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Shape Evolution of the Interest Rate Term Structure
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This paper adopts a novel approach to studying the evolution of interest rate term structure
over the U.S. business cycles and to predicting recessions. Applying an effective algorithm,
I classify the Treasury yield curve into distinct shapes and find the less frequent shapes
intrinsically linked to the recessions in the post-WWII data. In forecasting recessions,
the median-short yield spread trumps the long-short spread for horizons up to 17 months
ahead and the yield curve shape is nearly impressive as the median-short spread. Overall,
the yield curve shape is an informative but more succinct indicator than the spreads in
studying the term structure.
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1 Introduction

Pioneering studies on the interest rate movements date back to Macaulay (1938) at the National
Bureau of Economic Research (NBER). About three decades later, the classical monograph of
Kessel (1965) became the first work to characterize term structure patterns over the U.S. busi-
ness cycle after the WWII and he proposed the liquidity preference and expectations hypothesis
as the theory underneath. Since then, term structure has been the research hotspot in finance
and macroeconomics. While most of the theoretical and empirical inquiries were directed to
the expectations hypothesis, applying the yield curve to macroeconomic forecasting had not
shown its power until the late 1980s (Laurent, 1988; Harvey, 1988; Estrella and Hardouvelis,
1991). Since then, the predictive strength of the yield spread has become a “stylized fact”
among macroeconomists and market participants (Wheelock and Wohar, 2009). The literature
is still growing and beyond enumeration.
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Along the lines, this paper studies the U.S. term structure fluctuations and its predictive
power of recessions, contributing to the literature in a number of initiatives. Methodologically,
it designs an effective classification algorithm for the Treasury yield curve and makes available
a new indicator of the term structure. Second, it traces the evolution of the yield curve and
characterizes its business cycle patterns. Third, it applies the yield curve shape in forecasting
recessions and evaluates its performance relative to the term spreads.

Aside from measuring cross-sectional yields directly, this paper condenses the entire yield
curve information into a categorical shape variable and traces its evolution over the business
cycles. Since the upward-sloping yield curve is the most frequent shape, other yield curves
can be defined as the minor shapes of less frequencies. The principal findings are: 1) The
minor shapes tend to cluster before and in recessions; 2) the recession-related shape signals are
time-varying in their timing and strength; 3) the duration of a recession is positively related to
the density of the minor shapes; 4) the pre-recession shape signals become more monotonic
and evident after the 1980s. Feeding the Treasury yield curve shape into the Probit model in
recession forecasting, I find that its predictive performance is better than the models using the
long-short yield spread in the near- and median-term forecasts by various measures, especially
after the early 1980s. Without fully exploring the full information of the term structure, the
conventional approach based on the long-short yield spread can miss many positive signals and
downplay the predictive power the entire yield curve.

The remaining paper proceeds as follows: Section two describes the data and the classifi-
cation algorithm. Section three examines the evolutionary patterns of the Treasury yields and
shapes. Section four explores the links between the shape and recessions. Section five ap-
plies the yield curve shape in forecasting recessions and evaluates its performance. Section six
concludes. Non-essential details and evidence are collected in the Appendix.

2 Data and Methodology

This section introduces some basic concepts in understanding the yield curve, describes the
dataset on the U.S. Treasury yields, proposes an effective algorithm for classifying its shapes,
and reports the key statistics for the classification results.

2.1 Treasury yields

The most fundamental concept in yield curve study is the yield to maturity, henceforth YTM. It
measures annualized rate of return if the investor holds the bond to maturity. This interest rate
is implied from the market price of the corresponding bond. For simplicity, consider a zero-
coupon bond with face value FV and maturity T , its theortical price will satify the discounted
present value formula P = FV(1 + Y)−T , where Y is the zero-coupon bond YTM. Relating bond
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yield (YT M) to its maturity T constitutes the term structure analysis (or yield curve analysis).1

However, the U.S. Department of the Treasury does not create or publish any zero-coupon rates.
Instead, Treasury yield curve is based on securities that pay coupon interest on a semiannual
basis, the yields are considered ”bond-equivalent” yields and the yield curve is considered a
par yield curve, which corresponds to securities traded close to or at its face value.2 The U.S.
Treasury market yields are calculated from composite of quotations obtained by the Federal Re-
serve Bank of New York and current Treasury daily yield curve is fitted by a quasi-cubic hermite
spline function.3 The methodology and techniques to construct more consistent market yield
curves have been improving significantly over the past decades. A more technical approach to
fitting the U.S. Treasury yield curve can be found in Gürkaynak, et. al. (2007).

As described in Table 1, the Federal Reserve Board data download program provides the
most comprehensive yield data on U.S. Treasury securities in H.15 statistics since 1953. At
the short end, Treasury bills are money market assets with maturities of 1 year or less, sold
at a discount from par and do not bear periodic interest payments. Treasury notes are median
term coupon securities with maturities from 2 to 10 years. Treasury bonds have maturities more
than 10 years. Treasury notes and bonds are capital market assets carrying periodic coupon
payments. Yields derived from all these securities are therefore regarded as short term rates,
median term rates and long term rates, respectively. In the H.15 statistics, only the 1-year, 3-
year, 5-year, and 10-year yields are fully available over the entire sample from April, 1953 to
present.

Another source little explored in the literature is the NBER Macrohistory database, which
records monthly Treasury yields further back to 1920. Rather than reporting the yield per instru-
ment, this dataset contains yield series averaging over close maturities. And the observations in
this dataset are more unevenly distributed over various sample periods. It should also be noted
that other inconsistency exist in its data collection and revision process. For these reasons, this
paper only utilizes the NBER dataset from January, 1945 to March, 1953 to graph the yield
movements.

1Bond yields, while inversely related to the price, are influenced by many other risk factors such as
credit default, liquidity, call option, tax treatment, and coupon payment schemes. In practice, it is never
possible to hold all other factors constant and isolate the relationship between yields and their maturities.
Therefore, a pure term structure of interest rates never exists and is unobservable. For instance, bonds
within the same credit rating trade with various degrees of liquidity. More often, due to the differences in
coupon payment, securities with the same maturity can carry different yields (the higher the coupon rate,
the higher the price, all else equal), let alone different maturities. Thus, while economists can model the
pure term structure through zero coupon bonds in theory, practitioners need to ”bootstrap” the discount
factors successively from the coupon bearing bonds of different maturities to ensure less pricing errors.
2https://home.treasury.gov/policy-issues/financing-the-government/interest-rate-statistics
3https://home.treasury.gov/policy-issues/financing-the-government/interest-rate-statistics/treasury-yield-
curve-methodology
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Table 1: Federal Reseve Board H.15––Treasury yields

Maturity Instruments Availability Obs

1-month Treasury bills 200107 : present 234
3-month Treasury bills 198201 : present 468
6-month Treasury bills 198201 : present 468
1-year Treasury bills 195304 : present 813
2-year Treasury notes 197606 : present 535
3-year Treasury notes 195304 : present 813
5-year Treasury notes 195304 : present 813
7-year Treasury notes 196907 : present 618
10-year Treasury notes 195304 : present 813
20-year Treasury bonds 195304 : 198612 732

199310 : present
30-year Treasury bonds 197702 : 200202 480

200602 : present

Note: Observations as of December, 2020.

2.2 Shape classification

Despite its popularity, yield curve classification remains at a heuristic level and few has applied
any rigorous metric, not to mention effective computer algorithms. News and media aside,
academic research and economic textbooks provide some examples. Malkiel (1966) constructs
the ascending, flat, descending, and humped yield curves. Campell (1995) describes yield curve
shape as upward-sloping, downward-sloping (inverted), hump shaped, or even trough shaped
(inverted hump shaped). Mishkin’s textbook (2018) classifies yield curves as upward-sloping,
fat, and downward-sloping. In Fabozzi et al. (2019), historical shapes observed for the Treasury
yield curve are defined as positively sloped (upward-sloping), inverted (downward-sloping), and
flat.4

Figure 1 displays five typical shapes of the U.S. Treasury yield curve on different dates.
Analogous to literature mentioned above, I denote them upward (U), downward (D), flat (F),
hump (H), and bowl (B). Here, the B-shape is equivalent to the inverted hump-shape. No-
ticeably, yield curves differ by their level, slope, and curvature.5 Therefore, our yield curve

4The authors further distinguish between a normal and a steep yield curve by applying a threshold of 300
basis points to the yield spread between the 30-year bond and the six-month bill.
5In statistical modeling, the level, slope and curvature refer to the first three principle components, or the
common factors, of bond yields (Litterman and Scheinkman, 1991). Jointly, they can explain over 95%
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Figure 1: U.S. Treasury yield curve: observed shapes

classification can first condense all cross-sectional yields into these three measures from which
then derived the shape. Given the Treasury yield data, I provide a summary of the corresponding
measures and calculations in Table 2. The 10-year yield is calculated into the average long yield
here whereas it is in practice considered as a Treasury note rate. There are two reasons for this
adjustment. First, the 10-year Treasury yield has been chosen in the literature most frequently
as the long end when computing the slope of the yield curve. Second, the data on 10-year yield
have been available throughout the entire sample and it can balances the calculations of the
yield levels by contributing to the average long yield.

A classification algorithm is a formal metric of observations. Based on the measures, an
effective classification algorithm follows three principles: First, the shape being classified must
be visually recognizable and exactly identified. Second, the classified shape provides a sufficient
summary of the full information on cross-sectional yields. Third, the time series of classified
shapes must be mutually exclusive and exhaustive for any given sample.

Summarized in Table 3, the algorithm reduces data dimension from eleven U.S. Treasury
yields to three average yields: Ys, Ym, Yl, which are the simple average of T-bill, note, and bond
yields. Accounting for missing observations, they only average over available data points in
respective maturity sector. Based on the spread and curvature relations, the algorithm defines
five shapes. To separate the B-shape and D-shape, it sets the flat yield curve as a benchmark with

of the variation in yields. Notice, however, they are unobservable factors, not the shape per se.
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Table 2: U.S. Treasury yield curve: measures and calculations

Measure Definition Calculation

Ys The average of short-term yields (Y1m + Y3m + Y6m + Y1y)/4
Level Ym The average of median-term yields (Y2y + Y3y + Y5y + Y7y)/4

Yl The average of long-term yields (Y10y + Y20y + Y30y)/3

S ms The difference between Ym and Ys Ym − Ys

Spread S lm The difference between Yl and Ym Yl − Ym

S ls The difference between Yl and Ys Yl − Ys

Curvature Curv The difference between 2Ym and Ys + Yl 2Ym − (Ys + Yl)

Table 3: Shape classification algorithm for the Treasury yield curve

Yield curve shapes Term structure relations with 0.1 percent threshold Sample

Upward (U) (Ym − Ys > 0.1 & Ym 5 Yl) or (Ys 5 Ym & Yl − Ym > 0.1) 2010-04

Hump (H) (Ym − Ys > 0.1 & Ym > Yl) or (Ys < Ym & Ym − Yl > 0.1) 1982-07

Flat (F) |Ym − Ys| 5 0.1 and |Yl − Ym| 5 0.1 2006-02

Bowl (B) (Ys − Ym > 0.1 & Ym < Yl) or (Ys > Ym & Yl − Ym > 0.1) 2000-12

Downward (D) (Ys − Ym > 0.1 & Ym = Yl) or (Ys = Ym & Ym − Yl > 0.1) 1980-03

Note: Ys,Ym,Yl represent average short, median, and long yields. Source: Chen (2019).

a threshold of ten basis points for the differences among averaged yields. The H-shape yield
curve is high in the middle but low on both ends; the B-shape yield curve is the opposite––low
in the middle but high on both ends. While the F-, U-, and D-shape yield curves allow weak
inequality relations among yields, the yield relations of the H- and B-shape are strictly unequal.
The algorithm is effective in producing a sequence of yield curve shapes, applicable to any data
frequency (Chen, 2019). A complete visualization of all classified U.S. Treasury yield curves
and sensitivity analysis are in the Appendix.6

The key statistics of classified monthly yield curve are shown in Table 4. In addition to their
counts and frequency, reported are the mean and standard deviation of the average yields and
their corresponding spreads, conditional on each type of the yield curve.

6Admittedly, an exact flat yield curve can never exist in the data. A smaller threshold classifies less F-
shape but a larger one renders the classification less precise as it groups more U-, B- and H-shape into it.
The choice of 10% threshold strikes a balance between separation (B and H) and over-classification (F).
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Table 4: U.S. Treasury yield curve: shape classification statistics (1953.04-2020.12)

Shapes Counts Ys Ym Yl S ls S ms S lm Curv

Full sample 813 (100%) 4.62 5.28 5.85 1.22 0.65 0.57 0.09
(3.29) (3.12) (2.80) (1.31) (0.71) (0.72) (0.57)

Upward (U) 598 (73.6%) 3.75 4.69 5.52 1.77 0.94 0.83 0.11
(2.78) (2.88) (2.65) (1.03) (0.55) (0.64) (0.59)

Hump (H) 78 (9.6%) 6.60 6.89 6.69 0.09 0.29 -0.20 0.49
(3.06) (3.17) (3.13) (0.32) (0.28) (0.13) (0.30)

Down (D) 70 (8.6%) 9.29 8.72 8.30 -0.99 -0.57 -0.42 -0.15
(3.57) (3.22) (3.04) (0.65) (0.47) (0.29) (0.44)

Bowl (B) 41 (5.0%) 5.14 4.85 5.09 -0.06 -0.30 0.24 -0.54
(2.03) (1.96) (1.88) (0.34) (0.23) (0.16) (0.21)

Flat (F) 26 (3.2%) 5.43 5.45 5.46 0.04 0.02 0.01 0.01
(1.75) (1.71) (1.73) (0.09) (0.06) (0.07) (0.08)

Notes: Ys, Ym, Yl are the average yields of Treasury bill, note, and bond yields in percentage,
respectively. Based on the classification algorithm, reported values are the sample means with
standard deviations in the parentheses. Source: The original monthly yields data are downloaded
from the Federal Reserve Board H.15 Treasury nominal yield statistics.

For the full sample, the U.S. Treasury yield curve slopes up with a long-short spread of 123
basis points. It is concave but not statistically significant. The short yields are more volatile
than the long yields and the yield spreads are much less volatile than the levels. In a descending
order of frequency, we observe the upward-sloping yield curve (U 76.2%), the humped (H
8.64%), the downward-sloping (D 7.75%), the bowl (B 4.54%), and the flat (F 2.88%). These
frequencies represent the unconditional distribution of the shape in the sample period. Since the
upward-sloping is the dominant shape in the sample, whereas others together account for less
than 30%, this paper groups the four less frequent shapes into one category, the minor shapes,
and use this terminology hereafter. Interestingly, the Treasury yield curve not only distinguishes
themselves by their shapes but also levels.7

3 Business Cycle Panoramas

To investigate the yield movement and shape evolution over different stages of the U.S. business
cycle, their recurring patterns are examined together with statistical evidence provided for their
underlying linkages.

7In principle, the yield curve can display any shape independent of its level. In reality, however, the shape
is not independent of its levels, as shown in the classification results.
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3.1 Co-movement and inversion

Figure 2 displays the yield movements over the past century, with shaded areas indicating the
U.S. recessions.8 Over the whole sample, all yields march ups and downs in a remarkably
synchronous manner. From 1945 to present, the large swing in yields implies the mean-reverting
nature of interest rates in the long cycle.9

Normally, the long-term yields are higher than the short-term yields. Hence, we observe
the upward-sloping yield curve most often. Occasionally, the short yields can overtake the long
yields, presenting a downward-sloping yield curve (e.g., in 2000). Very rare but not unlikely, all
yields can cross and generate a flat yield curve (e.g., in 2006). Barely visible in the graph, the
median yield can shoot above or below both ends of the yield curve, forming the hump-shape
(e.g., in 2000) and bowl-shape yield curves (e.g., in 2019).

Over the business cycles, yield levels tend to rise in expansions and fall in recessions. Al-
though their turning points are not in line with the NBER reference dates, the local interest rate
maxima are more likely to precede the business cycle peaks while the local interest rate minima
tend to follow business cycle roughs. Furthermore, the short yield tend to rise slightly above
the long yield around the business cycle peaks, rendering the downward-sloping yield curve.
Around and months after the business cycle troughs, the short yield tend to fall much below the
long yield, featuring the steeply upward-sloping yield curve.

To better capture and visualize the less common patterns, the time series of three yield
spreads and the curvature are shown in the Figure 3. Yield inversion can be defined as the
process in which the slope of the yield curve switches from positive to negative. A narrowing
of the yield spreads vividly characterizes the transition. In terms of shape change, it begins
with an upward-sloping yield curve, then flattens out, and finally inverts to downward-sloping.
And vice versa. Prior to the business cycle peaks, yield spreads tend to hit their local bottoms
and then bounce back. Around and shortly after the business cycle troughs, yield spreads tend
to reach their local maxima. The turning points of the spreads are not symmetric in size: on
average, the slope of the upward yield curve is much bigger than the slope of the downward
yield curve in absolute value.

8According to the National Bureau of Economic Research (NBER)’s business cycle dating committee,
the U.S. economy is either in expansion or contraction, measured by the level of real economic activities.
Between any two successive recessions, the economy is in expansion. Contractions (recessions) start at
the peak of a business cycle and end at the trough. Refer to the NBER’s Business Cycle Dating Procedure
for more details. https://www.nber.org/cycles/recessions.html
9Historically, the U.S. interest rate had hit zero twice in the aftermath of the two most severe economic
recessions, with the Treasury 3-month bill rate 0.01% in October of 1932 and the Treasury 1-month bill
rate 0.00% in December of 2008. History repeats in 2020, in the midst of the COVID-19 pandemic, the
short-term Treasury 1-, 2,-, 3-month rates dropped to zero on March 25, 2020. Along their paths, the long
yields also fell to historical lows in each of this scenarios. At the other extreme, the peak of interest rate
was recorded in the second half of 1981 when the economy was wrestling with runaway inflation (e.g.,
the Federal funds rate 22.36% on July 22 and the Treasury 1-year bill rate 17.31% on September 3).
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Figure 2: U.S. Treasury yields: co-movements (1945.01-2020.12)

Figure 3: U.S. Treasury yields: inversions (1945.01-2020.12)

Compared with the levels and spreads, the yield curve curvature seems to drift like a white
noise with little detectable link to the business cycle. Indeed, the sample correlations between
the curvature and the levels are the weakest (below 0.2) among all. Although the correlations
between the yields (and spreads) over the entire sample are strong and positive, their signs can
turn negative or become insignificant in relatively short time frames. While the short yields are
the dominant forces driving most of the negative yield curve inversions, the long yields tend to
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rise during the inversions as well (see the Appendix for details).

3.2 Yield and shape evolution

To explore their linkages, I divide the U.S. business cycle into four stages and provide summary
statistics for the corresponding yields and shapes. Since the shape data can only be created
when three average yields are commonly available, our analysis starts from January, 1945 to
March, 2020. The four business cycle stages are grouped into the 12-month periods before
recessions, in-recession periods, 12-month periods after recessions, and otherwise. For two
consecutive recessions not further apart, the period in between is considered as a pre-recession
period in this study, which applies only to the 12 months between the 1980 recession and the
1981 recession.10

Table 5: Treasury yield statistics over the U.S. business cycle (1953.04–2020.12)

Stage I: all pre-recession 12-month periods (124 months)
Stage II: all in-recession periods (121 months)
Stage III: all post-recession 12-month periods (108 months)
Stage IV: all otherwise periods (460 months)

Yield measures I II III IV All

Ys 6.59 (3.51) 5.37 (4.43) 3.89 (2.75) 4.07 (2.69) 4.62 (3.29)
Level Ym 6.41 (3.23) 5.91 (4.23) 5.07 (2.77) 4.86 (2.71) 5.28 (3.12)

Yl 6.34 (2.98) 6.38 (3.77) 5.86 (2.60) 5.57 (2.44) 5.85 (2.80)

S ls -0.25 (0.74) 1.00 (1.27) 1.96 (1.10) 1.50 (1.18) 1.22 (1.31)
Spread S ms -0.18 (0.48) 0.53 (0.70) 1.18 (0.50) 0.79 (0.61) 0.65 (0.71)

S lm -0.07 (0.39) 0.47 (0.72) 0.78 (0.67) 0.71 (0.70) 0.57 (0.72)

Curvature Curv -0.12 (0.46) 0.07 (0.63) 0.40 (0.46) 0.08 (0.58) 0.09 (0.57)

Note: Reported statistics are the sample mean with the standard deviation in parenthesis. Ys

average short yield, Ym average median yield, Yl average long yield, S ls long-short spread,
S ms median-short spread, S lm long-median spread, Curv curvature. Sources: Federal Re-
serve Board H.15 Treasury nominal yield statistics.

Conditional on different stages of the business cycle, I summarize the first two moments of
the yield levels, spreads, and curvature in Table 5. On average, yields hit their plateau during
the 12-month periods before recession, remain at a relatively high level during the recessions,

10The 12-month interval is chosen arbitrarily for the convenience of framing the event window for shape
variation. Similar patterns are observed when a 18-month interval is selected.
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and enter the trough in the post-recession 12-month periods. Yield spreads turn negative prior
to recessions, bounced back to positive in recessions, and widen in the post-recession 12-month
periods. Also note that yield spreads are on average smallest before recession, corresponding
to downward-sloping yield curves; they are largest during the post-recession recovery periods,
equivalent to steeply upward-sloping yield curves.

Similarly, yield curvature becomes negative prior to recessions, return to positive in re-
cessions, and shows a sizable increase when entering economic expansions. The yield curve
tends to increase its concavity (hump) as the business cycle moves from pre-recession to post-
recession. This is illustrated by the empirical mean curvature which increases from -0.12 in
stage I to 0.4 in stage III.

Compared with the recession-related three stages, yield levels are less volatile in non-
recession periods, as measured by the standard deviation. In particular, volatility of all yields
increases preceding recessions, becomes most volatile in recession periods, and then dwindles
after recessions. Similar volatility patterns are observed for the spreads and curvature.11

Table 6: Treasury yield curve shape over the U.S. business cycle (1953.04–2020.12)

Stage I: all pre-recession 12-month periods (124 months)
Stage II: all in-recession periods (121 months)
Stage III: all post-recession 12-month periods (108 months)
Stage IV: all otherwise periods (460 months)

I II III IV All

Upward (U) 24 (19.4%) 81 (66.9%) 105 (97.2%) 388 (84.3%) 598 (73.6%)
Hump (H) 24 (19.4%) 20 (16.5%) 3 (2.78%) 31 (6.74%) 78 (9.6%)
Down (D) 41 (33.1%) 13 (10.7%) 0 (0.00%) 16 (3.48%) 70 (8.6%)
Bowl (B) 25 (20.2%) 7 (5.78%) 0 (0.00%) 9 (1.96%) 41 (5.0%)
Flat (F) 10 (8.06%) 0 (0.00%) 0 (0.00%) 16 (3.48%) 26 (3.2%)

All shapes 124 (15.3%) 121 (14.9%) 108 (13.3%) 460 (56.6%) 813 (100%)

Note: Reported statistics are the sample mean with the standard deviation in parenthesis. Data
sources: Federal Reserve Board H.15 Treasury nominal yield statistics.

Table 6 provides a summary for the conditional shape counts and frequency over the stages
of business cycles. In the last column of the table, the full-sample statistics serve as our com-

11In the Appendix, a visual comparison of the yield volatility over the different stages of business cycle
is displayed in bar plots. Both standard deviation and median absolute deviation measures are applied,
which establishes the robustness of the result. In addition, real-time volatility of the yields is estimated
over the entire sample and some largest jumps in yields are ordered.
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parison benchmark. The bottom row calculates the relative frequency of each stage over the
business cycle. In the past 68 years, the U.S. economy was in recessions for about 10 years, or
14.9% of the time. Compared to the benchmark, the relative frequency of the four minor shapes
more than doubled (F and H) and some even quadrupled (B and D) in the pre-recession stage.
Accordingly, the upward-sloping yield curve shrank in frequency by more than 50%. Among
the four minor shapes, the D-shape occurred relatively more often in the pre-recession stage
than others. In recessions, the B-, D- and H-shape were observed slightly more active than their
full sample counterparts. In the post-recession stage, the upward-sloping yield curve almost
took over, leaving only three appearances of the H-shape. Lastly, despite their remarkable den-
sities in the pre-recession stage, the four minor shapes were rarely present in the stage distant
from the recessions.

By nature, yield and shape are two perspectives of the same term structure. While multiple
yield values provide direct measures, the categorical shape condenses the entire yield curve into
a single letter. The advantage of shape measure is obvious: it tracks its evolution over time in
the most concise manner.

Figure 4: U.S. Treasury yield curve: shape evolution (1953.04-2020.12)

Figure 4 displays the full picture since 1953.12 The most frequent shape is plotted in the

12To differentiate the same shape observed multiple times in the same year, resampling methods are used
in plotting the shapes for each year. Therefore, the dots clustered in any given year do not necessarily
indicate their occurence over time.
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bottom and the least on top. Evidently, the four minor shapes tend to cluster before the rerces-
sions. More surprisingly, all minor shapes only show up before the recessions since late 1980s.
Most alarming, the shape signals have become gradually more uniform to detect, as manifested
by the pure B-shape in 2019, prior to the 2020 recession. A puzzle hence emerges: what theory
can account for the time-varying ocurrences of these seemingly recession-related shape signals?

Despite these stunning patterns, no shape signal has been detected in the 1945, 1949, and
1954 recessions. In hindsight, the signals around 1966 could be wrong in foretelling a recession
whereas actually it never arrived. Noises aside, whether such recession predictability exists and
to what extent will be investigated in detail. A word of caution: neither can any shape cause a
recession nor an expansion; they are merely parts of the business cycle fluctuations.

4 Shapes and Recessions

Can the shape of the yield curve predict recession? This section investigates the predictability
ex-post along a number of dimensions and provides descriptive answers.

4.1 Timing, duration, and strength

Aforementioned, the four minor shapes tend to occur more often in the pre-recession stage than
other periods. If we focus on a time frame spanning the recessions, the event study approach is
well suited to catch their exact timing and duration.13 To study the recession predictability of
the yield curve shape, however, no cause and effect is present in its nature.

The beginning month of each recession is defined as the starting point of this event study.
For the past ten successive recessions before which the shape of yield curve moves abnormally
(relative to the normal shape), a window width of 18 months is chosen to cover the event in both
directions.14 Figure 5 summarizes the results with each colored dot representing one shape at
a time. The vertical dashed line marks the beginning of a recession. On the whole, the shape
”effects” to its left dramatically differ from those to the right, allowing for the overlapping
12-month when the 1980 post-recession met the 1981 pre-recession periods.

The timing of the shape is interesting but perplexing. The minor shapes were spotted as early
as 18 months before the recessions, some even earlier. While the H-, D-, and F-shapes were the
major forerunners in the earlier recessions, the B-shape played a more central role in the recent
three recessions. In terms of effects, never had any other shape signaled more intensely than
the downward-sloping yield curve in the early 1980s recessions. Historically, although rampant
inflation was responsible for the formation of D-shape, the underlying economic factors casting

13In finance, an event study is a statistical method to assess the impact of an event on the value of a firm.
Refer to World Bank DIME Wiki Event Study.
14The choice of 18 months suffices to cover more than 95% of the minor shapes. A 24-month window
analysis is shown in the Appendix.
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the H- and B-shape yield curves were little examined.

Figure 5: Treasury yield curve shape timing over recessions

Another complexity in understanding the shape timing is the ”noises” in the midst of reces-
sions. Specifically, in the midst of the 1970 and 1974 recessions, were the H-, B-, and D-shapes
signaling more economic downturns or displaying their remanent effects from earlier on? If
they were trying to foretell an upcoming recession, why was it not coming in other cases? If
they were just the remanent effects, why were there no such pattern in the recent recessions?

When it comes to their duration, each minor shape tend to cluster in batches. For the ten
past recessions since 1957, Figure 6 plots shape counts within the 18-month window before
each recession such that the relative importance of each shape is measured by its length in each
bar. The horizontal dashed line sets a 50% benchmark for comparison. In stark contrast to
its full-sample frequency, the upward-sloping yield curve declined to less than 50% in the 18-
month event window prior to each recession. In the 1970 and 1980 pre-recession periods, the
upward-sloping yield curve completely disappeared. Conversely, the four minor shapes took
over and became unusually active in this 18-month window with duration much longer and
frequencies much higher than other stages in the business cycle. Judging by the duration alone,
however, not a single shape can dominate others over the entire sample in foretelling recessions,
because the duration of each shape varied over time. Even the most dazzling D-shape observed
in 1970s and 1980s was completely shadowed by the emerging B-shape in recent decades. As a
result of the time-varying feature, it is not obvious to rank and access the relative performance
of each minor shape in forecasting recessions.

Since the less frequent shapes become more active in the event window of the recessions,
are more severe recessions associated with more intense signals of the shape? To answer this
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Figure 6: Treasury yield curve shape duration before recessions

question, it is necessary to classify recessions by some degree of severity and measure the
strength of the shape signals.

For the past ten recessions preceded by the less frequent shapes since 1957, their length
varied and most of the minor shapes were concentrated in the pre-recession stage. With all
available data, I classify the ten recessions into four tranches in terms of their respective length:
the mild recessions of the 1980 (less than two quarters), the moderate of the 1957-1958, 1990-
1991, 2001-2001 (more than two quarters but less than three quarters), the serious of 1960-1961,
1970-1970, and 2020 (more than three quarters but less than one year), and the 1973-1975,
1981-1982, 2008-2009 severe recessions (longer than a year). Overall, this grouping balances
the number of recessions in each tranche.15

In similar fashion, the strength of shape signals can be measured by their respective counts
within the recession-related windows. However, two adjustments are made to filter out ”noises”
and amplify signals. Notice that the 1980 post-recession overlapped the 1981 pre-recession for
12 months; the minor shape signals were consistently strong in between. It is more convincing
to consider these occurrences as signaling the 1981-1982 severe recession rather than some
remaining effects from the 1980 mild recession. Another adjustment is due to the unusually
long lasting signals observed before the 1970 serious recession: a continuum of 30 months

15Based on the NBER business cycle chronology from 1957 to present, the shortest recession endures for
six month (1980), the longest 18 months (2008-2009), three for eight months (1957-1958, 1990-1991,
2001-2001), two for 16 months (1973-1975, 1981-1982), one for ten months (1960-1961), and one for
eleven months (1970-1970). As of December, 2020, the U.S. economy has been in recession for ten
months since March. https://www.nber.org/cycles.html
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of minor shapes were persistently present since July, 1967. Even though the 18-month event
window was chosen to ”receive” signals before recessions, it is not convincing to consider the
extra 12 months as ”noises” and discard them in this particular case. Thus, I relate them to the
1970 recession.

Figure 7: Shape signal strength and recession duration (1953-2020)

Matching the shape strength to recession duration, Figure 7 displays their association. Those
colored dots in the left graph represent the minor shapes and their clustered density mounts in
conjunction with the duration of recession. In the right graph, the height of each bar is the total
counts of the minor shapes and it rises as a recession lasts longer.

4.2 The wrong and missing signals

Undoubtedly, a strong link exists between the shape and recession. Nonetheless, exceptions
can be found. The most obvious outliers are a series of strikingly persistent minor shape signals
from the end of 1964 to the beginning of 1967. Specifically, from December, 1964 to February,
1967, a total of 22 minor shapes were present in 27 months. Were they related to any recession
in the interval? Was the wolf coming or just a false alarm?16

According to the data from the World Bank, the U.S. economy was geared down to a much
slower growth rate of 2.5% in 1967 from 6.5% in the previous year, then it bounced back to
4.8% in 1968.17 It turns out that, for the post-WWII U.S. economy, an annual decline of 4%

16From July, 1967 to October, 1970, a continuum of 40 months of minor shapes were present. The 1970
recession started from January to November. Compared with the other recessions, the signals prior to the
1970 recession were unusually long and remained strong toward the end of the recession. Despite the
”noises,” this batch is believed to contain true signals which forecast the 1970 incoming recession.
17https://www.macrotrends.net/countries/USA/united-states/gdp-growth-rate
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real GDP growth rate is the sharpest in record without triggering a recession, whereas the NBER
business cycle dating committee only considers more than two consecutive quarters of negative
growth rate in real economic activities as a recession. Other than that, no obvious ”mistake”
was detected in the sample when evaluating the false positive signals.18 Hence, the seemingly
wrong signals were indeed a reliable indicator of future economic downturns.

On the false negative side, the obvious exceptions appear in three consecutive recessions
after 1945. Why was there no signal before the wolf was coming? A short answer is the U.S.
fiscal and monetary policy then facilitating low-cost wartime finance. According to the 2016
FOMC document “Targeting the yield curve: The experience of the Federal Reserve, 1942-
51,” during the nine-year period from early 1942 until the Treasury-Federal Reserve Accord of
1951, the yield on long-term Treasury bonds was capped at 2.5 percent, and ceilings were also
imposed at several other points. In addition, the short-term yields were pegged at 3/8 percent
up until July 1947. The yield curve control policy exerted long-lasting influence on the market
yields: It was until after 1950, the short and long term yields rose gradually and the yield
spreads started to narrow. And later the first post-WWII yield curve inversion arrived in 1957.

When the short and long yields were targeted at their respective values, the shape of yield
curve was fixed on both ends. As long as the median yields were in line with the policy comitt-
ment, an upward-sloping yield curve was the result. Therefore, shape signals were muted before
recessions under the policy of interest rate controls. In the post-WWII data, provided that the
Fed did not peg the interest rates, the Treasury bond market has been reliably signaling reces-
sions or downturns. This is critical in understanding the prediction of yield curve as recession
signals. The next step is to apply model estimation to assessing its predictive power.

5 Recession Predictability

Every now and then, it is alarmingly reported in the news and media that a flatting or inverted
yield curve precedes most recessions. Since the late 1980s, academic literature have begun in-
vestigating the power of the yield curve as a recession predictor in the post-WWII data. Estrella
et al. (2003) find that term spread models predicting recessions are stable over time. Wheelock
and Wohar (2009) provide a comprehensive literature survey. It is further shown that the yield
spread model dominates the professional forecasters in real-time recession forecast (Rudebusch
and Williams, 2009; Croushore and Marsten, 2016). However, existing research relies exclu-
sively on a particular slope, or term spread, of the yield curve. Other parts of information in the
yield curve had been largely ignored. Since the shape indicator distills all essential information
of the entire yield curve, would it be more useful in predicting recessions than the spreads?

18That said, a single isolated H-shape was spotted in September, 1984, but was 21 months away from the
1981-1982 severe recession. Should it be a false signal, but don’t be too hard on the hero.
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5.1 Spreads vs shapes

The starting point of applying the yield curve slope or yield spread to recession forecast can
be featured by tracking the size of the yield curve inversion over the business cycle. Shown in
Figure 3, preceding the past ten recessions, the three yield spreads almost all narrowed down
and became negative. On the whole, the long-short spread exhibited the most sizable inversions
among the three. Does it send more powerful signals than others? Moreover, does more negative
values of the spreads deliver more reliable forecasts? To answer these questions, we need to
compare their changing patterns across recessions and then develop formal statistical tests.

Figure 8: Change of yield spreads and curvature across recessions

Following the earlier event study approach, I focus on the 18-month window asymmetric
around the starting month of recessions and compare the patterns of the yield spreads across
the board. Furthermore, I mimic the regression discontinuity design (RDD) and fit the data
with a linear equation on both side of the threshold in order to detect whether the spreads drop
significantly below zero prior to the recessions. No data adjustment is made for overlapping
recession stages. The results are in Figure 8 with 95% confidence bands for the estimated equa-
tions. Several observations sharpen our cross-sectional comparison: 1) all yield spreads and
curvature share a common trend—sliding down before recessions and rising up in and after re-
cessions; 2) the long-short and median-short spreads show a statistically significant dip below
zero when closing in to the border; 3) the long-short and median-short spreads show a statis-
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tically significant regression discontinuity across the threshold; 4) the long-median spread and
the curvature do not exhibit significantly different patterns across the border, which indicates a
lack of variation and strength in forecasting recessions.

To estimate and forecast recession probabilities, a statistical model is required. For a binary
recession variable, the most widely adopted model in the forecasting literature is the Probit
model. Based on the Probit statistical model, macroeconomists apply the slope of the yield
curve, or the yield spread, to predict recessions and many other economic activities. 19

While it is straightforward to measure the yield curve slope as the difference between a
long-term yield and a short-term yield, the question is which yield shall be chosen? In the
literature, the choice of the long and short yields depends on data availability and measurement
consistency (Estrella and Trubin, 2006). For instance, Estrella and Hardouvelis (1991) chose
the 10-year Treasury bond rate and the 3-month Treasury bill rate. Benzoni and Chyruk (2018)
employed the 10- minus 2-year Treasury spread. Another popular choice is the 10-year Treasury
yield less the Federal funds rate. However, were it not for convenience, there is no reason to
omit other maturity sectors of the yield curve. To fully explore the information content of the
entire yield curve, the three average yield spreads and the shapes will all be used in forecasting
recessions.

Unlike the numerical spread measures, the classified yield curve shape is a categorical vari-
able and takes five discrete values. To distinguish their information content and generate mean-
ingful forecast in regressions, separate binary variables are defined for distinct shapes as inputs
in the Probit model, where each shape only takes zero or one.20

P(Recessiont+h|S preadt) = P(Z ≤ α + β ∗ S preadt) = Φ(α + β ∗ S preadt) (1)

P(Recessiont+h|S hapet) = P(Z ≤ γBBt + γDDt + γF Ft + γHHt + γUUt) (2)

Φ(z) = P(Z ≤ z) =

∫ z

−∞

1
√

2π
e−0.5u2

du (3)

The simple Probit model is our starting point and well-suited to compare the recession pre-
dictive content of the yield spreads and the shapes. Covering the full sample of April 1953 to

19Another binary response model in application is the Logit model with which Stock and Watson (1989),
for example, have also documented predictive power of the yield curve slope. Both the Probit and Logit
models generate similar estimation results. Furthermore, based on a stability test, Estrella et al. (2003)
identified that the spread model that predicts recession is stable over time in countries like the United
States and Germany.
20The advantage of setting up the model in this manner comes from the mutually exclusive content of
each regressor in the time series data. Therefore, the estimation results based on this model would reflect
the average predictive strength of a particular shape over the entire estimation sample, independent of
other shapes. Note that no intercept shall be included to avoid regression multicollinearity.
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December 2020, our first exercise provides coefficient estimates and model fits in forecasting
recession one year ahead.

In Table 7, almost all coefficient estimates are statistically significant except for three of the
minor shapes.21 Based on the peusdo-R2 measures, the models using the median-short spread
and the shapes have the best fit, whereas the curvature shows little predictive power relative to a
constant intercept model. Among the spreads, the sub-sample analysis shows that the long-short
spread produces finer fitted model in the first half sample (1953-1986) and the median-short
spread in the second (1987-2020) as well as the overall sample.

[Table 7 is about here]

Figure 9 visualizes the estimation and comparison results. Both the spread and shapes dis-
play maximum forecast power of recessions around four quarters ahead, whereas their fore-
casted recession probabilities are much lower in the most immediate and distant future. By
construction, a decline in yield spread is associated with rising probability in future recessions.
In contrast, the shapes do not generate a continuous range of recession probability forecasts as
the spread does. Nonetheless, the four minor shapes on average produce recession forecasts at
least twice as much as their benchmark upward-sloping shape whose forecasts are uniformly
smaller than the unconditional recession probability 14.9% in the sample.

Figure 9: Recession probability forecasts: yield curve spread vs shapes (1953.04-2020.12)

Figure 10 recovers the one-year-ahead full-sample estimates of recession probabilities. Out
of eleven recessions, the median-short spread dominates the long-short and the median-short
spreads in approaching true recession probabilities; the shape predictor outperforms the median-
short spread in most recessions except the ones in the mid-70s and early-80s. Despite the binary

21Due to the binary nature of the variables as well as their less frequent occurrence, the estimates of the
coefficients of the shape model exhibit much higher variation than the spread model.

446



CHEN Shape Evolution of the Interest Rate Term Structure

nature of the shapes, the step-wise recession probabilities they generate in this exercise is on
average more accurate than any other spreads in predicting recessions a year ahead.

Figure 10: Full-sample one-year-ahead recession probability forecasts (1953.04-2020.12)

Though counter-intuitive and unexpected, these findings imply that the size of the negative
spread alone might not necessarily be a good predictor of the forthcoming recessions; different
choices of the yield spread perhaps weights more. In particular, the discovery of potentially
more powerful predictors than the long-short spread is encouraging. It is time to evaluate their
predictive power in formal metrics.

5.2 Forecast evaluation

To measure the predictive performance of any model or predictor, the mean absolute error
(MAE) and the root mean square error (RMS E) are two most popular metrics, corresponding
to L1 and L2 loss functions, respectively. While the MAE is more robust to outliers, the RMS E
penalizes more heavily those predictions far away from actual values. A more specialized
measure adopted in evaluating probability forecast is the log probability score (LPS ), which
coordinates the in-sample estimation criterion with the out-of-sample loss function for the yield
spread forecasts (Rudebusch and Williams, 2009).

For any forecasting horizon h and full sample size T , the calculation of prediction error is
shown in equations below, where P̂i is the forecasted recession probability at i + h period ahead
based on the all observations (used in the estimation sample) up to T − h and Ii is the actual
recession indicator taking a binary value of either zero or one.
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MAE(P̂i) =
1

T − h

T−h∑
i=1

| P̂i − Ii | (4)

RMS E(P̂i) =

√√√
1

T − h

T−h∑
i=1

(P̂i − Ii)2 (5)

LPS (P̂i) =
−1

T − h

T−h∑
i=1

[(1 − Ii)ln(1 − P̂i) + Iiln(P̂i)] (6)

CER(P̂i) = E(Îi) =
1

T − h

T−h∑
i=1

|Ii − Îi|,where Îi =

1, if P̂i > cutoff

0, otherwise
(7)

In practice, recession prediction is also a classification problem. A threshold or cutoff value,
therefore, must be chosen to decide whether the probabilistic forecasts of a recession can be
considered as a positive event. As the most common metric used to quantify a binary classifier,
the classification error rate (CER) or misclassification rate is defined as percent of false signals
out of total predictions. Similarly, if Ii is the recession indicator from the test data and Îi is the
binary classifier of a recession event from the ith forecast using the training data in estimation,
for any chosen cutoff value, Îi = 1 if P̂i >cutoff and Îi = 0 otherwise. A simple choice of
50% for the threshold is common. Alternatively, a reasonable cutoff can be calculated from the
unconditional recession probability in the training sample.

More recently, a good number of research applied receiver operating characteristics (ROC)
and area under the curve (AUC) method to assessing recession classification accuracy (Berge
and Jordà, 2011; Lahiri and Wang, 2013; Liu and Moench, 2016). This approach first computes
two types of recession classification outcomes––false positive rate (T PR) and true positive rate
(TPR)––for a full range of threshold, traces out the ROC curve by plotting T PR against FPR,
and then summarizes the forecast performance in a single value by integrating over the ROC
curve. As a comprehensive measure of probabilistic forecast error, a rule of thumb in model
selection is to favor the one with the highest AUC .

It is worth noting that these measures of forecast errors incorporate different philosophy
and standards in assessing the relative performance of competing models/predictors. Hence,
multiple comparisons and statistical tests are necessary to further our analysis.

5.2.1 In-sample analysis

In our full-sample evaluation, Table 8 compares the different measures of forecast errors be-
tween the spread models and the shape model for horizons up to eight quarters ahead. First,
all forecast errors reach their minima around four or five quarters ahead. Second, among the
spreads, the median-short spread has the smallest errors in the four-quarters-ahead recession
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forecasting by all measures. Last, the shapes fare slightly better than the median-short spread
except for the LPS and AUC measures.

[Table 8 is about here]

When estimating the model for the subsample (1953-1986), the yield curve shapes outper-
form the spreads by three measures (MAE, RMS E, LPS ) and the long-short spread slightly
dominates the median-short by all measures around four or five quarters ahead. For the sec-
ond subsample (1987-2020), the median-short spread is the champion by all measures and the
shapes do slightly better than the long-short spread by MAE, RMS E, CER. Diebold-Mariano
tests (1995, 1997) for the equality of predictive accuracy show that the relative forecast perfor-
mance of the shapes, the long-median, and the long-short spreads are not statistically significant,
but they are all better than the long-median spread. To save space, the results for D-M tests and
sub-sample analysis are in the Appendix.

5.2.2 Out-of-sample analysis

In real-time forecasting, expanding- and rolling-window analyses are routinely applied to eval-
uate the out-of-sample performance among competing models. The procedure developed in this
part shall carry more weight than the in-sample analysis.

The expanding window approach starts from a certain point in time and adds in one addi-
tional observation recursively in estimation and forecast. The choice of a starting point must at
least include enough historical data to produce estimation results. In practice, no strict rule is
imposed regarding the minimum portion of the sample in its first estimation. An alternative out-
of-sample forecasting evaluation employs the rolling window analysis. The estimation begins
with a fixed bandwidth and slides the window stepwise to the end of the sample. While the ex-
panding window method explores all information available in the sample and weighs historical
data more heavily regardless of their relevance to present situation, the rolling window omits
all historical data and tracks the most ongoing development closely. A comparison between the
two can also serve as a robustness check. To cover at least two recessions in estimation, our
analysis selects an initial window of 20 years (1953-1972).22

Figure 11 delivers the comparisons for forecasting horizons from one-month to 30-month in
the future. Overall, forecast errors fall initially but rise quickly beyond the 16-month horizon.
Similar to the full-sample estimation results, all measures of forecast error indicate an optimal
forecasting horizon in between four and five quarters ahead. Though statistically insignificant,

22Due to the announcement procedure of the NBER business cycle dating committee, U.S. recessions
have always been identified at least three months later than its ”book” value (what the public later know
in hindsight). The forecasting procedure developed here is strictly speaking not based on the real-time
information.
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Figure 11: Expanding window out-of-sample forecast errors (1953-2020)

Top left panel: MAE–mean absolute error. Top right panel: RMS E–root mean square error. Middle left
panel: CER cutoff=rec.prob–classification error rate for a probability threshold equal to 15%. Middle
left panel: CER cutoff=50%–classification error rate for a probability threshold equal to 50%.Bottom left
panel: LPS –log probability score. Bottom right panel: AUC-area under the curve. A window width of
20 years is initialized in expanding window analysis. Other choices of window width are shown in the
Appendix.

the MAE slightly favors the long-short spread in the near- and median-term horizons. Nonethe-
less, the RMS E, LPS , and AUC all select the median-short spread as best predictor among
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Figure 12: Rolling window out-of-sample forecast errors (1953-2020)

Top left panel: MAE–mean absolute error. Top right panel: RMS E–root mean square error. Middle left
panel: CER (cutoff=rec.prob)–classification error rate for a probability threshold equal to 15%. Middle
left panel: CER (cutoff=50%)–classification error rate for a probability threshold equal to 50%.Bottom
left panel: LPS –log probability score. Bottom right panel: AUC-area under the curve. A fixed window
width of 20 years is initialized in rolling window estimation and forecast. Other choices of window width
are shown in the Appendix.

all spreads. The yield curve shapes also beat the long-short spread in terms of the RMS E and
LPS , irrespective of window width. While the CER with a 15% cutoff probability prefers the
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long-short spread, the one with 50% suggests the opposite. It is worth noting that the long-short
and long-median spreads excel in long-horizon forecast (beyond 18 months). Other choices of
window width further confirm most of these findings.

Figure 12 presents the results for the rolling window forecasts. The results are very similar
to those of the expanding window analysis. By most measures except for the MAE, the median-
short spread dominates the long-short spread for horizons up to 17 months, irrespective of the
width of estimation window. Measured by the MAE, the predictive model based on the shapes
improves a little and can even overtake all the spreads around one-year ahead forecast, though
the results are not robust when the window size increases. Again, Diebold-Mariano tests (1995,
1997) for the equality of predictive accuracy show that the relative forecast performance of the
shapes, the long-median, and the long-short spreads are not statistically significant, but they are
all better than the long-median spread.

6 Concluding Remarks

In the year preceding the 2020 recession, the B-shape yield curve became the harbinger again
and signaled nine times. In retrospect, it is intuitive, straightforward, and reliable to just look
at the shapes. This paper emphasizes the significant role of tracking the yield curve shape in
monitoring business cycles and predicting recessions.

Controlling for different choices of estimation procedure, window width, forecasting hori-
zons, and forecast errors, the median-short spread is, on the whole, a more powerful predictor of
recessions than the long-short spread, especially after the 1980s. Nevertheless, the performance
of the yield curve shape is also remarkable by various measures of forecast error, though not
statistically significant relative to the long-short spread. Even within a simple Probit model, the
analysis developed here highlights the complexity and difficulty in real-time recession forecast
evaluation. To address structural breaks and serial correlation for more robust results, more so-
phisticated model specification and estimation techniques, such as in Chauvet and Potter (2005),
remain for future research.

To conclude, the shape of the Treasury yield curve is a concise and valuable indicator in
studying the evolution of the term structure in general and predicting recessions in particular.
While presenting a good number of new findings, this paper poses challenges and puzzles in
search of hidden forces driving the evolution of the yield curve shape. Future research cries
out for a unifying economic theory to explain the recession predictive power of the yield curve.
Among the puzzles, the time-varying pattern of recession shape signals is perhaps most intrigu-
ing. Moreover, would the shape of the yield curve reflect underlying states of the economy?
How do risk premia vary across the shapes?

The lack of data limits our shape identification of the Treasury yield curve for the first half
of the 20 century. Future research can extend the data further back and seek more evidence on
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the links between the yield curve shape and the recession. With respect to the exceptions (the
wrong and missing signals), it is more crucial to examine the policy and institutional constraints
than to test its predictability. In hindsight, the yield curve could make mistakes but policies also
distorted the market signals. To investigate the causes shaping the yield curve over the business
cycle, noises contained in the low-frequency macroeconomic data are notoriously difficult to
filter out. A promising direction is to look into high frequency data and analyze the market
microstructure. Ultimately, demand and supply of the Treasuries determine the equilibrium
term structure, hence, the shape of the yield curve.
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Table 8: Full-sample evaluation of recession probability: forecast errors (1953.04-2020.12)

MAE RMSE

S preadl−s S preadm−s S preadl−m S hapes S preadl−s S preadm−s S preadl−m S hapes

1Q 0.239 0.236 0.245 0.237 0.345 0.343 0.349 0.344
2Q 0.218 0.211 0.233 0.215 0.327 0.325 0.338 0.328
3Q 0.196 0.186 0.219 0.188 0.310 0.305 0.327 0.307
4Q 0.187 0.178 0.210 0.175 0.305 0.302 0.321 0.296
5Q 0.189 0.182 0.209 0.185 0.309 0.306 0.322 0.304
6Q 0.199 0.199 0.210 0.203 0.321 0.319 0.327 0.319
7Q 0.212 0.215 0.217 0.224 0.331 0.331 0.334 0.335
8Q 0.223 0.227 0.225 0.236 0.337 0.338 0.339 0.343

CER (cutoff=50%) CER (cutoff=15%)

S preadl−s S preadm−s S preadl−m S hapes S preadl−s S preadm−s S preadl−m S hapes

1Q 0.148 0.147 0.149 0.149 0.42 0.37 0.49 0.24
2Q 0.143 0.144 0.147 0.147 0.33 0.29 0.41 0.21
3Q 0.139 0.131 0.138 0.133 0.27 0.24 0.36 0.20
4Q 0.135 0.131 0.137 0.129 0.24 0.22 0.33 0.18
5Q 0.133 0.133 0.139 0.128 0.24 0.24 0.31 0.20
6Q 0.140 0.143 0.147 0.135 0.27 0.27 0.30 0.22
7Q 0.139 0.141 0.145 0.140 0.30 0.31 0.31 0.26
8Q 0.141 0.139 0.144 0.141 0.35 0.35 0.34 0.29

LPS AUC

S preadl−s S preadm−s S preadl−m S hapes S preadl−s S preadm−s S preadl−m S hapes

1Q 0.392 0.387 0.405 0.390 0.679 0.698 0.635 0.661
2Q 0.357 0.345 0.383 0.360 0.773 0.792 0.710 0.721
3Q 0.319 0.303 0.359 0.317 0.839 0.864 0.763 0.795
4Q 0.303 0.290 0.344 0.292 0.866 0.887 0.791 0.831
5Q 0.303 0.296 0.339 0.308 0.857 0.868 0.797 0.803
6Q 0.318 0.324 0.337 0.340 0.829 0.819 0.798 0.744
7Q 0.342 0.353 0.347 0.377 0.783 0.761 0.775 0.655
8Q 0.364 0.375 0.363 0.396 0.722 0.691 0.727 0.588

Note: 1Q represents one-quarter ahead forecast, etc.. MAE–mean absolute error, RMS E–root mean square error, CER–
classification error rate, LPS –log probability score, AUC–area under the curve. The cutoff value is the threshold used to classify
probability forecasts of a recession as a positive event. The unconditional recession probability is 14.9% in the sample.
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