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This paper reviews the literature on incorporating behavioural elements into epidemiolog-
ical models of pandemics. While modelling behaviour by forward-looking rational agents
can provide some insight into the time paths of pandemics, the non-stationary nature of
Susceptible-Infected-Removed (SIR) models of viral spread makes characterisation of re-
sulting equilibria difficult. Here I posit a shortcut that can be deployed to allow for a
tractable equilibrium model of pandemics with intuitive comparative statics and also a
clear prediction that effective reproduction numbers (that is, R) will tend towards 1 in
equilibrium. This motivates taking R̂ = 1 as an equilibrium starting point for analyses of
pandemics with behavioural agents. The implications of this for the analysis of widespread
testing, tracing, isolation and mask-use is discussed.
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1 Introduction

The workhorse model for the modelling of epidemics is the SIR (Susceptible-Infected-Removed)
model of (Kermack and McKendrick 1927). It has been adopted to inform policy-makers in the
management of the COVID-19 pandemic. The model is mechanistic in that people in the model
do not make decisions that are reactive to current and predicted prevalence of an infectious dis-
ease in the population. As a key parameter, the basic reproduction number, R0, (a measure of
the expected number of infections generated by a single infected person) is driven by people’s
choices regarding physical interactions. For this reason, the lack of behavioural elements has
been a persistent source of criticism of such models.

This paper argues that, while a full behavioural model of pandemics is difficult to analyse
as there is an element of non-stationarity in dynamic outcomes, there is value to be gained
by analysing models that generate predictions that, for considerable lengths of time, the equi-
librium reproduction number, R̂ is equal to 1 implying that the prevalence of an infectious dis-
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ease/virus is constant over time with the number of those newly infected approximately equaling
the number of those newly recovered in a given time period. For COVID-19, such outcomes
have been observed empirically beyond the initial stages of outbreaks across many regions (see
Figure 1; (Atkeson 2021) and (Atkeson, Kopecky and Zha 2021)).1

Models that can generate an R̂ = 1 equilibrium exist in the literature. For the SIR model
whereby infectious individuals who recover are removed from the susceptible pool, I show that
an R̂ = 1 outcome requires a special set of assumptions that are unlikely to generally hold.
This is because individuals may base their behaviour on prevalence (i.e., the number of infected
people they are likely to encounter) rather than on the ever falling set of susceptibles. That set,
however, does impact on the reproduction number. Nonetheless, for the SIS model, whereby
infectious individuals who recover remain susceptible to future infections, the R̂ = 1 outcome
is a natural equilibrium. This suggests that, when prevalence is relatively low, even for the SIR
model, the number of susceptibles will not change at a rapid pace and thus, an R̂ = 1 outcome
provides an approximate outcome that may explain observed behaviour.

In what follows, I first present the standard (non-behavioural) SIR model. I then review var-
ious behavioural models that have been utilised in the literature deriving. I provide a graphical
approach to describe the resulting equilibrium outcomes. A final section offers some predictions
from this approach.

2 The Standard SIR Model

Let {S (t), I(t),R(t)} denote the shares (and levels) of the population (normalised to be of size
1 over a continuum of agents) who are either susceptible to the virus, infected with the virus
or removed (i.e., recovered or dead) from the virus at time t ≥ 0. It is assumed that time is
discrete. In the SIR model, these variables are assumed to evolve according to the following
dynamic equations:

S (t + 1) − S (t) = −βS (t)I(t)

I(t + 1) − I(t) = (βS (t) − γ)I(t)

R(t + 1) − R(t) = γI(t)

Here γ is the probability that an infected person will be removed in any given period while
β is the probability that a susceptible person will become infected by an infected person in
a given period. Observe that the number of infections in the population will be falling (i.e.,
I(t + 1) < I(t)) if β

γ
S (t) < 1 and will be rising (i.e., I(t + 1) > I(t)) if β

γ
S (t) > 1. The LHS of

these inequalities is the effective reproduction number, Rt. Since S (0) ≈ 1, then R0 =
β
γ
. R0

1Moreover, there is plenty of evidence that people act to mitigate their own infection risk apart from those
mandated by governments. See (Farboodi, Jarosch and Shimer 2021), (Goolsbee and Syverson 2021) and
(Allcott, Boxell, Conway, Ferguson, Gentzkow and Goldman 2020)).
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Figure 1: Estimated Rt for US States (COVID-19) from epiforecasts.io - part I
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Figure 2: Estimated Rt for US States (COVID-19) from epiforecasts.io - part II
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is the basic reproduction number which has the interpretation as the total expected number of
infections one infectious person will create over the life of their infection.

A few remarks about this model. First, there are two relevant state variables {I(t), S (t)} and
they co-evolve according to:

I(t) = 1 − S (t) +
1
R0

log(S (t))

.
where it is assumed that {I(0), S (0)} = {0, 1}. Second, the share of the population that is even-
tually infected, i ≡ 1 − S (∞), is given by:

R0 = −
log(1 − i)

i
.
Third, temporary changes to β can influence the eventual share of infected people, i, although
regardless i ≥ 1

R0
; the ‘herd immunity’ threshold. Fourth, the peak prevalence arises when

S̄ = 1
R0

and involves, at that point:

Ī ≡ 1 −
1 + log(R0)
R0

This all implies that, for R0 > 1, (a) an equilibrium with S = 1 is locally unstable and (b) with
temporary interventions that decrease β or increase γ, the absorbing states for i are characterised
by S (∞) = [S , 1

R0
] where S is defined by R0 = −

log(S )
1−S ; that is, either infections are kept at zero

or they evolve to a point beyond the ‘herd immunity’ threshold.2

The standard SIR model is useful in that it relates the evolution of a pandemic according to
R0 and how the underlying parameters associated with it may be impacted upon over the life of
the pandemic. This can be useful for analysing the impact of non-pharmaceutical interventions
that impact those underlying parameters. However, if, as is likely, those underlying parameters
are not fixed but vary according in ways that relate to the underlying state variables, the standard
SIR model will face challenges in being of predictive value.

3 The Behavioural SIR Model

The fact that the standard SIR model lacked behavioural elements has not been lost on epidemi-
ologists. In particular, it has been recognised that people might observe current prevalence (that
is, I(t)) and modify their own behaviour so as to reduce infection risk. However, the mathemati-
cal epidemiologists have typically taken what economists would call a ‘reduced-form’ approach
to this. For instance, they might posit a variable, x ∈ [0, 1], that is a filter reducing the impact

2See (Rachel 2020) for details.
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of β on new infections. That variable is then assumed to be a decreasing function of I(t); e.g.,
x(I(t)).3 A similar approach was used by (Cochrane 2020).4

3.1 Literature Review

Work in economics to include behavioural elements in models of epidemics started in earnest
with the study of the spread of AIDS. Following (Philipson and Posner 1993), (Geoffard and
Philipson 1996) examined an SI model, whereby people can transition from susceptible to in-
fected but cannot recover or become non-infectious, and examined the way in which increased
prevalence would change the behaviour of a forward-looking rational agent. They showed that
the incentives of infected agents – e.g., whether they altruistic or not – played an important
role.5 This line of research has continued with a mapping to empirical models by (Greenwood,
Kircher, Santos and Tertilt 2019).

The pioneering treatment that first introduced forward-looking, rational economic agents
into epidemiological models that could provide insights on COVID-19 was provided by (Gersovitz
and Hammer 2004). They examined SIR (in addition to SIS and SID models) to explore the
different effects that prevention versus a treatment might have on the dynamics of epidemics.
In doing this, they were able to clarify the externalities that may be present and the efficacy
of various forms of interventions (including taxes and subsidies) to improve social welfare.6

This approach inspired other analyses developing variants of their behavioural model including
(Reluga 2010) who showed that agents will socially distance more when R0 is high (as they fear
becoming infected) and (Fenichel 2013) who showed that non-targeted lockdown policies may
be worse than a decentralised behavioural outcome in terms of overall utility. There is a lit-
erature that has examined behavioural SIS models with rational agents including (Chen 2009)
looks at how the provision of information impacts on agent’s incentives to minimise risks of
infection in an SIS model. When prevalence is low, agents may take more risks and make erad-
ication impossible. (Toxvaerd 2019) uses an SIS model where agents bear costs of reducing
interactions. Agents are forward looking and understand the SIS dynamics. He examines the
impact on a treatment that reduces transmission rates on social welfare and finds potential for
a welfare-reducing rebound effect. (Rowthorn and Toxvaerd 2020) examines the appropriate
mix of prevention and treatment while (Goodkin-Gold, Kremer, Snyder and Williams 2020)

3See for example, (Eksin, Paarporn and Weitz 2019) who also explore assumptions where x(I(t),R(t)) is
decreasing in both variables, that they argue is a model of ‘long-term awareness’ in contrast to ‘short-term
awareness’ where x is a function of I(t) alone.
4This might be termed an ‘old-timey’ macro approach.
5(Kremer 1996) also included behavioural elements in an SI model but his focus was on equilibrium
outcomes in a broader matching game. See also an early contribution by (Auld 2003).
6(Chen 2012) uses an SIR model where agents can reduce their physical interactions and infected agents
may be debilitated and so interact less. He focuses on myopic agents and analyses the impact of different
matching functions on the resulting equilibrium outcomes.
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looks at vaccine pricing where epidemiological effects are anticipated and influenced. There
is also a literature that focuses on incentives to be vaccinated using behavioural foundations.
(Francis 1997) uses an SIR model to consider an agent’s choice of when to vaccine and finds
that the market is efficient. (Gersovitz 2003) and (Chen and Toxvaerd 2014) relaxes those con-
ditions and finds inefficiency especially if individuals can independently acquire immunity.7

A recent literature on COVID-19 has similarly built on these behavioural foundations with
forward-looking rational agents including (Eichenbaum, Rebelo and Trabandt 2020), (Makris
2021) and (Boppart, Harmenberg, Hassler, Krusell and Olsson 2020) (and by extension (Krueger,
Uhlig and Xie 2020)) who provide a model of endogenous social distancing in a macroeconomic
model; (Farboodi et al. 2021) who examine how altruistic preferences (that capture the degree
to which individuals choose to self-isolate if they know they are infected) impact on behaviour.
(Jones, Philippon and Venkateswaran 2020) use a macro-model and highlight a ‘fatalism’ ef-
fect whereby, when prevalence is high, people do not socially distance as they are likely to
become infected anyway; (Bethune and Korinek 2020) who look at what optimal policies look
like when the planner has a high degree of information regarding who is infected and who
has recovered. (Bisin and Moro 2020) examine behavioural elements combined with frictions
in spatial diffusion something also done by (Aguirregabiria, Gu, Luo and Mira 2020) using a
structural model; (McAdams 2020) provides a finite time model but focuses on the case where
agent value from economic activity depends on the activity of others introducing a complemen-
tarity and the possibility of multiple equilibria; (Di Guilmi, Galanis and Baskozos 2020) who
look at the impact of limited information provided to agents and (Brotherhood, Kircher, Santos
and Tertilt 2020) do a variety of policy experiments.8 The most careful analyses in this regard of
the microeconomic foundations of the SIR model come from (Toxvaerd 2020), (Rachel 2020),
(Dasaratha 2020) and (Fukuda, Kos and Wolf 2021) who provide analyses that show the con-
ditions under which endogenous social distancing will be too little, and potentially, too much
compared with what might be socially optimal. For a recent review see (McAdams 2021).

3.2 Model Setup

At the core of each of these models is a conception of a behavioural agent. An agent, n, chooses
their level of activity, xn ∈ [0, 1], which can be interpreted as their risk of interacting with
another agent or preventative measures (such as wearing a mask). That activity gives them
value in utility terms of un(xn) in each period where un(.) is increasing, concave and independent
across time periods. Agents have a common discount factor of δ < 1. If an agent becomes
infected, they incur an additional loss, L, in utility unless they die in which case they can incur
no utility thereafter. An infected agent has a probability, γ of becoming no longer infectious
in each period they are infected. At that point, with probability ρ, they survive and become

7See (Philipson 2000) and (Gersovitz 2011) for reviews.
8See (Gans 2020b) for further discussion of this literature.
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immune. Otherwise, they die. Either way they are part of R, the set of removed agents.
An agent’s activity choices at t are determined by the condition, {S , I,R}, they are in at that

time. If they are part of R and have not died, they are no longer infectious or at risk. Hence,
they will set their activity, xn,R = 1 and will earn an expected present discounted payoff of un(1)

1−δ .
In this, there is an implicit assumption that a recovery means a full recovery to the utility they
would earn had the epidemic not emerged.

3.3 Infected Agent Activity

For an infected agent (a member of I), they are infectious and sick. Their instantaneous utility
is un(xn,I) − L and their expected discounted payoff is:

Vn,I(t) = un(xn,I(t)) − L + δ(γVn,R + (1 − γ)Vn,I(t + 1))

where here Vn,R = ρ
un(1)
1−δ . Note that, being self-interested, infected agents set xn,I(t) = 1 in each

period and, thus, their expected discounted payoff becomes:

Vn,I =
un(1) − L + δ(1 − γ)ρ un(1)

1−δ

1 − δγ

This captures, in a stark way, a key externality that arises for infectious diseases when an in-
fected person does not perceive a personal risk from social interactions. Of course, various
factors could alter this stark result including that infected people may not be capable of or de-
sire the same level of activity if they were healthy and that such activity may not be as valuable
because others may avoid them if they knew they were infectious. For COVID-19, this was
complicated by the fact that many of the infected were asymptomatic or pre-symptomatic and
did not know they were infectious. In this situation, an agent may act as if they were still
susceptible.

3.4 Susceptible Agent Activity

For both the infected and recovered, their choice of economic activity is not impacted upon by
the state variables, {I(t), S (t)}. Thus, the key to the behavioural approach to epidemiology are
the choices of the susceptible. Their instantaneous utility is un(x(n, S )(t)) and their expected
discounted payoff is:

Vn,S (t) = un(xn,S (t)) + δ(p(xn,S (t), I(t))Vn,I(t + 1) + (1 − p(xn,S (t), I(t)))Vn,S (t + 1)

where p(xn,S (t), I(t)) is probability that n becomes infected at time t (the consequences of which
are felt at time t + 1). p(.) is generally increasing in both of its arguments; i.e., a higher rate of
infection in the population as well as a higher rate of activity by n raises the probability that n
becomes infected. If Vn,I(t + 1) < Vn,S (t + 1) this is not something that n wants and, thus, the
increased risk of becoming infected will constrain the agent’s choice of activity.
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The structure of p(xn,S (t), I(t)) depends upon how activity translates into an individual’s risk
of infection. The standard SIR model assumes that susceptible individuals face a probability,
β, of becoming infected if they interact with an infected individual. What an ‘interaction’
precisely is, however, is potentially rich. For instance, if an agent visits a location where a
number of other people are present, then β would be interpreted as the probability that at least
one those people are infected. If a virus lingers or is spread on surfaces, then the probability
that an agent becomes infected relates to the number of infected people who may be at a place
in the past.9

Typically, the standard epidemiological models consider simpler environments. The sim-
plest case assumes that an individual agent encounters one other member of the population at
random in each period. In this situation, xn,S (t), is interpreted as the probability that n is matched
with another person in period t who is infected with probability I(t). Thus, the probability that
n becomes infected is:

p(xn,S (t), I(t)) = xn,S (t)βI(t)

Of course, it is possible to imagine a slightly richer model whereby a susceptible understands
that β might differ between alternative activities or that they can choose different populations
with different I(t) probabilities to interact with.10 This structure presumes that xm,I(t) = 1
for infected agents, m ∈ I(t). If, for reasons of altruism or regulation, xm,I(t) < 1, then the
probability that n encounters an infected agent is 1

I(t)

∫ I(t)
0 xm,I(t)dm so that p(xn,S (t), I(t)) =

xn,S (t)β
∫ I(t)

0 xm,I(t)dm.

3.5 First-Order Effects

A susceptible individual, n, will choose xn,S (t) to maximise Vn,S (t) holding the state variables
and their future path as given. This gives rise to the marginal condition for the optimal choice
x̂n,S (t):

u′n(x̂n,S (t)) = βI(t)δ(Vn,S (t + 1) − Vn,I) (OPT)

This leads to a myriad of insights.

• (Greater prevalence reduces susceptible activity) Holding Vn,S (t + 1) fixed, as I(t)
increases x̂n,S (t) falls. That is, the first-order effect of greater prevalence reduces an
agent’s activity as they forgo utility to reduce the risk of becoming infected.

9(Acemoglu, Chernozhukov, Werning and Whinston 2022) explore these issues by considering a variety
of matching functions between susceptible agents and infecteds in an SIR model.
10See (Ellison 2020) for a review of these richer environments.
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• (A more infectious virus reduces susceptible activity) Holding Vn,S (t + 1) fixed, if the
infectiousness of the virus (β) rises then x̂n,S (t) falls. As will be noted below, this can
reduce the rate of growth of the epidemic which stands in contrast to the clear prediction
of the standard SIR model that a higher β will lead to faster epidemic spread and higher
long term infections ((Toxvaerd 2020)).

• (Greater activity from infecteds reduces susceptible activity) If, for some infecteds,
xm,I(t) < 1, it can be seen that x̂n,S (t) may be higher. Thus, there is a strategic substi-
tute between the activity choices of infected agents and susceptible agents (as noted by
(Keppo, Quercioli, Kudlyak, Wilson and Smith 2020)).

• (Activity is slower to return to normal as pandemic eases) The future path of the
epidemic is captured in the term, Vn,S (t + 1) − Vn,I . Note, in particular, that if I(t + 1) >
I(t), then x̂n,S (t) ≤ x̂n,S (t − 1) while the opposite is true if I(t + 1) < I(t). This, as
(Rachel 2020) shows, implies that a susceptible agent is going to engage in a smaller
reduction in activity at the beginning of an epidemic than at the end for the same level of
prevalence.11 That is, for, T < T̄ where I(T ) > I(T −1), I(T̄ ) < I(T̄ −1) and I(T ) = I(T̄ ),
x̂n,S (T ) > x̂n,S (T̄ ). Individuals will be more cautious at the end of a pandemic as the
relative on-going value of being susceptible is higher.

• (Complementarity between activity of susceptibles) The interaction between a suscep-
tible agent’s decision on their own activity and the activity of other susceptible agents is
potentially subtle. As will be described below, if susceptible agents reduce their activity
at t, then this will reduce the share of the population infected at t + 1. For an individual
agent, therefore, a reduction in expected activity by other susceptibles increases Vn,S (t+1)
and hence, decreases their own choice of activity at time t as there is a greater value to
not being infected. Thus, for susceptibles, their activity are strategic complements while
at the same time constituting a negative externality on one another.

• (Prospects for a vaccine or treatment have opposite effects on susceptible activity)
If a vaccine is expected at a future time, this increases Vn,S (t + 1) and hence, causes
susceptible agents to reduce their activity; becoming more cautious so as to obtain the
vaccine and not become infected. By contrast, if a treatment is expected at a future time,
this, by either increasing ρ or decreasing L, causes Vn,I to be higher and, thus, susceptibles
to be less cautious of becoming infected and so increase their activity.

These insights are all implications of the first-order effects of changes in the environment on
the behaviour of susceptible individuals. However, the full equilibrium effects can be harder to
derive.

11The notion that at the onset of a pandemic, agents who expect a higher growth in infections tend to
increase their activity and risk of infection is called the fatalism effect by (Jones et al. 2020).
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3.6 Equilibrium Analysis

To see this, we need to explore the evolution of the state variables under the behavioural as-
sumptions that individual agents can influence their individual infection risk. Fortunately, the
simple specification for p(.) used above provides a natural way of aggregating into the expected
path for the state variables, {I(t), S (t)}.

Let XS (t) ≡
∫ S (t)

0 xn,S (t)dn. The expected number of new infecteds is equal to βXS (t)I(t)
while each period γI(t) infecteds are removed. Thus,

I(t + 1) − I(t) = (βXS (t) − γ)I(t)

By construction, this also means the total number of susceptibles declines by:

S (t + 1) − S (t) = −βXS (t)I(t)

Note that if xn,S (t) = 1 for all n ∈ S (t), then XS (t) = S (t) and the above two equations become
the same as the standard SIR model.

It can be seen here that the time path of {XS (t), ....} determines the net presented expected
value of continuing to be susceptible and, thus, the incentives to undertake activity at time t.
Thus, the equilibrium outcome would require solving for a multi-dimensional fixed even with
commonly used simplifying assumptions such as all agents being symmetric in preferences.
Moreover, the set of susceptibles is being reduced in size over time at a rate that is endogenous to
the activity choices of susceptibles themselves. This means that there is unlikely to be stationary
equilibrium outcome that we usually look for in order to conduct comparative statics. For this
reason, most studies of behavioural SIR models have used simulations to demonstrate potential
outcomes rather than analytical solutions. For this reason, I propose here, instead, taking a
shortcut that will permit an analytical solution albiet at the expense of not (usually) satisfying
our usual equilibrium requirements.12

4 An Analytical Shortcut

The analytical shortcut I propose here is to establish conditions under which I(t + 1) = I(t) for
an interval of time. The condition is a simple one: S (t+1) = S (t) = S for all t. It is immediately
is apparent that this condition violates the laws of motion of the SIR model whenever γ > 0.

12This non-stationarity makes this analysis difficult and has been a challenge to forward-looking SIR
models (see (McAdams 2021) for a discussion). (Rachel 2020) characterises this equilibrium and shows
that infection rates are such that Rt is just below 1 and so fall over time. This implies that x̂S (t) should
also fall over time. However, (Rachel 2020) uses various approximations in order to analyse policies in
the model that have the effect of making x̂S (t) constant over time. An alternative would be not to use
an SIR model but an SI model as in (Gersovitz 2003). However, as the present paper is motivated by
the Covid-19 pandemic it is useful to keep closer to the epidemiology of the SIR model (and as will be
demonstrated below, this does matter for the policy analysis that follows).
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As an accounting measure, it simply cannot be the case that some infected individuals are
recovered (or strictly speaking) removed and S (t) is not falling over time. Of course, this state
of affairs is possible for the SIS model which is perhaps why much of the initial work integrating
behavioural assumptions into epidemiology examined that environment. However, because we
want the incentives of agents to reflect the possibility that they can be removed following an
infection, I cannot simply follow the SIS model here. Instead, I have just been inspired by it.13

4.1 Equilibrium Solution

The focus is on the equations governing the relationship between XS (t) and I(t). The first
equation is behavioural.

X̂n,S (I(t)) =
∫ S

0
x̂n,S (I(t))dn (BEH)

This equation is how the aggregate activity of susceptible agents (now fixed at size S ) is a
function of I(t) when individual agents are optimising. Note that X̂n,S (I(t)) is a non-decreasing
function of I(t) as discussed earlier.

The second equation comes from the SIR laws of motion.

I(t + 1) = I(t) + (βXS (t) − γ)I(t)

The number of infected agents is an increasing function of the aggregate activity, XS (t), of those
agents.

Essentially, these two equations describe a dynamic aggregate game involving choices of
susceptible agents but under an assumption that the set of those agents is now fixed. The goal
will be to characterise stationary Markov perfect equilibria of this game using a dynamic pro-
gramming approach.

From the law of motion, we have:

XS (t) =
I(t+1)−I(t)

I(t) + γ

β
(EPI)

Setting this equal to X̂S (I(t)) equilibria in which I(t + 1) = I(t) for all t can be explored. When
this condition is satisfied then x̂n,S (t + 1) = x̂n,S (t) for all t which carries over to, X̂n,S (I(t)).
Importantly, this means that:

I(t + 1) − I(t) = 0 = (βX̂S (I(t)) − γ)I(t) =⇒ X̂S (I∗) =
1
R0

(EQM)

13The idea is to focus on conditions under which I(t + 1) = I(t) for an interval of time (which is also what
(Rachel 2020)’s approximations do). There are other ways to ensure stationarity. One path, discussed
in depth by (McAdams 2021) is to not assume forward looking behaviour beyond an additional period.
Another would be to introduce some randomness associated with the point at which herd immunity is
reached – say, because of endemic factors in the disease – that will have a similar analytical effect.
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Importantly, this implies that the equilibrium effective reproduction number,

R̂ = X̂S (I∗)R0 = 1

Thus, prevalence will neither rise nor decline in equilibrium and this pins down that equilibrium
steady state of infected agents.14

4.2 Graphical Analysis

The analytical shortcut has the advantage that it permits a (familiar to economists) graphical
analysis. Figure 3 shows the EPI and BEH lines in (XS , I) space. BEH shows how the aggregate
choice of activity level is determined by the prevailing share of infected agents and, as shown,
earlier is typically downward sloping as agent’s reduce activity more when there is a greater
chance of encountering an infected agent. EPI shows how the number of infected agents relates
to the aggregate choice of activity level by susceptibles. It is upward sloping as a higher XS

directly increases I(t + 1) in a linear fashion in the SIR model. Where the two curves intersect
is the equilibrium outcome under the assumption that S is held fixed.

This graphical approach also shows why the equilibrium is stable. Suppose that I(t) < I∗.
Then X̂S (t) > 1

SR0
and I(t + 1) > I(t). By contrast, if I(t) > I∗, X̂S (t) < 1

SR0
and I(t + 1) < I(t).

These processes only stop as I(t) = I∗.
This approach allows for intuitive comparative static analysis. Figure 4 shows what happens

if there is an increase in baseline infectiousness, β. Firstly, as is well known in epidemiology, an
increase in β means that more activity translates into higher infections at a faster rate; shifting
the EPI line to the right. Second, from the analysis of behavioural responses, an increase in β
causes susceptible agents to choose to be more careful and reduce their activity. Thus, the BEH
curve shifts to the left. An increase in β has a negative equilibrium impact on aggregate activ-
ity from susceptibles but an ambiguous impact on the equilibrium number of infected agents.
Figure 4 is drawn to show the case where an increase in β leads to a lower rate of infection
in contrast to the standard epidemiological prediction. However, if the behavioural response is
weaker, then the opposite comparative static is possible.

Interestingly, there are some unambiguous monotone comparative static results that can be
derived. For instance, a change that impacts on Vn,I only without changing anything else – e.g.,
a treatment that increases ρ or a measure that makes being infected less costly (i.e., reduces L)
only impacts on BEH; shifting it up and to the right. Thus, the availability of a treatment causes
both a higher equilibrium activity and a higher equilibrium level of infection.

14It can readily be seen that this equilibrium exists if R0 > 1. When I(t) = 0, all agents set x̂n,S = 1
so that X̂S (0) = 1. At this point XS (0) = 1

R0
which is less than 1. On the other hand, if I(t) = 1,

XS (1) =
1−I(t−1)

I(t−1) +γ

β
> 0 while X̂S (I(t)) → 0. As all of the relevant functions are continuous, there is a fixed

point where I(t) = I∗.
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Figure 3: Equilibrium

4.3 Impact of Testing/Isolation

One policy that has received attention in COVID-19 is the increased use of testing (and contact
tracing) to identify infected individuals earlier and isolate them to prevent them spreading the
virus. This approach was adopted as a standard practice by many countries and appeared to
be successful in reducing the scale of the COVID-19 pandemic. (See (Gans 2020a), Chapter
7 for more details). However, some recent work in economics has raised the possibility of
unintended behavioural consequences from increased testing including testing giving infected
people confidence to engage in activity because they can’t get more infected ((Taylor 2020)
and (Deb, Pai, Vohra and Vohra 2020)), a reluctance to be tested for fear of being quarantined
((Eichenbaum et al. 2020) to the potential for a rebound effect that increases activity choices
((Acemoglu, Makhdoumi, Malekian and Ozdaglar 2020)). The model presented here permits
the examination of these consequences.

The focus here is on the situation where tests immediately trigger isolation (say, because
they are done by a public authority with enforcement power or have subsidies that induce iso-

16



GANS The Economic Consequences of R̂ = 1

Figure 4: Increase in Infectiousness

lation).15 The first impact of testing (along with isolation) is one that is intended: it reduces
the probability that a susceptible encounters an infected agent. This impacts on both the EPI
and BEH equations. The epidemiological response is to shift the EPI curve to left as it directly
reduces the probability that a susceptible agent will encounter and infected agent. However,
this also leads to a shift outwards of the BEH curve. The reduction in the probability of encoun-
tering an infected agent, increases the incentives of susceptible agents to engage in activity for
given level of prevalence. This is the effect identified by (Acemoglu et al. 2020) and (Hellmann
and Thiele 2020).16 Thus, examining this impact alone, we would find a similar ambiguous
comparative static as that for infectious but in the opposite direction to the movements depicted
in Figure 4.

15The situation where people may keep test outcomes private or not obtain tests is captured by the α below
but the analysis does not inform on the issue created by that possibility as to whether it is desirable to
have a testing regime relative to leaving individuals uninformed as to their infectiousness. The approach
here could be used to analyse such cases but that is left to future work.
16They use a network rather than SIR model and so implicitly adopt the analytical shortcut proposed here.
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There is, however, a second impact of testing – and specifically, isolation – that has not been
examined in the literature. Testing followed by isolation reduces the utility from becoming
infected as an agent would not expect to be able to freely choose their activity level in that
event. Formally, their utility becomes un(0) rather than un(1) in that case. While (Eichenbaum
et al. 2020) focused on how agents may avoid tests altogether, if agents are tested, those tests
themselves will cause the impact identified here. Specifically, with a reduction in the utility of
becoming infected, agents will become more cautious. This will shift the BEH curve to the left
countering the impact of increased testing on the likelihood of encountering an infected person.

Putting the two impact mechanisms together, we can explore further whether the ambiguity
may be removed if BEH, on net, shifted to the left. To explore this, let α be the probability that
an infected agent is isolated as a result of testing regime. Given this, we have:

p(xn,S (t), I(t)) = xn,S (t)β(1 − α)I(t)

Vn,I =
(1 − α)un(1) + αun(0) − L + δ(1 − γ)ρ un(1)

1−δ

1 − δγ
Note that:

Vn,S − Vn,I =
(1 − δγ)u(xn,S ) − (1 − δ)((1 − α)un(1) + αun(0) − L) − δ(1 − γ)ρun(1)

(1 − δγ)(1 − δ(1 − xn,S β(1 − α)I∗))

(OPT) becomes:

u′n(x̂n,S ) − β(1 − α)I∗δ
(
Vn,S − Vn,I

)
= 0

Taking the derivative of the LHS of (OPT) with respect to α we have:

βI∗δ
(
Vn,S − Vn,I

)
− β(1 − α)I∗δ

∂(Vn,S − Vn,I)
∂α

The first term is the marginal benefit to more risk as a result of testing while the second term is
the marginal benefit to more caution. Note that:

∂(Vn,S − Vn,I)
∂α

=
δxn,sβI∗(1 − δγ)(Vn,S − Vn,I) + (1 − δ)(un(1) − un(0))

(1 − δγ)(1 − δ(1 − xn,S β(1 − α)I∗))

which is positive for Vn,S ≥ Vn,I . Putting the two effects together, the impact of α on the
marginal return to activity is positive if:

Vn,S − Vn,I ≥ (1 − α)
δxn,sβI∗(1 − δγ)(Vn,S − Vn,I) + (1 − δ)(un(1) − un(0))

(1 − δγ)(1 − δ(1 − xn,S β(1 − α)I∗))

Notice that as α→ 1, this always holds. By contrast for α→ 0, this becomes:

(1 − δγ)(Vn,S − Vn,I)α=0 ≥ un(1) − un(0)
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which may not hold. Thus, while it is possible, for low α, that there may be an unambiguous
comparative static that testing will reduce equilibrium infections, for high α, ambiguity remains.
In this case, an increase in α (i.e., the effectiveness of testing and isolating) leads to a shift
upwards in the BEH curve. In this model, therefore, as testing increases the relative safety of
interactions this causes activity to rise by more than the effect driven by the decrease in the
utility of the infected. Hence, the ambiguity remains for this comparative static.

4.4 Mandated masks

Encouraging the use of masks has been a strategy increasingly deployed and even mandated for
dealing with COVID-19. In some medical circles there is debate regarding whether mandated
masks would encourage less social distancing and potentially have a immiseration effect on in-
fection rates ((Mantzari, Rubin and Marteau 2020)). As was the case with testing, the analytical
approach here can be used to provide insight on that potential.

Suppose that, if all but recovered agents wear masks, the probability that the virus infects a
susceptible person in an interaction with an infected one is 1−α; that is, a higher αmeans that a
susceptible has more protection. Mask wearing is costly to individuals and, thus, it is assumed
that all susceptible and infected agents, n, bear a cost, cn, for each period they wear a mask. In
this situation, the only difference between the impact of masks is this cost as well as the fact
that infected people are not restricted in their activity and thus earn un(1) while infected.

Thus, as was the case with testing, more effective masks (i.e., a higher α) leads to an increase
in the returns to risky activity as well as a cautionary effect. The overall effect of masks is the
impact of both. Note that, the impact of more effective masks on activity is positive if:

Vn,S − Vn,I ≥ (1 − α)
δxn,sβI∗(1 − δγ)(Vn,S − Vn,I)

(1 − δγ)(1 − δ(1 − xn,S β(1 − α)I∗))
=⇒ 1 ≥ δ

where the last implication assumes that Vn,S ≥ Vn,I . Thus, masks will always move the BEH
curve to the right meaning that, given that they move the EPI curve to the left, there is no unam-
biguous comparative static result with respect to masks. Compared with testing and isolation,
the returns to being infected are higher with mask wearing and so this reduces one driver of
caution.17

5 The R̂ = 1 Prediction

The analytical shortcut, whereby an equilibrium is analysed based on an assumption that S
is fixed, gives rise to a prediction that R̂ = 1. As noted earlier, this comports with the trends
associated with the first few months of COVID-19 in a variety of countries that failed to suppress

17(Gans 2021) and (Avery 2021) use a similar approach to the model here to examine the impact of
vaccine policies (e.g., mandates) in a behavioural SIR model.
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the pandemic. The question is: given that it is obtained using an analytical short-cut, how
seriously should we take this prediction?

The potential error that arises from the short-cut can be seen by examining Figure 3. Note
that rather than being constant, the share of susceptibles, S , will fall overtime. Indeed, if the
level of infected persisted at I∗, S would fall by γI∗ in each period. This means that the realised
aggregate level of activity by susceptibles, XS , would be expected to fall. This would not
change the EPI curve as this change would be a movement along that curve. However, it would
have an impact on the BEH curve. This is because the maximum value of XS that can be
generated by that relationship is S . Thus, a reduction in S may cause the feasibility constraint
to bind. Without modelling how agents take into account the change in S in their own decisions
– through expectations of a lower I in the immediate future – this curve, as derived, is only an
approximation of what might occur.

That said, there is one special case for which a full equilibrium of the environment (sans the
analytical shortcut) coincides with the limited equilibrium outcome examined thusfar. (Toxvaerd
2020) assumes that all agents are identical and that their activity choice x ∈ 0, 1. This gives rise
to BEH as depicted in Figure 5. When I(t) < I∗, all agents choose x̂ = 1 and when I(t) > I∗, they
choose x̂ = 0. He shows that I∗ is independent of the share of susceptibles. The equilibrium
arises when I(t) = I∗ and agents pursue a mixed strategy between {0, 1}. The total choosing
x̂ = 0 averages 1

SR0
. Thus, R̂t = SR0 = 1.

In Figure 5, it can be seen that as S falls, this reduces the maximum of BEH but otherwise
leaves the line, and hence, equilibrium outcome in terms of infections and reproduction rate un-
changed. This, of course, does not continue indefinitely. As (Toxvaerd 2020) shows eventually
SR0 < 1 in which case, the equilibrium moves down the EPI line until the pandemic eventually
ends. Thus, compared with the standard SIR model, in this model, the pandemic emerges and
hits a ceiling of infecteds at I(t) = I∗ and stays that way until S < 1

R0
. Thus, the curve is not so

much flattened as ‘pancaked’ at I∗.
This at least provides comfort that the R̂ = 1 prediction is the outcome of a possible full

equilibrium model. It also gives insight as to why the simulations of (Cochrane 2020) and
(Keppo et al. 2020) were able to generate outcomes whereby a Rt = 1 outcome was observed
for considerable periods of time when calibrated with parameters based on COVID-19. Put
simply, during the early months of the pandemic S was so large compared to I that it would not
be expected to change very much meaning that Rt appeared to be relatively constant over time
and close to 1 especially relative to SIR simulations that did not include a behavioural element.

6 Conclusions

Standard epidemiological models of pandemics often do not consider how susceptible, in-
fected and recovered people will change their behaviour over the life cycle of the pandemic.
Economists have made progress in building behavioural elements into these models but the
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Figure 5: Binary Choice and Symmetric Agent Equilibrium

non-stationarity that is a key part of viral epidemics such as COVID-19 has prevented an easy
characterisation of equilibrium paths of pandemics and the potential impact of interventions.

This paper argues that some analytical progress can be made on behavioural SIR models
by taking inspiration for epidemiological models that do have stationary characteristics. In
so doing, an equilibrium outcome is derived that allows intuitive comparative static outcomes
on key variables such as infection rates and aggregate activity choices while at the same time
generating a prediction that during much of a pandemic, without intervention, the effective
reproduction number, Rt will tend towards 1. At this point, the infection rate is neither rising
nor falling. This is consistent with the outcomes in many regions with respect to COVID-19.
Nonetheless, the model here falls short of the usual requirements for a full equilibrium outcome.
It does, however, have the benefit of being upfront about this limitation and what precisely we
are getting in return in terms of tractibility and potential insight.

In doing this, this paper makes the case for treating R̂t = 1 to be an expected outcome that
can be used to evaluate, for both policy analysis and empirical predictions regarding pandemics.
While being upfront regarding its ‘cargo cultish’ logic (i.e., based on observations of effective
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reproduction numbers hovering around 1 rather than fully from primitive assumptions), as a
shortcut it can provide some insight that might inform debates. For instance, (Budish 2020)
has argued that R being just below 1 should be a constraint that is met by policies that impose
lockdowns and other behaviour during pandemics. However, if the expectation is that, absent
interventions, that goal would be mostly achieved anyway, that target is arguably of limited use
compared, say, to a target of achieving I = 0 prior to what would otherwise be the natural course
of pandemics. Moreover, with regard to lockdowns, the expectation that non-targeted lockdown
activities may be adjusted to generate R̂t = 1 requires us to not simply look at the epidemio-
logical consequences of interventions (as (Acemoglu et al. 2022) do) but also to whether the
non-targeted activities are such that they would be unable to adjust so that R̂t = 1 was feasible.
In other words, the criteria for lockdowns is not simply about spread but about the scope for
behavioural adjustment.

Nonetheless, this analysis here remains purely normative. While it is tempting to conclude
that if testing or mask use led to more infections this would be welfare-reducing, we must also
remember the purpose of those interventions is precisely to allow activity to be safer and hence,
allow for more of these at the margin. Thus, even though it is possible to draw some possible
welfare conclusions from the fact that the BEH curve does not take into account external effects
and so likely lies above a suitably derived social curve, the reality is more nuanced and requires
an embrace of dynamic impacts. In particular, as (Rachel 2020) has shown the cumulative
nature of pandemic impacts suggest that a focus on instantaneous external effects is unlikely to
provide the correct insight into optimal policy-making.
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