
of the direct link between pre-school experience and academic performance. Entwisle and 
Alexander (1993) relate later school achievements to the children’s academic skills obtained at 
school entry, while Berlinski et. al. (2009) links pre-primary school education to short-term gains 
in test scores and behavioral outcomes (e.g.  attention, class participation, effort, and discipline). 
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However, as is indicated by Behrman and Birdsall (1983), focusing exclusively on the quantity of 
pre-schooling might lead to misleading results because the variation in quality is substantial too. 
Using five different structural quality indicators, Bauchmüller et. al. (2014) find persistent, 
although modest, positive relationships between high quality early childhood care and children’s 
test outcomes at the end of the primary school’s 9th grade. In contrast, Chetty et.al. (2011) argues 
that high quality has a positive impact in cognitive development but is not lasting, since it fades 
out after few years. Goodman and Sianasi (2005) find that early education is related to 
improvements in cognitive skills at age 7, but the impact is short-lived since it remains important 
throughout the schooling years up to age 16. Similarly, using data from the Early Childhood 
Longitudinal Study, Manguson et. al. (2007) show that pre-school enrolment in the United States 
is associated with higher reading and mathematics skills at the time of entry into the first grade, 
but these effects dissipate for most children by the end of the first grade.  

There are several reasons that justify the diminishing trend of/in gains from early childhood 
interventions. Esping-Andersen et. al. (2012) and Reynolds (1993,2000) state that children at risk 
due to family’s low-income, poverty and other related factors cannot secure a continuous 
development if there is no a coherent, continual and adequate support provided by government 
funded preschool and primary grade intervention programs. Specifically, Zigler and Berman 
(1983) mention that a one-year intervention cannot “inoculate a child against continuing 
disadvantage” (p.898). Barnett (2011) mentions that interventions are not compelling when 
graduates from the early educational intervention programs attend public schools with limited 
efficiency. Further, Schulman et. al. (1999) and Barnett et.al (2004) acknowledge that although 
most of the states, across the United States, have established prekindergarten curriculum standards, 
they differ in terms of quality, accessibility, and availability of resources. Most importantly, few 
of them have established mechanisms to implement these comprehensive 
standards/prekindergarten initiatives.  

Along with the early childhood interventions, many studies have found that home conditions 
are another crucial determinant of child’s educational achievement (Bjorklund and Salvanes,2011). 
Both Velez et.al (1993) and Wößmann (2005) agree that, apart from preschool attendance, parental 
involvement and family features are key components in students’ performance. A child’s 
development begins within the family and depends on the parents’ educational and cultural levels 
(Wößmann, 2005). Waldfogel and Washbrook (2011, and press b) support that parents that are 
educated and receive high income, spend more time to prepare their children’s reading skills. In 
contrast, parents with lower income and less education have more possibilities to engage in harsh 
and incompatible parenting teaching behaviours that may negatively affect child’s progress. Becker 
(1981, 1985) and Becker and Tomes (1986) embrace the theory of family to provide a reasonable 
justification for the failure of preschool education. Many authors correlate family’s income with 
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the quality of pre-school education too (Bainbridge et al., 2005; Magnuson and Waldfogel, 2005; 
Meyers et al.,2004). Low-income families are less likely to enrol their children to pre-school care, 
and if they do, they are most likely to be characterized by low-quality. In contrast, children from 
prosperous families are more likely to be registered in high-quality pre-schools. Attending 
systematically poorer quality pre-schools is an additional reason why gains from pre-school may 
eventually fade (Esping-Andersen et. al.,2012).   

Expanding pre-primary education is an effective instrument to improve school progression and 
raise average achievement for less advantaged children. Extensive research has been conducted 
both on the short-run and long-run effects (see among others Barnett (1992), Barnett (1995), 
Danziger and Waldfogel (2000), Currie (2001), Blau and Currie (2006), Ludwig and Miller 
(2007)). Dumas and Lefranc (2010) find that extending pre-school enrolment in France is 
beneficial in terms of schooling outcomes, including test scores, for children from disadvantaged 
households.  Heckman et. al. (2013) evaluate the results of the early childhood education Perry 
Preschool program that targeted to children from economically disadvantaged families. Outcomes 
reveal that children who participated in this program tended to create improvements in personality 
skills and enhance academic motivation. In particular, there is a boost in the long-term achievement 
test scores, with the effect being stronger for girls than for boys. Research suggests that 
disadvantaged children take the greatest advantage if, these special programs are of high quality 
(Gormley et al. (2005), Heckman and Lochner (2000), Neuman, Kamerman, Waldfogel, and 
Brooks-Gunn (2003), Reynolds et al. (2011), Waldfogel (2006)). Although there is ample empirical 
evidence that early childhood intervention programs have significant positive effects on the results 
of children from disadvantaged or minority background, it is not clear whether such pre-school 
programs influence the outcomes of children in the population as a whole. As typical preschool or 
prekindergarten programs vary in the quality of learning environments they provide and in the 
availability of financial resources, little is known about whether universal intervention can promote 
children’s cognitive and academic outcomes (Gilliam and Zigler (2001)).  

Many recent papers document the effects of universal preschool enrolment on the education of 
children in the entire population in a variety of other counties. Estimates obtained for developing 
counties testify positive and in some cases long-lasting effects of preschool attendance. Exploiting 
the information given by the Uruguayan Household Survey, Berlinski et. al. (2008) notice that 
attendance in pre-primary education reduces the probability for grade retention, grade failure and 
early drop-out during the primary and secondary schooling years. Aguilar and Tansini (2012) 
recognize that early exposure to pre-primary education has a positive effect on children’s 
performance in the first year at public schools in Montevideo, Uruguay, and this effect remains 
positive but weakens after six years. Berlinski et.al. (2009) study the effects of Argentina’s 
expansion of universal pre-primary schooling and find that pre-primary education positively affects 
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third grade standardized Spanish and Mathematics test scores as well as students’ behavioral skills. 
Taiwo and Tyolo (2002) notice that first grade Botswana students with pre-school experience 
achieve higher scores in English language, mathematics and science compared to students without 
such an experience. Using data for Thailand obtained from the Programme of International Student 
Assessment (PISA) for the years 2009 and 2012, Pholphirul (2017) reveals that pre-schooling 
attributes positively on cognitive skills in reading, mathematics and science with the mother’s 
education attainment being a decisive factor on child’s enrollment to preschool. According to this 
information, early exposure to pre-primary schooling appears as a successful and cost-effective 
policy to prevent late entry, early drop-out rates and early grade failure in poor countries, where 
large share of young population is excluded from compulsory education already at an early age 
(UNESCO, 2005).  

There is considerable evidence for the impact of universal early childhood schooling in 
developed countries too. Using Census data, Cascio (2009) examines the long-run results of an 
expansion in universal kindergarten in the late 60s and early 70s across the United States. She 
reports no effect on the labour market outcomes and regarding the educational ones, the only 
positive influence is the reduction in grade retention. Goux and Maurin (2008) apply a difference-
in-difference approach and find that one additional year in pre-elementary school in French has no 
important effect on children’s subsequent educational skills. Baker et. al. (2005) show that the 
establishment of full-time and highly- subsidized kindergartens in the Canadian province of 
Quebec in the late 1990s, corresponds to an increase in the labour supply by married women and a 
decline in children’s outcomes. Similarly, Dickson (2012) displays that the extension of free early 
education in the UK to all three -year- olds does not have any impact on reading, writing and 
mathematics when children reach the age seven. Only for deprived Local Education Authorities 
the results turn to be positive. In contrast Gormley and Gayer (2005) find that Oklahoma’s 
universal pre-school program contributes positively to cognitive scores. In Japan, the expansion of 
both kindergartens and nursery schools is associated with higher achievement rates both in high 
school and college (Akabayashi and Tanaka (2013)). 

3  Literature Review for Bayesian Model Averaging (BMA) approach 

Classical Statistical Analysis disregards the theory and specification uncertainty, which jointly 
refer to as model uncertainty. As indicated by Leamer (1983), whimsical decisions about choice of 
functional forms and control variables leads to fragile inferences based on economic data. Bayesian 
Model Averaging (BMA) has successfully addressed model uncertainty in the model selection 
process, providing a comprehensible mechanism to embody ambiguity into conclusions about 
parameters. To construct estimates, it does not condition on a specific set of theories and covariates, 
but rather extracts information from a universe of candidate models. The result is a weighted 
average of model specific estimates, where posterior model probabilities are employed as weights. 



Review of Economic Analysis 13 (2021) 157-211  
 

 
164 

 
 
 

www.RofEA.org 

The initial approach to deal with model averaging dates back to Roberts (1965)1, who proposed 
a marginal distribution for outcomes of any unobserved sample, the so-called “predictive 
distribution”. This distribution is defined as the weighted averaged of posterior probabilities of two 
models. Building up to this idea, Leamer (1978,1983) presented Extreme Bound analysis and set 
the fundamentals for the BMA methodology2. This technique was further studied by Raftery (1988, 
1993), George and McCulloch (1993), Madigan and Raftery (1994), Drapper (1995), Kass and 
Raftery (1995), Kass and Wasserman (1995), Raftery, Madigan and Hoeting (1997), Hoeting et all 
(1999) among others.   

BMA has proven a valuable tool in empirical settings with alternative theories, transmission 
mechanisms, a massive number of covariates and a limited number of observations. Empirical 
growth theory is a characteristic example. Theory uncertainty appears extensively in growth 
regressions since different theories, which use a specific subset of regressors, cannot exclude other 
compatible and interrelated theories from also being suitable. Brock and Durlauf (2001) refer to 
this by theory open-endedness, implying that existing growth theories needs to be considered when 
the effect of a specific growth theory on growth is to be analyzed. Apart from the aforementioned, 
Fernandez, Ley and Steel (2001a), Doppelhofer, Miller and Sala-i-Martin (2004), Durlauf, 
Kourtellos and Tan (2008), Durlauf, Kourtellos and Tan (2012), Massanjala and Papageorgiou 
(2008), Eicher, Papageorgiou and Raftery (2011), Ley and Steel (2007) are among those who 
endorse the use of this methodology to generate robust growth determinants.  

Economic forecasting is another field which is affected by model uncertainty, since forecasts 
often depend on the model selected. Insightful contributions of forecast uncertainty can be found 
in Garratt, Lee, Pesaran and Shin (2003), Min and Zellner (1993), Raftery, Madigan and Hoeting 
(1997), Fernandez, Ley and Steel (2001 a, b), Ley and Steel (2009). In the context of forecasting 
inflation, Koop and Korobolis (2012) apply dynamic model averaging and selection strategies in 
state-space models to allow for both the coefficients in each model and the forecasting model to 
evolve over time. An alternative approach to predict inflation is used in Eklund and Karlsson 
(2007) who replace the standard marginal likelihood with the so-called forecast weights. 

The rapid utilization of BMA in a variety of economic applications include examples from 
policy evaluation (Brock, Durlauf and West (2003), Sirimaneetham and Temple (2006), 
Kourtellos, Stengos and Tan (2013)), inequality (Kourtellos and Tsangarides (2017)), monetary 
policy (Levin and Williams (2003)), environmental economics (Begun and Eicher (2008)), returns 
to education (Tobias and Li (2004)) and intergenerational mobility (Kourtellos, Marr and Tan 
(2015)).  

 
1  Regarding model selection, an initial approach is given by Efroymson (1960) who introduced the stepwise 

regression analysis. 
2  Levine and Renelt (1992) apply Extreme Bound Analysis to cross-country data and conclude that very few 

or none of the regressors robustly affect growth. To overcome possible difficulties arising from the 
implementation of this methodology, alternative solutions have been suggested (Leamer (1985), Granger 
and Uhlig (1990), Sala-i-Martin (1997)).   
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4  Bayesian Model Averaging (BMA) methodology 

BMA provides a probabilistic framework to simultaneously deal with model and parameter 
uncertainty. To describe the relationships between all the unknown parameters and the data, a joint 
probability distribution is needed. To construct estimates, instead of conditioning on a single 
model, a model space M= {M1,…,Mk} is taken into consideration, whose elements cover all the 
possible regressors suggested by the literature. For multiple model setups, it proceeds by assigning 
prior probability distributions to each model and to the parameters of each model.  Combining 
those priors with the distribution for the data and conditioning on the data, results in the posterior 
distribution of model uncertainty, which allows for model selection and inferences3.   
 Considering the case of normal linear regression models, model uncertainty occurs from the 
selection of the “best’’ model, or alternatively, from the selection of the explanatory variables to 
include in the right-hand side:  

 𝑌 = 𝛽 + 𝛽 𝑋 + 𝜀  =  𝛸𝛣 + ε  ,  ε~  Ν (0 , σ2 Ιn)  (1)  

where Y and ε are nx1 vectors of the dependent variable and the error term respectively, X is a nxq 
matrix of candidate regressors that may or may not be included in the model, B is an nxq matrix 
with the parameters to be estimated and n is the total number of observations. If some of the 
elements of the parameter vector, β= (β1, β2,….βq) equal zero, there are 2q candidate models in total 
to be estimated, indexed by Mk for k= 1,….,2q . Each of these models offers to explain the data and 
represents a distinct subset of the candidate regressors. For instance, model Mk takes the form:  

 𝑌 = 𝛽 ( )𝛸 ( ) +  𝜀     (2) 

where Y is the dependent variable, ε is the normal error term, 𝑋( ),…, 𝑋( ) is a subset of X1,..Xq 
and β = ( β1

(k),.…., βqk
(k) )  is a vector of regression coefficients to be estimated. The vector θk= (β0, 

β(k), σ) summarizes the parameters for the given model Mk.  
The implementation of a pure Bayesian approach addresses model uncertainty, but its 

implementation rests firmly on solving the common challenge of specifying the priors over models 
in the model space and the prior distribution for the parameters of each model. Elicitation of prior 
parameters can be extremely critical for the outcome and any differences in the results can be 
attributed to the use of alternative prior assumptions. It is acknowledged (Fernandez, Ley and Steel 
(2001b), Kass and Raftery (1995), George (1999a) that posterior model probabilities, which are 

 
3  For an excellent and detailed explanation of Bayesian model averaging see Raftery, Madigan, Hoeting 

(1997), Hoeting, Madigan, Raftery and Volinsky (1999), Sala-i-Martin (1997), Clyde and George (2004), 
Chipman, George, McCulloch (2001) and Steel (2020). 
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employed as weights for averaging estimates across models, are sensitive to the specification of 
priors over model-specific parameters. More detailed discussion about model and parameter priors 
can be found in Steel (2020) as well as in the Appendix. 

Motivated by the proliferation of possible explanatory variables in explaining students’ 
performance in science and the relative absence of guidance from economic theory, 43 variables 
are taken simultaneously into consideration. These quality indicators are relative to students’, 
families’ and schools’ characteristics and are classified into 14 categories: Educational outcomes, 
Participation in Education, Fields of education, Student evaluation and assessment, Classroom 
environment/school climate, Students’ engagement drive and beliefs, After-school activities, 
Access to ICT, Performance and socio-economic status, Performance and diversity, Resources for 
education, Professional development of teachers, School evaluation and Governance. More 
detailed description is provided in Table 4. BMA approach is employed by calculating the weighted 
average of model specific estimates using Gini and OLS estimates. The weights attached to each 
estimate is identical to posterior model probabilities. Being totally agnostic about whether any of 
these regressors is included in the true model, a prior probability of 0.5 is attached to each one, 
implying a uniform model prior. Regarding the parameter space, the unit information prior (UIP) 
is adopted, where the integrated likelihood is proxied by the Schwarz Information Criterion (SIC). 
According to Eicher, Papageorgiou and Raftery (2011), the combination of the unit information 
prior with a uniform prior over the model space generally outperforms competing priors. 
Considering an extremely large set of possible models, by allowing for any subset of up to 43 
regressors to be included into the model, the Bayesian framework undertakes the specification 
uncertainty in a straightforward and formal way. It deals with a set of 2  = 8.8x10  (over eight 
trillion) different models. To determine this numerical problem and, following Madigan and York 
(1995) and Lee and Steel (2007), Markov Chain Monte Carlo (MCMC) techniques are practiced, 
using the so-called Markov chain Monte Carlo Model Composition (𝑀𝐶 ) sampler, with 5x10  
recorded draws after a burn-in of 1 million draws.  

5  Gini Regression Coefficient 

Although Least Squares methodology ranks as one of the most popular practices for estimating the 
relationship between a set of regressors on the conditional expected value of the dependent 
variable, it relies on certain assumptions, whose violations might result in non-robust estimates. 
The Gini regression, introduced by Olkin and Yitzhaki (1992), is proposed as an alternative. Its 
utilization is justified whenever the investigator wants to relax the traditional assumptions, such as 
the convenient world of normality and the linearity of the model. The Gini methodology is a rank-
based methodology that takes into consideration both the variate values and their ranks and it is 
based on the Gini Mean Difference (GMD) as a measure of dispersion4. 

 
4 The GMD as a measure of spread/variability was first initiated by Corrado Gini (1912). 
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Between the at least 14 distinct presentations that exist for GMD, the focus has been on the formula 
that relies on covariances (Lerman and Yitzhaki (1984))5. That is, if F(X) is the cumulative 
distribution function which is uniformly distributed on [0,1], the GMD is expressed as:   

 𝐺 =  4 𝐸{𝑋(𝐹(𝑋)  − 𝐸[𝐹(𝑋)])}  =  4 𝑐𝑜𝑣[𝑋, 𝐹(𝑋)]    (3) 

which is four times the covariance between a random variable X and its cumulative distribution 
function F(X). Equivalently, the above can be rewritten as:  

 𝐺 =  [ , ( )][ ( ), ( )]      (4) 

which equals the one third of the slope of the OLS regression curve of the dependent variable, as 
a function of the observation’s positions in the array, F(X), having arrayed the observations in 
ascending order. Alternatively, it is the weighted average of the slopes defined between two 
adjacent observations.  

There are two types of Gini regressions related to GMD. The first one, known as the R-
regression (Hettmansperger (1984)), is based on the minimization of the GMD of the residuals. 
The second one, known as the semi-parametric approach (Olkin and Yitzhaki (1992)), imitates the 
OLS methodology by replacing the variance-based expressions by the equivalent GMD terms6. 
The combination of these two allows one to identify and test whether the implicit assumptions 
about the underlying distributions are supported by the data or not. Apart from that, the superiority 
of the Gini-based analyses also lies on the fact that Gini estimators are robust to the existence of 
extreme values or measurement errors and to the asymmetry of the distribution. Under that case, 
heavy tailed distributions can be used (Serfling (2010)). In addition, only the first moment 
conditions are needed for the Gini methodology to be implemented (Stuart and Ord (1987, p.58)).   
Focusing on the second approach, and assuming a simple regression, the population semi-
parametric Gini regression coefficient is based on the covariance presentation of the GMD and is 
obtained by replacing the covariance expressions in the OLS regression coefficient by the 
corresponding Gini covariances: 

  𝛽 =  [ , ( )][ , ( )]     (5) 

 
5 For a complete overview of the Gini methodology, the reader is referred to Yitzhaki and Schechtman (2013). 
6 The Gini estimator taken by the second approach cannot be characterized as “the best” because it is not 

derived by solving a minimization problem. In contrast, the one derived by the first approach is optimal 
but it does not have an explicit presentation and it is only expressed numerically.  



Review of Economic Analysis 13 (2021) 157-211  
 

 
168 

 
 
 

www.RofEA.org 

where F(X)=R(X) represents the regressor’s rank7.  
For the case of multiple Gini regression coefficients, a set of linear equations composed of simple 
Gini regression coefficients must be solved. Starting from the multiple regression model, expressed 
in population parameters: 

  𝑌 =  𝑎 +  𝛽 𝛸  + . . + 𝛽 𝛸  + ε   (6) 

and defining K random variables R(X1), R(X2),..,R(XK), the following identities hold: 

 𝑐𝑜𝑣(𝑌, 𝑅(𝑋 ))  =  𝛽 𝑐𝑜𝑣(𝛸 , 𝑅(𝑋 ))+. . +𝛽 𝑐𝑜𝑣(𝛸 , 𝑅(𝑋 ))  + 𝑐𝑜𝑣(𝜀, 𝑅(𝑋 ))  (7) 

         𝑐𝑜𝑣(𝑌, 𝑅(𝑋 ))  =  𝛽 𝑐𝑜𝑣(𝛸 , 𝑅(𝑋 ))+. . +𝛽 𝑐𝑜𝑣(𝛸 , 𝑅(𝑋 ))  + 𝑐𝑜𝑣(𝜀, 𝑅(𝑋 ))   

     ⋮       

        𝑐𝑜𝑣(𝑌, 𝑅(𝑋 ))  =  𝛽 𝑐𝑜𝑣(𝛸 , 𝑅(𝑋 ))+. . +𝛽 𝑐𝑜𝑣(𝛸 , 𝑅(𝑋 ))  + 𝑐𝑜𝑣(𝜀, 𝑅(𝑋 ))   

Setting  

 𝛽 =  ( , ( ))( , ( ))  , 𝛽 =  ( , ( ))( , ( ))  , 𝛽 =  ( , ( ))( , ( ))   (8) 

with k,j=1,2,…,K and dividing the three last equations by, respectively, cov(X1,R(X1)), 
cov(X2,R(X2)), and cov(Xk,R(Xk)), under the assumption that cov(Xk,R(Xk)) ≠0, (k= 1,2,..,K), 
yields:          𝛽  =  𝛽 1 +. . + 𝛽 𝛽 +  𝛽         (9) 𝛽  =  𝛽 𝛽  +. . + 𝛽 𝛽 +  𝛽    ⋮ 𝛽  =  𝛽 𝛽  +. . + 𝛽 𝛽 + 𝛽  

where the index 0 illustrates the dependent variable, 𝛽  and 𝛽 are the regression coefficients in 
the simple regressions of Xk on R(Xk) and 𝛽  are the semi-parametric Gini regression coefficients 
as given in presentation (5).  
Rearranging, defining the following column vectors β0= (β01 , β02,…, β0Κ ), 𝛽 = ( 𝛽  , 𝛽 ,.., 𝛽 ) 
and provided that the rank of the matrix that consists of the βk’s coefficients is K, it comes: 

 
7 Empirically the regressor’s rank Rx is computed by the formula 𝑅(𝑋)  =  ∑ ( ). 
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𝛽⋮𝛽  = 

1 𝛽 …  𝛽⋮ ⋮ ⋮  𝛽 ⋯ 1  
  𝛽  −   𝛽  ⋮  𝛽  −   𝛽  =𝐴  [𝛽  − 𝛽 ]  (10) 

where A-1 is a K x K matrix while the β’s are K x 1 vectors.  
Imposing the set of restrictions, known as “orthogonality conditions”, described by: 

 𝛽  =  0 , 𝑓𝑜𝑟 𝑘 =  1,2, . . , 𝐾     (11) 

the identities of (10) turn into: 

  
𝛽⋮𝛽  = 

1 𝛽 …  𝛽⋮ ⋮ ⋮  𝛽 ⋯ 1  
  𝛽⋮  𝛽   =  𝐴 𝛽     (12) 

or equivalently  

    𝛽  =  1 𝛽 …  𝛽⋮ ⋮ ⋮  𝛽 ⋯ 1  
  𝛽⋮  𝛽   =  𝐴 𝛽     

The previous expression shows the Gini estimator 𝛽  is a function of slope coefficients of semi-
parametric simple Gini regressions β0. Consequently, it is a semi-parametric Gini estimator.  
Since, most of the concepts and parameters in the Gini framework are parallel in structure to the 
OLS framework, it is natural to view presentation (5) as an OLS instrumental variable (IV), where 
F(X)=R(X) serves as an instrument8. According to Olkin and Yitzhaki (1992), when the model is 
given by: 

 𝑌 =  𝑋 𝐵  +  𝜀     (13) 

where Y is the dependent variable (N x 1 vector), X ≡ [𝑥 ] is the matrix of regressors (N x K with 
the first column of ones), 𝐵  is the vector of parameters to be estimated (K x 1) and ε is the 
vector of errors (N x1), the semi-parametric Gini regression yields an estimator of 𝛽 ,  

 𝛽  =  (𝑅  𝑋)  𝑅  Y     (14)  

where Rx = R(X). 

 
8 Although the Gini regression framework can imitate the OLS concepts, they differ in interpretations and 

properties. Under the Gini IV analysis, the concept of IV is applied twice. As a first step, the sample’s 
empirical cumulative distribution function replaces the variable, without questioning the validity of the 
rank to serve as an IV. As a next step, another variable that satisfies all the conditions from an IV 
perspective is required (Yitzhaki and Schechtman (2004)).  
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6  Data 

6.1  Analyzing PISA DATA 

PISA (or alternatively, Programme of International Student Assessment) is created by the 
Organization for Economic Co-operation and Development (OECD) to test the 15-year-old 
students’ skills and knowledge in reading, mathematics and science. Through this procedure vital 
information is collected regarding students’ ability to compete globally, to collaborate for problem 
solving, to think critically and creatively. What students know and can do, where all students can 
succeed and what school life means for students’ lives are the three questions that constitute the 
core of this triennial international education survey. Seventy-nine countries and economies and a 
sample of 600,000 students among 32 million in total, participate in a two-hour test carried out 
every three years9. Only students between the age of 15 years and 3 months and 16 years and 2 
months can engage in this survey, while the choice of schools and students is as broad as possible 
so that a wider range of different educational backgrounds and abilities to be covered.  

The PISA test’s content is based on the curricula found across the world, without promoting or 
imposing anyone of those and neither there is a need to find similar characteristics between them. 
The goal is to assess countries’ performance by providing scores for each subject area while the 
mean score in each subject can be used to rank the participating economies. Since the test is not 
designed to evaluate individual students, a considerable number of alternative test forms, covering 
all aspects of test material, exists and gives the opportunity to obtain a much greater coverage of 
the content10. The results, in each test subject, are scaled to follow normal distributions, with mean 
around 500 score points and standard deviations around 100 score points for OECD countries. Due 
to the fact that only a sample of students from each country is tested, the estimates are accompanied 
with statistical uncertainty, meaning that it is impossible to assign an exact rank to each 
participating country, based on its mean score, but rather to place it within a range of positions 
(that is, between an upper and a lower rank).  

To allow comparisons among countries and to conclude whether performance for each country 
is improved or not, PISA scores are reported at the same scale over time. Under these 
circumstances, both year-to-year comparisons are feasible and average trends over three or more 
assessment years can be calculated. Having this information, PISA identifies effective policies and 
practices that are implemented in economies that record high performance, or in economies that 
show significant improvement over time. It further, reinforces the participating members that are 

 
9  PISA Programme was first launched in 2000. Every three years the main subject of assessment in PISA 

changes, moving from reading, to mathematics and finally to science and starting all over again, while for 
the other two subjects PISA provides a summary assessment. 

10 PISA has a two-stage stratified sampling design. Within each participating country a random sample of 
schools is selected, and then a random sample of students is selected within each school (OECD, 2009). 
More detailed information on the recruitment, sampling design, procedures and assessment methods are 
available in a series of technical reports at https://www.oecd.org/pisa/data/2015-technical-report/   
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willing to engage in similar programs, acknowledging that there is no one education model that fits 
all members, since different economies share different characteristics. 

PISA is established and enforced under the authority of education ministries through the PISA 
Governing Board, the PISA’s decision-making body. All member countries plus partner countries 
with Associate status elect representatives to the Board, who are a mix of government officials and 
staff of research and academic institutions. The Board regulates the PISA’s policy priorities and 
standards for data development, analysis and reporting, and supervises their implementation. 
PISA’s financial support is exclusively derived from direct contributions from the participating 
economies’ education ministries11.   

The PISA database has been widely applied in many different studies since it provides the huge 
advantage to allow for cross-national comparisons of student performances. For instance, Jerrim, 
Oliver and Sims (2019) use the 2015 wave PISA data for England to investigate the relationship 
between students’ achievement and the inquiry-based science teaching methodology. Zheng, 
Tucker-Drob and Briley (2018) examine how the family’s and school’s economic resources as well 
as the resources found at national level affect the association between science interest and science 
knowledge, using the 2015 PISA data. Applying the same dataset, S. Cumberworth and E. 
Cumberworth (2018) reveal if school socioeconomic composition is more strongly associated with 
standardized test scores among Lower-Socioeconomic Status students than it is among Higher- 
Socioeconomic Status students. Based on PISA database 2015, Tang (2018) discloses that 
immigrant adolescents face lower life satisfaction compared to their non-immigrant counterparts, 
however this gap declines when specific school and family factors are taken into consideration. 

Giambona and Porcu (2018) explain how Italian students’ achievement is affected by school 
size, using PISA 2012 data. Yang and Ham (2017), adopting the same data, demonstrate how a 
well-established anti-discrimination legislation weakens the relationship between first- and 
second-generation immigrant students and school truancy. Sholderer (2017) utilize PISA 2015 
database to explore the impact of social capital on the association between school autonomy and 
its performance. To inspect how intelligence (IQ) relates to happiness inequality and crime rates, 
Nikolaev and Salahodjaev (2016) and Burhan et. al. (2014), respectively, use two different 
databases whose common denominator is that the construction of IQ variable is based on distinct 
sources including PISA database. E. Erdogdu and F.Edrogdu (2015) show how home and school 
environment, access to ICT and student background influence students’ academic achievements. 

The present study is based on PISA 2015 data, when science was the subject of focus, and uses 
country level analysis. In this most recent cycle, the 2015 wave of PISA test, 72 participating 
countries were included for regional comparisons, but some countries are dropped in later analysis 
due to lacking data. Table 2 in Appendix lists all countries. The variable of interest is proxied by 
the students’ performance in science. It is expressed in terms of mean score. Indicatively, students’ 

 
11 More information about PISA is available at http://www.oecd.org/pisa/ 
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performance in science ranges from 331,639 to 555,575 score points. The available number of 
variables in this dataset that can be used as regressors are 167 in total and are classified into 14 
categories. However, due to the limited number of observations, Principal Component Analysis is 
applied to reduce the dimensionality of the dataset, while retaining as much as possible of the 
variation present in it. The result is a new transformed set of variables, 43 in total, named as 
principal components, which are uncorrelated, and which are ordered so the first few retain most 
of the variation present in all the original variables (Jolliffe, 2002). Descriptive statistics for all the 
OECD variables used in this study are presented in Table 3 in the Appendix.  

6.2  Principal Component Analysis (PCA) - Technique 

The derivation of Principal Components (PCs) is based on the eigenvectors and eigenvalues of the 
covariance and/or correlation matrix. An important drawback of PCA based on covariance matrix 
is that PCs are sensitive to the units of measurement used for the regressors. Thus, before applying 
the dimensional reduction procedure for multivariate data, all the regressors are standardized 
because they come with different units. Table 4 in Appendix provides details regarding the new 
transformed set of variables, namely the principal components. Finally, to regress the dependent 
variables on this new set of regressors, all the dependent variables have been centered.   

7  Empirical Results 

Gini-BMA approach is employed to investigate how pre-primary education and other determinants 
affect students’ performance, by calculating the weighted average of model specific estimates using 
Gini estimates12. The weights attached to each estimate is identical to posterior model probabilities. 
As a baseline estimation, a universe of all potential models using 43 covariates is taken into 
consideration. The results are compared to the OLS ones, taken by default when applying BMA 
methodology. Being totally agnostic about whether any of these regressors is included in the true 
model, a prior probability of 0.5 is attached to each one, implying a uniform model prior. Regarding 
the parameter space, the unit information prior (UIP) is adopted, where the integrated likelihood is 
proxied by the Schwarz Information Criterion (SIC). 

Table 5 in Appendix displays the findings for the BMA analysis for the students’ performance 
in science. The first column shows the posterior inclusion probability that each of the covariates is 
included in the truth model, while the second and the third columns present the BMA unconditional 
posterior mean (PSE) and posterior standard deviation (PSD) for each regressor. The remaining 
three columns provide, respectively, the same amount of information for the OLS case and for the 

 
12 An alternative extension for the calculation of the estimates can be found in Kourtellos, Stengos and Tan 

(2013), Durlauf, Kourtellos and Tan (2012) and Eicher, Lenkoski and Raftery (2009), who incorporate the 
2SLS estimator into the BMA methodology. 
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other dependent variables. A covariate is identified as a “robust” determinant if the posterior 
inclusion probability exceeds 50%13.  

Referring to the first panel, of the 43 potential/promising candidate regressors only 13 affect 
the students’ performance in science under the Gini analysis. The results grounded in Gini 
coefficients, suggest that “attendance in pre-primary education” (i.e., PC11) is a robust 
determinant of students’ performance in science, with a posterior inclusion probability 81.6%, but 
with an adverse effect on students’ performance. However, this apparent negative result conceals 
the significant variation in years of pre-primary education. That is strongly reinforced by the 
finding that the “percentage of students who had not attended pre-primary education” (i.e., 
EducOut2) enters with high posterior inclusion probability, 73%, and its marginal effect is 
substantial as well: on average, an one percent increase in no-attendance in pre-primary education 
reduces the performance by 10.45 score points.  In other words, the apparent negative result of 
PC11 found earlier reflects the significant trade –offs that may exist between entering pre-primary 
education at a very early age and missing out on parental care at these very early ages, while it is 
clear that some pre-primary education is crucial and important, but not at all costs. There is a broad 
opinion in the sense that early early childhood education interventions provide a cognitively 
simulating environment that enhance school readiness, academic performance, social integration 
and long-term skill development (Myers (1995), Entwisle and Alexander (1993), Waldfogel 
(2002), Brooks-Gunn (2003), Carniero and Heckman (2003)). However, along with the early 
childhood interventions, many studies have found that home conditions are another crucial 
determinant of child’s educational achievement (Bjorklund and Salvanes,2011). Both Velez et.al 
(1993) and Wößmann (2005) agree that, apart from preschool attendance, parental involvement 
and family features are key components in students’ performance. A child’s development begins 
within the family and depends on the parents’ educational and cultural levels (Wößmann, 2005). 
Waldfogel and Washbrook (2011, and press b) support that parents that are educated and receive 
high income, spend more time to prepare their children’s reading skills. In contrast, parents with 
lower income and less education have more possibilities to engage in harsh and incompatible 
parenting teaching behaviours that may negatively affect child’s progress. Becker (1981, 1985) 
and Becker and Tomes (1986) embrace the theory of family to provide a reasonable justification 
for the failure of preschool education. Furthermore, the “percentage of students who had repeated 
a grade in primary, lower secondary or upper secondary school” (i.e., EducOut1), enters with a 
posterior inclusion probability, 53.8%, but plays a positive role on the students’ performance: 

 
13 In the paper “ Trade Creation and Diversion Revisited: Accounting for model uncertainty and natural 

trading partner effects”, Eicher, Henn and Papageorgiou (2012), following Kass and Raftery (1995), 
classified the strength of evidence of a regressors’ effect into the following categories, sorted by the PIP: 
if PIP<50%, there is lack of evidence for the effect, if 50%<PIP<75% there is weak evidence for the effect, 
if 75%<PIP<95% there is positive evidence for the effect, 95%<PIP<99% there is strong evidence for the 
effect, if 99%<PIP<100% there is decisive evidence for the effect. These cut-offs form an approximation 
and are not based strictly in statistical theory.  
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increasing EducOut1 by 1% raises the probability that the performance will increase by 4.39 score 
points.  The optimistic results about the effectiveness of grade retention can be supported by other 
studies (Alexander et. al. (1994), Karweit (1999), Lorence, Dworkin, Toenjes and Hill (2002), 
Greene and Winters (2004), Jacobs and Lefgren (2004), Eide and Goldhaber (2005), Lorence and 
Dworkin (2006)). 

Additional robust determinants are also identified for students’ performance in science. 
“Difference in science performance between immigrant and non-immigrant students” (i.e., 
PC110b) and the “mean ratio between students and classroom characteristics” (i.e., PC25a) affect 
performance distinctly. Both appear with a posterior inclusion probability above 90%, (94% and 
93% respectively) but with opposite impacts. While an increase in the PC110b coefficient 
adversely influences students’ performance, an increase in the mean ratio is highly beneficial. 
“Expectations to work in science-related professional and technical occupations at age 30” (i.e., 
PC23a) exhibit important and negative effects on students’ performance, with a posterior inclusion 
probability and a posterior mean equal to 78.8% and -11.63 respectively. In contrast, the “relative 
risk of boys expecting to work in science-related professional and technical occupations at age 
30” (i.e., PC33b) enters with an inclusion probability 77% and with a considerable positive 
coefficient equal to 18.04.  

The “number of students who are evaluated and assessed in alternative ways” (i.e., PC44), the 
“number of students with or without an immigrant background “(i.e., PC110a), the “number of 
science teachers who are qualified to teach science” (i.e., PC111a) and the “average time spent 
per week learning in regular science and no-science lessons” (i.e., PC25b), are four variables that 
are positively effective in performance, appearing with an posterior inclusion probability that 
ranges between 61% and 68% and posterior means that take values from 4.66 and 7.40. Although 
PC25b enters positively, the average time spent after school in studying science and no-science 
lessons (i.e., PC17) has a negative impact and a posterior mean equal to 5.87. Surprisingly, the 
third Principal Component that refers to the category of the “number of students who are evaluated 
and assessed in alternative ways” (i.e., PC34) plays a negative role: it enters with an inclusion 
probability of 56%, and a posterior mean equal to -4.73.  

A comparison between the Gini-MA results and the OLS-MA ones, presented in the second 
panel, suggests that the determinants that are important under Gini analysis are not necessarily 
similar to the ones that are important under OLS analysis. Of the 43 potential/promising candidate 
regressors only 10 affect the students’ performance in science under OLS. The “number of students 
who refer skipping/arriving late at classes two weeks prior to the test” (i.e., PC26c), and the 
“difference in science performance” (i.e., PC39c) appear, under this case, to affect performance. 
Entering with posterior inclusion probabilities 78% and 71%, respectively, with PC26c appear to 
have a negative effect, while PC39c appears to have a positive one. The “percentage of students 
who had not attend pre-primary education” (i.e., EducOut2) continues having a negative impact, 
although smaller (8.75 score points), with an inclusion probability of 84%. This is similar to the 
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findings of the Gini-MA analysis, yet an important difference is that the effect of pre-primary 
education is not important with an inclusion probability less than 50% (0.31%).The case of 
“attendance in pre-primary education” (i.e., PC11) with the Gini-MA analysis was found to be 
strongly robust with a negative effect on students’ performance and as was argued that apparent 
negative result may conceal the significant variation in years of pre-primary education and the 
potential benefits and costs between too many or too few years of pre-primary education.  However, 
this is not the case for the “percentage of students who had repeated a grade in primary, lower 
secondary or upper secondary school” (i.e., EducOut1), which now appears with a negative 
posterior mean equal to -10.257 and much higher inclusion probability,75%. This is the most 
important difference so far since it implies that repeating a grade does not have a beneficial effect 
on performance.   

The “number of students with or without an immigrant background” (i.e., PC110a) and the 
“mean ratio between students and classroom characteristics” (i.e., PC15a) enjoy strong posterior 
support for being important explanations for students’ performance in science. Both receive an 
inclusion probability above 90%, and their posterior means are of the same magnitude but of 
opposite signs: the PC15a coefficient is positive and equal to 16.629, while the PC110a coefficient 
is negative and equal to 16.699. It certainly appears to be true that “expectations to work in science-
related professional and technical occupations at age 30” (i.e., PC13a), the “relative risk of boys 
expecting to work in science-related professional and technical occupations at age 30” (i.e., 
PC23b) and “average time spent per week learning in regular science and no-science lessons” 
(i.e., PC15b) contribute to science performance. The results found using Gini-MA approach are 
confirmed, since now, these variables enter with higher inclusion probabilities, 89%, 86% and 75% 
and with posterior means equal to -14.292, 22.123 and 6.324 respectively. In contrast, the “number 
of students who are evaluated and assessed in alternative ways” (i.e., PC34) seems to positively 
affect performance and enters with an inclusion probability equal to 57% and a posterior mean 
equal to 3.87. 

Table 6 summarizes all the robust determinants under the Gini and OLS analysis, respectively. 
The first four regressors (i.e., the “number of students with or without an immigrant background” 
(i.e., PC110a), the “number of students who are evaluated and assessed in alternative ways” (i.e., 
PC34), the “percentage of students who had repeated a grade in primary, lower secondary or 
upper secondary school” (i.e., EducOut1), “percentage of students who had not attended pre-
primary education” (i.e., EducOut2)) appear to be significant under both analyses. Only the last 
variable retains the negative coefficient, while for the rest, the sign changes between the two cases. 
Regarding the next four variables (i.e. “mean ratio between students and classroom 
characteristics” (i.e., PC25a, PC15a), “average time spent per week learning in regular science 
and no-science lessons” (i.e., PC25b, PC15b), “expectations to work in science-related 
professional and technical occupations at age 30” (i.e., PC23a, PC13a), “relative risk of boys 
expecting to work in science-related professional and technical occupations at age 30” (i.e., 
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PC33b, PC23b)), all appear to retain their sign but each variable refers to a different principal 
component, when comparing between the two analyses. The rest five variables that appear in the 
second column, are robust determinants only under the Gini analysis (i.e., “difference in science 
performance between immigrant and non-immigrant students” (i.e., PC110b), “attendance in pre-
primary education” (i.e., PC11), “average time spent after school in studying science and no-
science lessons” (i.e., PC17), “number of students who are evaluated and assessed in alternative 
ways” (i.e., PC44), “number of science teachers who are qualified to teach science” (i.e., 
PC111a)), while the rest two variables that appear in the fourth column are robust determinants 
only under the OLS analysis (i.e., “difference in science performance” (i.e., PC39c), “number of 
students who refer skipping/arriving late at classes two weeks prior to the test” (i.e., PC26c)). 

Image plots in figures 1a. and 1b. in Appendix demonstrate the sign and the importance of the 
regressors in the universe of models. These graphical representations highlight how the estimated 
coefficients fluctuate for the top 300 models shown in the horizontal axis, scaled by their posterior 
model probability. Blue and red colors indicate the inclusion of the regressor with a positive and 
negative posterior mean, respectively. White color indicates non-inclusion (or a zero coefficient). 
Robust covariates retain the same sign pretty much throughout the model space.   

The first and third panel of figures 2a. and 2b. in Appendix provide the distribution of model 
sizes for the baseline exercise for Students’ performance in science. With 2K possible variable 
combinations, a uniform model prior implies a common prior model probability of 21.5. However, 
the graphs show a posterior model size distribution equal to 19.4231 and 19.0444, for the Gini and 
OLS case, respectively. The second and fourth panel of figures 2a. and 2b. demonstrate the best 
300 models encountered, ordered by their analytical posterior inclusion probability (red line) and 
plot their MCMC iteration counts (blue line)14. At 0.9367 and 0.7673, these correlations are far 
from perfect but the differences from an exact likelihood approach are practically indiscernible and 
already indicate a satisfactory rate of convergence.  

8  Conclusions 

This paper identifies the robust determinants of students’ performance in science. To ensure a 
comprehensive search, the analysis accounts for a rich set of possible regressors by employing 
Gini-BMA methodology. This approach constructs estimates that do not depend on a particular 
model specification, but rather they are conditional on the model space. A weighted average of 
Gini and OLS coefficients are calculated, respectively, where the weights are given by the posterior 
model probabilities. 

Once model uncertainty is accounted for, the results can be summarized as follows. First, of the 
43-promising candidate regressors only 13 affect the students’ performance in science under the 
Gini analysis, while only 10 under OLS. Among the factors that are robust under both cases are: 

 
14 The model space is constructed by using birth-death MCMC sampler based on 106 burn-ins and 5x106 

draws. 
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the “percentage of students who had not attend pre-primary education”, the “percentage of 
students who had repeated a grade in primary, lower secondary or upper secondary school”, the 
“mean ratio between students and classroom characteristics”, the “expectations to work in 
science-related professional and technical occupations at age 30”, the “relative risk of boys 
expecting to work in science-related professional and technical occupations at age 30”, the 
“average time spent after school in studying science and no-science lessons”  and the “number of 
students who are evaluated and assessed in alternative ways”. However, in most cases, differences 
are observed in the signs of the coefficients.   

Second, only under the OLS case, the “number of students who refer skipping/arriving late at 
classes two weeks prior to the test”, the “difference in science performance” and the “number of 
students with or without an immigrant background” are considered important for the performance 
in science. In contrast, only under the Gini case, the “number of students who are evaluated and 
assessed in alternative ways”, the “number of students with or without an immigrant background”, 
the “number of science teachers who are qualified to teach science”, the “difference in science 
performance between immigrant and non-immigrant students”, the “average time spent per week 
learning in regular science and no-science lessons”, and the “attendance in pre-primary 
education” affect performance. 

9  Appendix 

9.1  Appendix A-Model Priors 

Beginning with considerations for choosing model priors, p(M1),….,p(Mk), the most common 
approach is an non-informative prior which favors all candidate models equally. For a model with 
p independently included regressors and size Ξ, the model size follows a Binomial distribution 
with probability of success ξ: 

Ξ ~ Bin (p, ξ)      (A.1) 

where p is the total number of candidate regressors and ξ is the prior inclusion probability for each 
variable. Based on the above, the prior of a model Mk with pk regressors is described by: 𝑝 (𝑀 )  =  𝜉 (1 −  𝜉)      (A.2) 

Raftery (1988), Raftery et al. (1997), Fernandez et al. (2001 a,b) and George and McCulloch 
(1993), fix ξ to equal 0.5 so that every regressor has the same a priory probability15 . This leads to 

 
15 Sala-i-Martin et al. (2004) perform sensitivity analysis to examine how different values for ξ affect their 

results. They pre-specify a prior mean model size, kbar, implying that each variable has a prior probability 
of inclusion equal to kbar/K, with K being the total number of potential regressors.  As a special case, when 
kbar=K/2, equal probability is assigned to each possible model. 
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the uniform model prior, which can be considered as a benchmark, that assigns equal prior 
probability to all models, implying that p(Mk)= 2  for each p and that expected model size is p/2. 

Mitchell and Beauchamp (1988) introduced the more general model prior structure, when prior 
information about the relevance of a variable is applicable, namely: 

𝑝 (𝑀 )  =  ∏ 𝜋 (1 −  𝜋 )       (A.3) 

where 𝜋   ε [0 ,1] is the prior probability that variable Xj is included in the model and 𝛿 =1 if Xj 
is included in Mk and 0 otherwise. Usually, it is assumed that πj = π for j= 1,….,p. For π=0.5, (A.3) 
corresponds to a uniform prior across model space, while π<0.5 imposes a penalty for large models. 
Assigning 𝜋   =1, guarantees the inclusion of variable j in all candidate models16. An extension on 
this approach was proposed by Brown et al (1998;2002) and Ley and Steel (2009), who assign a 
hyperprior on the probability of inclusion, π, converting it into a random variable drawn from a 
Beta distribution17. 

When little information is available about the relative validity of the candidate models, 
assuming independent inclusion of regressors a priori seems a “neutral” choice18 . However, it 
might be quarrelsome in some circumstances (Chipman et al. (2001)). The uniform model prior 
does not take into consideration interrelations between different variables, replicating a problem 
comparable to the irrelevance of independent alternatives (IIA) in the discrete-choice literature19. 
When the goal is to evaluate the relative significance of distinct theories and to define non-
informative model priors across theories, the uniform prior is inappropriate, since the researcher 
can change the prior weights across theories simply by introducing “redundant” proxy variables 
for each theory.  

George (1999b) proposed a dilution prior as a solution to the interrelations between variables. 
If the set of candidate regressors includes variables that represent the same concept, George’s 
dilution prior increases the prior probabilities of models not containing these correlated predictors. 
However, this is not always the case, since variables are often measures of different ideas but are 
still correlated. Under this condition, the straightforward use of this prior penalizes larger models. 

To deal with the interdependencies across theories due to the addition of “redundant” variables, 
Durlauf, Kourtellos and Tan (2007;2012) choose the prior probability that a particular theory -
defined as the set of variables that are used as proxies for that theory - is included in the true model 
to equal 0.5. This assumption captures the non-informativeness (i.e. agnosticism) across theories 

 
16 George and McCulloch (1993), Volinsky et al. (1997), and Madigan and Raftery (1994) apply this approach 

in the context of linear regressions, Cox models, and graphical models, respectively.   
17 In that case, and according to Bernardo and Smith (1994, p.117), the prior on model size is a Binomial-

Beta distribution. 
18 Both the Binomial and the Binomial-Beta priors are based on this assumption. 
19 See Brock and Durlauf (2001), and Brock, Durlauf and West (2003) for further analysis. 
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but also ensures that the probability of inclusion of one theory in a model does not exclude other 
theories from being relevant. The question now is how to assign prior probabilities across the set 
of variables within each theory. To answer this, specification uncertainty should be taken into 
consideration. This problem is related to existence of correlations between potentially unrelated 
proxy regressors within theories. To handle this, they introduce a modified version of George’s 
(1999b) dilution prior. Selecting a theory T, with pT regressors, as a priori proper, they construct a 
binary vector γT for each possible combination of these pT proxies. The conditional prior probability 
assigned to each γT is given by: 𝜇 (𝛾 )  =  |𝑅 | ∏ 𝜋 (1 − 𝜋 )      (A.4) 

where 𝜋  is the prior inclusion probability of each proxy variable in theory T, which is equal to 𝜋 =0.5 for j = 1,….,pT  and |𝑅 | is the correlation matrix for the set of variables included in the 
binary vector γT. When regressors are collinear, |𝑅 | takes the value of zero, whereas when 
regressors are orthogonal, it is equal to 1. This structure penalizes models that include irrelevant 
variables and retains weights on informative models.  

A similar approach can be found in Brock and Durlauf (2001) and Brock et al. (2003) who 
focus on economic theories rather than individual regressors and use hierarchical tree structure to 
construct model priors. A related idea was expressed by Chipman et al. (2001), who assigns 
probability to neighborhoods of similar models. More recently, George (2010) develops dilution 
model priors classified in three distinct approaches: the tessellation defined dilution priors20, the 
collinearity adjusted ones and the model distance based. The key characteristic of these is to assign 
prior probabilities more uniformly across neighborhoods of models rather across models21.  

Despite it seems a sufficient answer to the dilution property, this prior structure obliges a 
decision on which proxies are classified under a specific theory and which models belong to the 
same neighborhood. Such decisions are not within reach in most of the cases.   

9.2  Parameter priors/Prior distributions of parameters 

In the context of Bayesian framework, to complete the Normal linear regression model described 
in (2), a prior distribution for the parameters θk= (β0, β(k), σ) is needed. This distribution will be 
given through a density function: 𝑝 (𝛽 , 𝛽( ), 𝜎 | 𝛭 )     (A.5) 

which consists a key component in the marginal or integrated likelihood of model Mk: 
 

20 Moser and Hofmarcher (2014) provide an extended analysis on the implementation of this approach. 
21 Another promising approach to dilution prior construction is suggested by Garthwaite and Mubwandarikwa 

(2010), who construct prior model weights using the correlation matrix between models.  This matrix 
reflects the similarities between models and assigns small weights to those who are highly correlated. 
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𝑝 (𝐷| 𝑀 ) =  𝑝(𝐷 | 𝛽 , 𝛽( ), 𝜎, 𝑀 ) 𝑝(𝛽 , 𝛽( ), 𝜎 |𝑀 )𝑑𝛽 𝑑𝛽( )𝑑𝜎  (A.6) 

and affects right away the posterior model probabilities p (Mk | D). Two challenging questions arise 
regarding the computation of p (Mk | D) and the influence of the assumptions made for prior 
distributions on the latter quantity. Analytical answer to the first one is provided in the next section. 

Apart from purely computational features, the choice of “rational” prior parameter distributions 
remains unresolved and depends mainly on the availability of prior information. When information 
about the parameters is given, informative priors can be constructed (e.g. Jackman and Western 
(1994)). However, under little or absence of prior information, choosing a distribution/density for 
(13) is a very complex task. Consequently, many efforts have been made to establish “default 
priors” or “reference priors” that can be applied in all such cases. 

9.2.1  A non-informative prior for the intercept and for σ 

Following Fernandez et al. (2001b), “non-informative” improper priors have been adopted for the 
common intercept and the scale σ, such  

 𝑝(𝛽 )  ∝  1     (A.7) 

 𝑝(𝜎)  ∝  𝜎      (A.8) 

assuming common prior distribution for σ across models and that β0 is independent of β(k) and σ, 
so that p (β0, β(k), σ) = p(𝛽 )p(𝛽( )| 𝜎 )p(𝜎 ). 

9.2.2  Informative priors for the regression coefficients  

In general, direct use of improper noninformative priors for model-specific parameters is not 
allowable because their arbitrary norming constants remain in the integrated likelihoods and lead 
to uncertain model probabilities22(Jeffreys (1961); Berger and Pericchi (2001)). Conventional 
proper priors for regression coefficients have been relied on the natural-conjugate approach, which 
assigns a conditional normal prior on the k-th model’s parameter (β(k) | σ2) with zero mean and the 
variance proposed by Zellner (1986), leading to the following prior distribution (Fernandez et al. 
(2001b)): 𝑝(𝛽 , 𝛽( ), 𝜎 | 𝛭 )  ∝  𝜎 𝑓 (𝛽( )| 0, 𝜎 (𝑔𝑍 𝑍 ) )    (A.9) 

where 𝑓  (w | m, V) denotes the density function of a q-dimensional Normal-distribution of w with 
mean m and covariance matrix V, and g is a scalar that measures how important are the prior beliefs 

 
22 To overcome this problem, Berger and Pericchi (1996) and O’Hagan (1995) apply intrinsic Bayes factors 

and fractional Bayes factors, respectively, but their approaches suffer from inconsistencies. 
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of the researcher23. The above prior distribution allows for exclusion of regressors from some of 
the models, represented by a prior point mass at zero (known as the “spike-and-slab” approach in 
Mitchell and Beauchamp (1988)).   

Efficiently, the thorny problem of picking a prior distribution for β can be solved only by 
selecting a single parameter g. Under this “benchmark” prior structure, incorporating subjective 
prior knowledge into the analysis is not feasible or desirable, resulting in little influence on 
posterior inference. These “automatic” priors depend only on the number of independent variables 
and the sample size (Fernandez et al. (2001b)). In the same spirit, Kass and Wasserman (1995 and 
Raftery (1995) recommend “unit information” priors, which contain the same amount of 
information as a regular single observation. In contrast, Raftery et al. (1997) display “weakly 
informative” proper priors, which are data dependent through the response variable24. 

To demonstrate the behavior of several notorious priors that belong to the above-mentioned 
categories (refer to the priors 1-11 and 14, presented in Table1 in Appendix), Eicher et all. (2007) 
compare their predictive performance by employing growth and simulated data and conclude that 
Unit information Prior in combination with uniform model prior surpass all the rest. In contrast, 
Ley and Steel (2009) recommend the avoidance of UIP in the context of growth regressions or 
under the presence of large number of potential regressors, proposing instead the use of prior 
g=1/k2 (combined with the assumption that the inclusion of each regressor is independent and equal 
to 0.5).  

According to Liang et al. (2008), when fixed g priors are used to construct Bayes factors, the 
result might suffer from the Bartlett’s and the Information paradoxes. To overcome this 
complication, they investigate fully Bayes approaches and suggest three alternatives: Global and 
Local empirical Bayes procedures, the multivariate Zellner-Siow Cauchy priors (initially 
introduced by Zellner and Siow (1980)) and a family of prior-probabilities imposed on g25. Because 
this hyper-g prior family for g lacks model selection consistency, they provide a modification, 
known as hyper-g/n prior family26. In the same strand of literature, Ley and Steel (2012) attach a 
proper hyperprior to g, which corresponds to a shrinkage factor δ = g/(1+g) that follows a Beta 
prior distribution. This “benchmark” Beta prior with c=0.1 and a hyper-g/n prior with α=3 (and 

 
23 A large value of g implies a small true model, that is, many of the regressors equal zero, while a small g 

supports the existence of a large model. When g0, the β estimator is the Least Squares estimator of the 
full/ “kitchen sink” model (George and Foster (2000)-Calibration and empirical Bayes variable selection). 

24 Tobias and Li (2004) apply this prior choosing the following values for the parameters: V=2.852Ik, λ=0.28, 
v=2.58, μβ= 0. 

25 Strawderman (1971)-Proper Bayes minimax estimators of the multivariate normal mean- and Cui and 
George (2007)-Empirical Bayes vs Fully Bayes variable selection- study priors that belong to this family 
of prior probabilities for g. 

26 According to Liang et al. (2008), the three alternative solutions resolve the information paradox and are 
consistent under prediction. However, only Zellner-Siow priors are consistent for model selection. 
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α=4), is compared with existing priors27 in terms of model selection consistency, avoidance of 
information paradox and empirical behavior/performance.  

Feldkircher and Zeugner (2009) finalize the analysis presented by Liang et al. (2008), by adding 
the posterior distribution of β|y,X, its second moments, and the second moment of the shrinkage 
factor. Regarding the computation of these posterior expressions, they use algebraic 
transformations and implement accurate statistics to overcome possible errors that occur when 
Laplace approximations are applied. In a simulation study with noisy data, they show that hyper g-
prior spreads the posterior mass more evenly among the candidate models compared to the 
“Benchmark prior” (FLS (2001b)). 

A completely different approach, known as the Bayesian Averaging of Classical Estimates 
(BACE) methodology, is given by Sala-i-Martin et al. (2004), whose analysis is not based on g- 
parameter priors, but rather information is extracted from the data and the final estimates are the 
result of averaging OLS estimates across models. The weights assigned to each model is the 
logarithm of the likelihood function, agreeing to Schwarz model selection criterion28.   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  

 
27 These are Zellner and Siow (1980), Maruyama-George (2011), Bottolo-Richardson (2008), Feldkircher 

and Zeugner (2009), Liang et al. (2008), Carvalho et al. (2010), Forte et al. (2010). 
28 Although Sala-i-Martin et al. support that “BACE limits the effect of prior information”, it is important to 

mention that even if prior assumptions are implicit now, this does not imply that the dependence on them 
becomes less important (Ley and Steel (2009)).   
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9.2  Appendix B-Figures 

Figure 1: Model Inclusion Probability on Best 300 Models for the Gini case (top) and OLS case (bottom) 
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  Figure 2: Posterior Model Size Distribution and Posterior Model Probabilities for 
the Gini case (top) and OLS case (bottom) 
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9.3  Appendix C-Table

Table 1: Parameter prior structures  

Automatic Priors (Fernandez et al. (2001b) (FLS))
G-prior Description 

1) 𝑔  =   The log Bayes factor obtained under 
this prior behaves asymptotically like 
the Schwarz criterion.  
This prior leads to consistency. 

It assigns the same amount 
of information as a regular 
single observation. It is 
like “unit information 
prior” proposed by Kass 
and Wasserman (1995), 
but with zero mean instead 
of MLE. 

2) 𝑔  =   The log Bayes factor obtained under 
this prior behaves asymptotically like 
the Schwarz criterion. 
This prior leads to consistency. 

As more independent 
variables are added in the 
model, more information 
is attached to this prior 
(i.e. the discrete point 
mass at zero for β shrinks.) 

3) 𝑔 =   
The log Bayes factor obtained under 
this prior behaves asymptotically like 
the Schwarz criterion. 
This prior leads to consistency.

As more independent 
variables are added in the 
model, less information is 
attached to this prior. 

4) 𝑔 =   
The penalty applied for selecting 
larger models is smaller compared to 
the Schwarz (BIC) criterion. 
This prior leads to consistency. 

It is an in-between case of 
prior 1 and attributes 
smaller asymptotic 
penalty for selecting 
larger models.  

5) 𝑔 =  
The penalty applied for selecting 
larger models is smaller compared to 
the Schwarz (BIC) criterion. 
This prior leads to consistency. 

It is an in-between case of 
prior 2, more information 
is attached to this prior as 
the number of regressors 
increases (i.e. the discrete 
point mass at zero for β 
shrinks). 

6) 𝑔 =  ( ( ))  This prior leads to consistency. As n becomes large, this 
prior mimics the Hannan-
Quinn (1979) criterion 
with CHQ=3. 

7) 𝑔 =  (   )( )  This prior leads to consistency. As n becomes larger, this 
prior decreases even 
slower and has asymptotic 
convergence to the 
Hannan-Quinn (1979) 
criterion with CHQ=1. 

8) 𝑔   =  (   ) 
This prior does not lead to consistency 
in general. 
 
 

This natural conjugate 
prior structure is proposed 
by Laud and Ibrahim 
(1996) and is subjectively 
elicited through predictive 
implications. The 
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suggested values for the 
parameters are:  γ<1, such 
that the prior increases 
when more regressors kj 
are added in the model, the 
shrinkage factor δ = 
g0j/(1+g0j) belongs to the 
interval [0.10,0.15] (i.e. 
the weight of the “ prior 
prediction error” in the 
Bayes factors) and the 
number of regressors kj 
ranges between 1 and 15.  
To cover this interval, 
FLS  choose the values 
γ=0.65 and δ=0.15 

9) 𝑔 =   This prior does not lead to consistency 
in general.  
 

It coincides with the Risk 
Inflation Criterion 
proposed by Foster and 
George (1994) 

10) 𝑔 =  {  , } This prior combines the consistent 
Bayes factors shaped under prior 1 
with the remarkable small sample 
performance of prior 9.  

It is a combination of prior 
1 and prior 9 and is the 
most preferred prior for 
FLS (2001b)  

 
Unit Information prior (Kass and Wasserman (1995); Raftery (1995)) 

11) 𝑔 =  𝑁 (g-UIP) This prior is known as g-UIP. 
The posterior model probabilities (and 
thus the Bayes factors) are 
approximated by the Schwarz criterion 
(BIC). That is, 
log pr (D|Mk) ≈ c – 1/2BICk  
  
where BICk = nlog(1-Rk2) + pklog(n) 
 
c is a constant that does not change 
across models  
 
The g-UIP prior does not resolve the 
information paradox.

It assigns the same amount 
of information as a regular 
single observation.  
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Foster and George (1994)

12) 𝑔 =  𝑞   (g - RIC) This prior is known as g-RIC. 
 
 
The g-RIC prior does not resolve the 
information paradox.

It is related to Risk 
inflation Criterion (RIC) 

13)𝑔 = 𝑚𝑎𝑥{𝑁, 𝑞 } (g-BRIC) This prior is known as the 
“Benchmark prior” and it is called the 
“g-BRIC”. Regarding predictive 
performance, it is the most favorite by 
FLS (2001b).   
 
 
The g-BRIC prior does not resolve the 
information paradox.

It is a combination of prior 
11 and prior 12.  

 
“Weakly-informative” priors or equivalently “Data-Dependent” priors (Raftery, Madigan 

and Hoeting (1997))
14)   
 𝐵 ~ 𝑁(𝜇, 𝜎 𝑉) 
 
where  
 𝑉 =  𝜎 𝜑 ( )   ~  𝜒  

This prior belongs to standard normal 
gamma conjugate class of priors.  
The hyperparameters to be selected 
are: v, λ, μ (a (p+1) vector) and V ( a 
(p+1)x(p+1) covariance matrix for β 
referring to model Mk ) 
 
The marginal likelihood for Y is:  
 𝑝 (𝑌| 𝜇 , 𝑉 , 𝑥 , 𝑀 ) =  𝛤 (𝑣 +  𝑛2 )(𝑣𝜆)𝜋  𝛤 (𝑣2)|𝐼 + 𝑋 𝑣 𝑥 |  𝑥 

 𝑥 [𝜆𝑣 + (𝑌 − 𝑥 𝜇 ) 𝑥(𝐼 + 𝑥 𝑣 𝑥 ) (𝑌− 𝑥 𝜇 )] ( )
 

 
The Bayes factor for model Mo versus 
model M1 is: 
 𝐵 = (|𝐼 + 𝑥 𝑣 𝑥 ||𝐼 + 𝑥 𝑣 𝑥 |) (𝑎𝑎 ) ( )

 

It is defined by four 
hyperparameters: if the 
full model has an R2 less 
than 0.9 then φ=0.85, v = 
2.58, λ= 0.28. In contrast, 
if the full model has an R2 
more than 0.9 then φ=9.2, 
v = 0.2, λ= 0.1684. 

 
Hyper -g priors (Liang, Paulo, Molina, Clyde and Berger (2008)) 

15) 𝜋(𝑔)  =  ( / ) / ( / )  𝑔 / 𝑒 /  To analyze the properties of priors on 
g, a quantity, named as shrinkage 
factor, is used and defined as:  
 𝛿 =  𝑔(1 +  𝑔 ) 

 
following a distribution:  

These are the multivariate 
Cauchy priors, introduced 
by Zellner and Siow 
(1980), where the prior on 
g follows an Inverse 
Gamma (1/2, n/2) 
distribution.   
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𝑝(𝛿)
=  𝑛2𝛤(12) 𝛿 / (1 − 𝛿) / 𝑒𝑥𝑝(− 𝑛(1 −  𝛿)2𝛿 ) 

 
The Zellner- Siow priors are a mixture 
of g-priors with an Inverse Gamma 
(1/2, n/2) prior on g. 
 
 
Under the Zellner-Siow prior, there 
are not closed- form solutions for 
marginal likelihoods.  
 
The Zellner-Siow prior resolves the 
information paradox and it is 
asymptotic consistent for prediction 
and model selection.  
 
Usually in the literature, the shrinkage 
factor follows a Beta prior distribution 
Beta(b,c), leading the prior on g to 
follow a Gamma-Gamma distribution 
(Bernardo and Smith (1994), p. 120) 
or, alternatively, an inverted Beta 
distribution (Zellner (1971), p.375):  
 
  𝑝(𝑔) = (  )( ) ( ) 𝑔 (1 +  𝑔) ( ) 
 
This prior on g leads to the following 
prior on the regression coefficients: 
 𝑝(𝛽 |𝛭 , 𝜎)=  𝛤(𝑏 + 𝑐)𝛤(𝑐 + 𝑘2 )|𝑍 𝑍 | /𝛤(𝑏)𝛤(𝑐)(2𝜋) / 𝜎 𝑥 𝛹 (𝑐 + 𝑘2 , 𝑘2 − 𝑏 + 1; 𝛽 𝑍 𝑍 𝛽2𝜎 ) 

16) 
 𝜋(𝑔)  =  𝑎 − 22  (1 +  𝑔) /   
 
with g >0, a>2  

To analyze the properties of priors on 
g, the shrinkage factor  
δ = g / (1 + g) is mobilized, which 
follows a Beta distribution 
Beta(b,c)=Beta(1, (α/2) -1), α>2. For 
α=4, it becomes a uniform 
distribution. Any choice between 
2<α≤4 might give reasonable results. 
Liang et al. (2008) choose the values 
α=3 and α=4.  
 
The posterior distribution of g under 
model Mk has a closed-form solution 
given by: 

This is a family of hyper-g 
priors proposed by Liang 
et al. (2008). 
 



Review of Economic Analysis 13 (2021) 157-212 
 

188 
 
 
 

www.RofEA.org 

𝑝(𝑔|𝑀 )= 𝑝 + 𝑎 − 22 𝐹 (𝑛 − 1)/2; 1; (𝑝 + 𝑎)/2; 𝑅 𝑥  (1 + 𝑔)( )/ [1 + (1 − 𝑅 )𝑔] ( )/  
 
 
The hyper-g prior derived from this 
family resolves the information 
paradox, under the constraint that 2< α 
≤3 (when sample size is minimal). 
Also, it is asymptotic consistent for 
prediction but not for model selection.  

17) 𝜋(𝑔) = (1 + ) /  The shrinkage factor δ= g / (n +g) 
follows a Beta distribution Beta (b,c)= 
Beta (1 ,( a/2) – 1 ) 
 
 
This family of hyper- g/n priors 
resolves the asymptotic inconsistency 
faced by the hyper- g priors in 16.

This is a family of 
modified hyper-g/n priors 
proposed by Liang et al. 
(2008). 
 

18) 𝑔 =  𝑚𝑎𝑥{𝐹 − 1,0} 
 

𝐹 =  𝑅 𝑝(1 −  𝑅 ) (𝑛 − 1 − 𝑝 ) 
This g-prior is based on the Local 
Empirical Bayes approach.  
 
This g-prior resolves the information 
paradox and is asymptotic consistent 
for prediction. However, it is not 
consistent for model selection.  

A distinct g-prior is 
evaluated for each model. 
The estimate for g 
coincides with the 
maximum marginal 
likelihood estimate, under 
the restriction to be a 
positive number.   

19) 
 𝑔=   𝑎𝑟𝑔𝑚𝑎𝑥 𝑝(𝑀 ) (1 + 𝑔)(   )/[1 + 𝑔(1 − 𝑅 )](

This g-prior is based on the Global 
Empirical Bayes approach. 
 
There is not closed-form solution for 
this g-prior since the marginal 
likelihood is not tractable. However, 
as suggested by George and Foster 
(2000), numerical optimization can be 
used as a solution.  
Liang et al. (2008) recommend an EM 
algorithm that provides a maximum 
likelihood estimation for g: 
 𝑔( )= 𝑚𝑎𝑥 { 𝑝( )(𝑀 | 𝛶)𝑥  𝑅 / ∑ 𝑝( )(𝑀 | 𝛶)𝑝 )(1 − (𝑔( )/(1 + 𝑔( )))𝑅 )/(𝑛 −− 1,0} 
 
Under this algorithm, Empirical Bayes 
posterior model probabilities can be 
attained at convergence. 
 
This g-prior resolves the information 
paradox and is asymptotic consistent 
for prediction. However, it is not 
consistent for model selection. 

A common g-prior is 
evaluated for all models. 
The estimate for g 
coincides with the 
maximum marginal 
likelihood of the data, 
averaged over all models.  
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20)  𝜋 , (𝑐)= 𝑀(1 + 𝑐) ( )𝑒𝑥𝑝{− 𝑏1 + 𝑐 } 
 
where 𝑀 =  𝑏 ( 𝑡 𝑒 𝑑𝑡)  

 
  
and  
 𝜋 (𝑐)=  𝑎(1 + 𝑐) ( ) 𝑓𝑜𝑟 cϵ (0, ∞) 

This g-prior is based on Fully Bayes 
approaches. 
The variance is known. 
To implement this approach, 
hyperpriors for two hyperparameters c 
and w should be defined.  
 
c is a hyperparameter for the average 
size of the regression coefficients 
matrix for model γ (βγ). 
 
w is a hyperparameter for the average 
number of nonzero coefficients in the 
model γ.  
 
The term (1+c) for cϵ (0, ∞) follows an 
incomplete Gamma distribution (a, b), 
where a and b are hyperparameters, 
with default choices at b= 0 and a=1.

It is suggested by Cui and 
George (2007). 

21) 𝑔(𝑥, 𝜆)= 𝛫 𝜆 𝑒𝑥𝑝 − 12 𝜆 |𝜒|  , 
  0 < 𝜆 ≤ 1, |𝜒| > 0 
 
where p≥6 and 0≤a<1 
and if p=5 then 1/2≤a<1 

These family of priors are used to 
provide proper Bayes minimax 
estimators when the mean of a 
multivariate normal distribution is 
estimated (under identity covariance 
matrix and a loss in squared errors). 
 
The unconditional density for λ with 
respect to Lebesgue measure is given 
by 𝜆 /(1 − 𝑎) for any a, 0≤a<1

It is introduced by 
Strawderman (1971). 

  
Hyper -g priors (Ley and Steel (2012))

22) 
 
 𝑝(𝑔) = 𝛤(𝑏 + 𝑐)𝛤(𝑏)𝛤(𝑐) 𝑔 (1+ 𝑔) ( ) 
 
   
 

The shrinkage factor δ=g/(1+g) 
follows a Beta prior distribution 
Beta(b,c), leading the prior on g to 
follow a Gamma-Gamma distribution 
(Bernardo and Smith (1994), p. 120) 
or, alternatively, an inverted Beta 
distribution (Zellner (1971), p.375): 
 
 𝑝(𝑔) = 𝛤(𝑏 + 𝑐)𝛤(𝑏)𝛤(𝑐) 𝑔 (1 + 𝑔) ( ) 
 
which has the following properties: 
 𝐸[𝑔] = 𝑏𝑐 − 1 , 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 𝑡ℎ𝑎𝑡 𝑐 > 1 

 
and 
 𝑉𝑎𝑟[𝑔]=  𝑏(𝑏 + 𝑐 − 1)(𝑐 − 1) (𝑐 − 2) , 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 𝑡ℎ𝑎𝑡 𝑐 > 2 

 

It is suggested by Ley and 
Steel (2012). Following 
Fenandez et al. (2001b), 
they set b/c= max {n, k2} 
and they get a Benchmark 
Beta prior with a fixed 
value for b=1 and c=1/ 
max {n, k2}. This leads to 
a single hyper-g prior with  
 
α = 2* max{n,k2}+1/ 
max{n,k2}=2 + 2/ 
max{n,k2} 
 
In that case, Beta 
distribution becomes  
Beta (b,c)= 
Beta (1, 1/ max{n,k2})= 
Beta (1 , (α-2)/2) 
 
It is known as the “hg-
BRIC” prior.  
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This prior on g leads to the following 
prior on the regression coefficients: 
 
  𝑝(𝛽 |𝑀 , 𝜎)  =  ( ) (   )| | /( ) ( )( )  

x  

Ψ(c + , − 𝑏 + 1 ;   )  

 
 
 
 
 

23) 
 𝐸[  ]  =   "ℎ𝑔 − 𝑈𝐼𝑃"   
 
and 
 𝐸[ 𝑔1 + 𝑔]  =  𝐾1 + 𝐾  "ℎ𝑔− 𝑅𝐼𝐶" 
 
 
 
 

The shrinkage factor δ = g / (1+g) 
follows a beta distribution Beta (1, 
(α/2)-1) 
 
The hyperparameter α expresses the 
prior beliefs on the shrinkage factor δ. 

Building on the grounds of 
Liang et al. (2008), 
Feldkircher and Zeugner 
(2009), specify the 
hyperparameter α as 
follows: 
 
α = 2 + 2/n and  α = 2 + 
2/k2  
 
The first one is known as 
“hg-UIP” and the second 
one as “hg-RIC”.  

24)  
 𝑝(𝑘 ) ∝  𝑘 (1 − 𝑘 )   

 
 𝑝(𝜆 ) ∝  (1 + 𝜆 )  
 
under the specification that b=c=1/2  
 

If the random shrinkage coefficient ki 
follows a Beta distribution Beta (b, c) 
then, the prior for the local shrinkage 
parameter λi is: 
 𝑝(𝜆 )  ∝  𝜆 (1 + 𝜆 ) ( ) 

It is introduced by 
Carvalho (2010) and is 
known as the “Horseshoe” 
prior.  
He specifies the values for 
b, c = ½ such that the 
random shrinkage factor ki 
~ Beta (1/2, 1/2) 

25)  
 𝑝(𝑔)  =  𝑔 (1 + 𝑔)𝐵(𝑎 + 1, 𝑧 + 1) 𝐼( , )(𝑔) 

 
 
with α > -1 , z > -1 

The term 1/(1+g) follows a Beta 
distribution Be (α+1, z+1).  
Defining new terms such that α+1=b 
and z+1=c , the term 1/(1+g) follows a 
Beta distribution Beta (b, c)=Beta (1/4, 
(n-q-1)/2 – b )  
 
where 
b= α+1= -3/4 +1 = ¼  

It is proposed by 
Maruyama and George 
(2011) in the context of 
formulating selection 
criteria based on a fully 
Bayes formulation.  For 
q<n-1, they constrain the 
choice for α to the interval 
(-1, -1/2). The default 
choices for these two 
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c= z + 1= (n-5)/2-q/2-α +1 =  
(n-q-1)/2 – 4/2 – α +1 = 
 (n -q -1)/2 -1 – α=  
(n -q -1)/2 – (α +1) = 
(n -q -1)/2 – b 
  
and  
-1 < α < -1/2  0 < α +1 < ½   
0 < b < ½  
 
z > -1  z+1 >0  c > 0   

hyperparameters are: α= -
3/4 and z = (n-5)/2 – q/2 – 
α. 

26)  𝑝(𝑔) = 𝛤(𝑏 + 𝑐)𝛤(𝑏)𝛤(𝑐) 𝑔 (1+ 𝑔) ( ) 
 

The shrinkage factor follows a b=Beta 
distribution δ ~ Be (b, c). 
The term b=0 and by setting a= 2, the 
term c= a/2 – 1= 0.  

Following Ley and Steel 
(2012), Bottolo and 
Richardson (2008) adopt a 
hyper-g prior with a=2, 
but make it proper by 
truncating the right tail at 
max{n, k2}. 

27)  𝑝(𝑔) = 𝛤(𝑏 + 𝑐)𝛤(𝑏)𝛤(𝑐) 𝑔 (1+ 𝑔) ( ) 
 

They recommend the use of b=1 and 
c=1/2, while truncating g to be  𝑔 >  (𝑛 + 1)𝑘 + 3  − 1  

Proposed by Forte, 
Bayarri, Berger, Garcia-
Donato (2010). 
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Table 2: List of countries 

 
 

 
 
 
 
 

 
 
 
 

 
 
 

 
 

Source: This list of countries is taken from PISA 2015 
dataset. More information can be found at 
http://www.oecd.org/pisa/data/ 

 

Australia Algeria 
Austria Brazil 
Belgium B-S-J-G (China) 
Canada Bulgaria 
Chile CABA (Argentina) 
Czech Republic Colombia 
Denmark Costa Rica 
Estonia Croatia 
Finland Cyprus  
France Dominican Republic 
Germany FYROM 
Greece Georgia 
Hungary Hong Kong (China) 
Iceland Indonesia 
Ireland Jordan 
Israel Kosovo 
Italy Lebanon 
Japan Lithuania 
Korea Macao (China) 
Latvia Malta 
Luxembourg Moldova 
Mexico Montenegro 
Netherlands Peru 
New Zealand Qatar 
Norway Romania 
Poland Russia 
Portugal Singapore 
Slovak Republic Chinese Taipei 
Slovenia Thailand 
Spain Trinidad and Tobago 
Sweden Tunisia 
Switzerland United Arab Emirates 
Turkey Uruguay 
United Kingdom Viet Nam 
United States Kazakhstan 
Albania Malaysia 
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Table 3: Summary statistics for the dependent and the independent variables  

 Observations Mean Std.Dev Min Max 
 
Dependent Variable  
Students’ performance in science 72 465.297 49.125 331.639 555.575 

Independent Variables  
Educational Outcomes 
Repetition of a grade 72 0 1 -1.031 4.055 
Non-attendance in pre-primary education 56 0 1 -0.699 5.011 
Attendance in pre-primary education 1 56 0 1.755 -3.043 3.569 
Attendance in pre-primary education 2 56 0 1.151 -1.897 3.229 
Numbers of years in pre-primary education 56 0 1 -2.71 2.036 
 
Participation in Education  
Attendance in schools 1 71 0 1.435 -5.117 1.941 
Attendance in schools 2 71 0 1.026 -3.554 2.915 
 
Fields of Education  
Expectations to work in science-related 
fields 1a  

72 0 2.274 -3.435 5.593 

Expectations to work in science-related 
fields 2a 

72 0 1.557 -2.756 8.19 

Expectations to work in science-related 
fields 3a 

72 0 1.489 -2.96 5.234 

Expectations to work in science-related 
fields 4a 

72 0 0.962 -2.764 1.92 

Relative risk/Increased likelihood 1b 70 0 1.146 -4.483 2.608 
Relative risk/Increased likelihood 2b 70 0 1.049 -4.778 3.885 
Relative risk/Increased likelihood 3b 70 0 0.963 -2.764 2.593 
 
Student evaluation and assessment 
Students’ evaluation and assessment 1 67 0 1.385 -3.492 2.87 
Students’ evaluation and assessment 2 67 0 1.374 -2.793 3.867 
Students’ evaluation and assessment 3 67 0 1.184 -2.486 2.811 
Students’ evaluation and assessment 4 67 0 0.980 -2.682 2.217 
 
Classroom environment/School climate 
School characteristics 1a 72 0 1.351 -2.115 3.800 
School characteristics 2a 72 0 0.849 -2.690 2.730 
Average time spent in learning 1b 57 0 1.576 -2.687 6.277 
Average time spent in learning 2b  57 0 0.883 -1.865 2.190 
 
Students’ engagement, drive and beliefs  
Benefits from science knowledge 1a 57 0 1.698 -4.127 3.66 
Benefits from science knowledge 2a 57 0 1.039 -2.613 3.044 
Gender difference (boys-girls) in benefits 
from science knowledge 1b 

57 0 1.623 -2.882 3.751 

Skip/arrive late in class  57 0 1.795 -4.298 4.092 
Skip/arrive late in class 57 0 1.225 -2.282 2.876 
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After-School activities  
 Observations Mean Std.Dev Min Max 
Average time spent in studying after 
school 1 

57 0 1.893 -3.586 5.394 

 
Access to ICT  
Access to ICT 72 0 1 -1.623 2.758 
 
Performance and socio-economic status
Difference in science performance 1c 61 0 1.549 -3.004 2.768 
Difference in science performance 2c 61 0 1.269 -2.716 2.996 
Difference in science performance 3c 61 0 1.074 -2.606 2.452 
 
Performance and diversity 
Students with an immigrant background 1a 66 0 1.354 -3.634 3.145 
Difference in science performance 
between immigrant and non-immigrant 
students 1b 

66 0 1.263 -4.093 3.193 

 
Resources for education  
Resources for science course 1a 68 0 1.379 -2.839 2.321 
Resources for science course 2a 68 0 1.009 -3.623 1.617 
Shortage in resources 1b 72 0 1.415 -3.370 2.647 
Shortage in resources 2b 72 0 1.301 -3.084 3.765 
 
Professional Development of Teachers  
Professional Development of Teachers  72 0 1 -1.906 2.122 
 
School evaluation  
Students’ evaluation 1a 72 0 1.497 -3.421 3.540 
Students’ evaluation 2a  72 0 1.102 -1.922 3.442 
  
Governance   
School autonomy 72 0 1 -2.366 1.898 
Area of residence as a criterion for 
admission 

72 0 1 -1.664 1.995 

Note: The independent variables refer to the new variables that are constructed using the Principal Component 
Analysis.   
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Table 4: Description of the New set of independent variables  

Variables Notation Number of PC Description 

 
1) Educational Outcomes  

Repetition of a grade EducOut1 None % of students who 
had repeated a grade 
in primary, lower 
secondary or upper 
secondary education  

Non-attendance in pre-primary 
education 

EducOut2 None % of students who 
had not attend pre-
primary education 

Attendance in pre-primary education PC11, PC21 PC11 is the first 
principal component 
(that explains most of 
the variation) and 
PC21 is the second in 
row principal 
component. 

% of students who 
attend pre-primary 
education. 

Number of years in pre-primary 
education 

EducOut9 None Number of years that 
students spend for 
pre-primary education 

 
2)Participation in Education  
Attendance in schools PC12, PC22 PC11 is the first 

principal component 
(that explains most of 
the variation) and 
PC21 is the second in 
row principal 
component.

% of students who 
attend different kind 
of schools (e.g 
private, public, 
government 
dependent) 

 
3) Fields of Education  
Expectations to work in science-
related fields (a) 

PC13a, 
PC23a, 
PC33a, PC43a 

PC13a is the first 
principal component 
(that explains most of 
the variation) and 
PC23a is the second 
in row principal 
component, PC33a is 
the third and PC43a is 
the fourth.

% of students who 
expect to work in 
science-related 
professional and 
technical occupations 
at the age 30.  

Relative risk/increased likelihood (b) PC13b, 
PC23b, 
PC33b 

PC13b is the first 
principal component 
(that explains most of 
the variation) and 
PC23b is the second 
in row principal 
component, PC33b is 
the third.

The relative risk of 
boys expecting to 
work in science-
related professional 
and technical 
occupations at age 30 
(expressed in points). 
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Variables Notation Number of PC Description 
4) Student evaluation and 
assessment 

 

Students’ evaluation and assessment  PC14, PC24, 
PC34, PC44 

PC14 is the first 
principal component 
(that explains most of 
the variation) and 
PC24 is the second in 
row principal 
component, PC34 is 
the third and PC44 is 
the fourth.

The number of 
students who are 
evaluated and 
assessed in alternative 
ways (e.g. mandatory 
or no- mandatory 
tests, teacher-
developed tests etc.) 

 
5) Classroom environment/school 
climate 

 

School characteristics (a) PC15a, PC25a PC15a is the first 
principal component 
(that explains most of 
the variation) and 
PC25a is the second 
in row principal 
component.

Mean ratio defined 
between students and 
classroom 
characteristics.  

Average time spent in learning (b) PC15b, 
PC25b 

PC15b is the first 
principal component 
(that explains most of 
the variation) and 
PC25b is the second 
in row principal 
component.

The average time 
spent after school in 
studying science and 
non-science lessons 
(expressed in hours). 

 
6) Students’ engagement, drive and 
beliefs  

 

Benefits from science knowledge (a) PC16a, PC26a PC26a is the first 
principal component 
(that explains most of 
the variation) and 
PC26a is the second 
in row principal 
component.

Mean index of 
students who report 
that learning about 
science is beneficial 
in different ways.  

Gender difference (boys-girls) in 
benefits from science knowledge (b) 

PC16b PC16b is the first 
principal component 
(that explains most of 
the variation). 

Mean index of the 
gender difference 
(boys-girls) who 
report that learning 
about science is 
beneficial in different 
ways. 

Skip/arrive late in class (c) PC16c, PC26c PC16c is the first 
principal component 
(that explains most of 
the variation) and 
PC26c is the second 
in row principal 
component.

The number of 
students who refer 
skipping/arriving late 
at classes two weeks 
prior to the test.  
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Variables Notation Number of PC Description 
7) After- School activities 
Average time spent in studying after 
school 

PC17 PC17 is the first 
principal component 
(that explains most of 
the variation). 

The average time per 
week spent after 
school in studying 
science and non-
science lessons 
(expressed in hours). 

 
8) Access to ICT  

Access to ICT ICT None Number of computers 
per student. 

 
9) Performance and socio-economic 
status  

 

Difference in science performance (c) PC19c, 
PC29c, PC39c 

PC13b is the first 
principal component 
(that explains most of 
the variation) and 
PC23b is the second 
in row principal 
component, PC33b is 
the third.

Difference in science 
performance 
associated with 
different reasons. 
(expressed in score 
points). 

 
10) Performance and Diversity   

Students with an immigrant 
background (a) 

PC110a PC110a is the first 
principal component 
(that explains most of 
the variation)

% of students with or 
without an immigrant 
background.  

Difference in science performance 
between immigrant and non-
immigrant students (b) 

PC110b PC110b is the first 
principal component 
(that explains most of 
the variation). 

Difference is science 
performance between 
immigrant and non-
immigrant students 
(expressed in score-
points).  

 
11) Resources for education  
Resources for science course (a) PC111a, 

PC211a 
PC13b is the first 
principal component 
(that explains most of 
the variation) and 
PC23b is the second 
in row principal 
component.

% of science teachers 
who are qualified to 
teach science.  

Shortage in resources (b) PC111b, 
PC211b 

PC13b is the first 
principal component 
(that explains most of 
the variation) and 
PC23b is the second 
in row principal 
component.

Mean index of 
shortage in 
educational material. 
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12) Professional Development of 
teachers  

 

Variables Notation Number of PC Description 
Professional Development of 
Teachers  

ProfDevTeach None % of teachers 
attended a programme 
of professional 
development in the 
previous three 
months. 

 
13) School evaluation 
School evaluation  PC113, 

PC213 
PC113 is the first 
principal component 
(that explains most of 
the variation) and 
PC213 is the second 
in row principal 
component.

% of students who use 
internal/external 
evaluation. 

 
14) Governance  
School autonomy (a) Governance1 None Mean index of school 

autonomy (% of tasks 
for which the schools 
have considerable 
responsibility) 

Area of residence as a criterion of 
admission 

Governance2 None % of students in 
schools where 
residence in a 
particular area is 
always considered for 
admission to school  
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Table 5: Gini and OLS results using BMA methodology when the dependent variable is 
students’ performance in Science 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Gini-BMA OLS-BMA 
PIP PSE PSD PIP PSE PSD 

PC110b 0.9389 -19.092 9.224 0.4483 3.878 6.463 
PC25a 0.9281 17.136 7.469 0.3110 -0.489 5.543 
PC11 0.8167 -8.691 6.976 0.3103 0.053 7.079 

PC23a 0.7882 -11.631 8.265 0.2801 -0.672 3.111 
PC33b 0.7711 18.040 13.241 0.2663 0.207 3.818 

EducOut2 0.7301 -10.446 8.504 0.8377 -8.755 6.666 
PC17 0.6860 -5.880 5.476 0.3075 0.101 4.104 
PC44 0.6818 5.905 5.530 0.4749 -4.665 6.856 

PC110a 0.6486 7.391 7.508 0.9267 -16.699 8.515 
PC111a 0.6122 7.398 8.006 0.3201 1.369 3.989 
PC25b 0.6069 4.667 5.564 0.3732 2.502 5.526 
PC34 0.5621 -4.735 6.151 0.5649 3.872 4.735 

EducOut1 0.5381 4.396 5.587 0.7492 -10.257 8.065 
PC24 0.4771 -3.226 5.278 0.414 -2.453 5.287 

Governance1 0.4764 3.462 5.806 0.4891 -3.121 10.056 
PC13a 0.4686 4.233 6.451 0.8904 -14.292 7.359 

Governance2 0.4204 -2.621 9.401 0.3410 1.467 3.538 
PC16a 0.4199 3.397 6.014 0.3432 -1.966 4.484 
PC23b 0.3935 3.955 9.024 0.8636 22.127 12.416 
PC15b 0.3910 -2.713 6.989 0.7464 6.324 5.401 
PC213 0.3845 1.501 5.685 0.4049 2.319 5.288 
PC39c 0.3633 1.373 5.195 0.7080 7.650 6.705 

EducOut9 0.3618 1.633 3.545 0.3150 0.304 13.409 
PC15a 0.3613 -2.843 5.845 0.9248 16.629 7.451 
PC43a 0.3545 -1.375 2.863 0.2363 0.334 2.362 
PC113 0.3518 2.692 5.787 0.3321 0.880 5.298 
PC19c 0.3511 -2.437 8.052 0.2226 0.289 1.840 

ProfDevTeac1 0.3251 0.619 4.800 0.3150 2.142 5.498 
PC26a 0.3228 -1.768 4.374 0.2537 0.118 4.206 
PC21 0.3123 0.109 7.211 0.3849 1.808 3.607 

PC211a 0.3108 1.180 3.954 0.3390 -1.078 3.249 
PC12 0.3104 -0.744 13.500 0.2977 0.653 3.107 
ICT 0.2931 -0.105 3.936 0.3204 -2.103 6.900 

PC211b 0.2816 0.654 2.192 0.3368 0.402 5.050 
PC22 0.2802 0.570 2.878 0.3711 2.560 5.558 
PC26c 0.2789 0.794 2.922 0.7751 -6.840 5.202 
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Note: The values in yellow colour are above the 50% PIP and are determined as robust determinants  

 
Table 6: Summary of the robust determinants under Gini and OLS analysis 

 
Variables Under Gini 

Analysis 
Variables Under OLS 

Analysis 
Students with an 
immigrant background  

PC110a (+)  PC110a (-) 

Students’ evaluation 
and assessment  

PC34 (-)  PC34 (+) 

Repetition of a grade EducOut1 (+)  EducOut1 (-) 
Non-attendance in pre-
primary education 

EducOut2 (-)  EducOut2 (-) 

School characteristics  PC25a (+) PC15a (+) 
Average time spent in 
learning  

PC25b (+)  PC15b (+) 

Expectations to work in 
science-related fields  

PC23a (-)  PC13a (-) 

Relative risk/increased 
likelihood  

PC33b (+)  PC23b (+) 

Difference in science 
performance between 
immigrant and non-
immigrant students  

PC110b (-) Difference in 
science 
performance 

PC39c (+) 

Attendance in pre-
primary education 

PC11 (-) Skip/arrive late 
in class

PC26c (-) 

Average time spent in 
studying after school 

PC17(-)   

Students’ evaluation 
and assessment 

PC44(+)   

Resources for science 
course 

PC111a (+)   

 Notes: There are two variables that refer to pre-primary education and are indicated with yellow color   

  

 Gini-BMA OLS-BMA 
 PIP PSE PSD PIP PSE PSD 

PC111b 0.2785 -0.494 3.038 0.2430 0.268 1.958 
PC33a 0.2756 -0.337 2.910 0.4361 -1.935 3.152 
PC16c 0.2672 -0.284 2.957 0.2697 0.445 2.956 
PC14 0.2668 0.358 3.961 0.354 -1.457 4.319 

PC16b 0.2547 -0.403 4.321 0.2571 -0.321 2.790 
PC13b 0.2285 0.315 2.246 0.3370 2.352 7.989 
PC29c 0.2275 0.149 1.894 0.3556 1.864 4.832 
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