
Review of Economic Analysis 15 (2023)  85-95                                             1973-3909/2023085 

 

 

85 

 

 

 

www.RofEA.org 

 

Changing the Discount Rate by Adjusting the Pure Rate of 

Time Preference 
 15pt 

JAMIE LEE 

Ministry of Transportation, Government of Ontario 

Empty 15 

ROSS MCKITRICK  

University of Guelph 

 

THANASIS STENGOS 

University of Guelph 

 
Empty 15 

The Ramsey (1928) equation decomposes the real discount rate into the pure rate of time 

preference plus a term that accounts for the changing marginal utility of consumption. 

Discussions about the appropriate discount rate to apply in Cost Benefit Analysis 

sometimes refer to variations induced by alternative values of the pure rate of time 

preference as if the two vary on a one-to-one basis. But the optimal consumption path, 

which determines the marginal product of capital and hence the discount rate, depends on 

the rate of time preference. Hence the discount rate depends on time preference through 

the marginal utility term. We derive an analytical expression of this relationship and show 

that the derivative of the discount rate with respect to time preference only equals unity in 

the steady state and converges from below. We estimate the derivative using US data from 

1930 to 2015. Based on a semi-parametric regression model with time-varying coefficients 

we find it is about 0.9, but we cannot rule out 1.0 being included in the 95% confidence 

interval. The implied pure rate of time preference after 1980 is about 1.6 percent. 
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1    Introduction 

The Ramsey (1928) equation decomposes the discount rate r at time t into the expression: 

 

 𝑟(𝑡) = 𝜌 + 𝜂
𝐶̇(𝑡)

𝐶(𝑡)
     (1) 
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where 𝜌 is the pure rate of time preference, 𝜂 is the consumption elasticity of marginal utility 

and 𝐶̇(𝑡)/𝐶(𝑡) is the growth rate of consumption. It has been common practice in Cost-Benefit 

Analysis (CBA) to construct alternate values of 𝑟(𝑡) by varying 𝜌 and 𝑟(𝑡) identically on the 

assumption that  𝜕𝑟(𝑡)/𝜕𝜌 = 1. For example, Stern (2006) discusses the implications for 

discount rates in climate policy analysis from adopting different stances on the ethics of 

discounting the utility of future generations, Chichilnisky et al. (2018) review key debates over 

whether positive values of 𝜌 are ethically defensible and Yang (2003) discusses the possibility 

of implementing “dual discount rates” where 𝜌 differs between public and private investment 

goods. In all such cases the discussion assumes that if 𝜌 is increased or decreased then r 

increases or decreases by the same amount. However, the consumption growth path is 

determined by maximizing the utility stream discounted by 𝜌, so 𝐶̇(𝑡) must be a function of the 

rate of time preference. Hence it cannot be assumed that 𝜕𝑟(𝑡)/𝜕𝜌 equals unity. This point does 

not appear to have been discussed previously.  

The first aim of this paper is to characterize the way that variations in 𝜌 may affect 𝑟(𝑡) 

both directly and indirectly via the growth rate. We will show that while 𝜕𝑟(𝑡)/𝜕𝜌 = 1 does 

not necessarily hold, in the context of a closed-form growth model a convergence result  
𝜕𝑟(𝑡)

𝜕𝜌
→

 1 holds as 𝑡 → ∞. Note that t is not the discounting horizon but the “calendar” year, which in 

the context of a growth model can be understood as a measure of the proximity between the 

current and steady state capital stocks. We then estimate time-varying values of the coefficients 

in (1) on long term observations of US real interest rates and consumption growth rates and we 

use these to estimate 𝜕𝑟(𝑡)/𝜕𝜌. We find that the derivative is typically less than 1.0, but 

whether the difference is significant or not is sensitive to the exclusion of outliers associated 

with a period of very high real interest rates in the 1980s.  

There is a large literature on the subject of choosing the appropriate discount rate for CBA 

(important reviews are found in Groom et al. 2005 and Arrow et al. 2014).  Much attention has 

focused on dealing with uncertainty over long time frames (see Newell and Pizer 2003), 

especially as regards the growth rate of consumption. A typical formulation assumes a constant 

value of 𝜂 and a stochastic consumption path, yielding the result that 𝑟(𝑡) should either be 

reduced by a constant amount or should decline as the discount horizon increases, depending 

on the nature of the uncertainty. However these studies take 𝜌  as given and assume that 

variations in the consumption path are due to external growth shocks. Our focus here is on the 

question of how variations in 𝜌 may change the consumption path even in the absence of 

uncertainty.  

The next section decomposes the relationship between 𝜌  and 𝑟(𝑡) , first in a general 

formulation then using a closed-form growth model. The third section presents empirical results 

on US data, and the fourth section briefly concludes.  
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2    Endogenous Consumption Growth Rate 

2.1    General Results 

Differentiate equation (1) with respect to 𝜌: 

  
𝜕𝑟(𝑡)

𝜕𝜌
= 1 +

𝜕𝜂

𝜕𝜌

𝐶̇(𝑡)

𝐶(𝑡)
+ 𝜂(𝑡)

𝜕(
𝐶̇(𝑡)

𝐶(𝑡)
)

𝜕𝜌
    (2) 

Dropping time arguments for clarity and assuming 𝜂 is constant, this reduces to: 

  
𝜕𝑟(𝑡)

𝜕𝜌
= 1 +

𝜂

𝜌
 𝑔[𝜀𝐶̇ − 𝜀𝐶]     

where g is 𝐶̇/𝐶, namely the growth rate of consumption, 𝜀𝐶  is the elasticity of consumption C 

with respect to 𝜌 and 𝜀𝐶̇ is the elasticity of the growth in consumption (𝐶̇) with respect to 𝜌. 

Note the derivative is undefined at 𝜌 = 0, implying that the discount rate becomes highly 

unstable at the value most associated with intergenerational equity. If all variables are invariant 

to 𝜌, or if 𝜌 itself is invariant, equation (2) reduces to 
𝜕𝑟(𝑡)

𝜕𝜌
= 1. To characterize the case in 

which 𝜌 can vary requires some further structure. 

2.2    Solution to a Closed Form Model 

We solve a growth model originally due to Pezzey and Withagen (1998), as later modified by 

Hu and McKitrick (2013). The production function is 𝑌 = 𝐾(𝑡)𝛼 where Y is output, K is capital 

and 𝛼 ∈ [0,1]. The instantaneous utility function is 𝑈 = 𝐶(𝑡)1−𝜂/(1 − 𝜂) where 𝜂 denotes the 

elasticity of marginal utility with respect to consumption and is positive as long as U displays 

risk-aversion. Capital evolves according to  

  𝐾̇(𝑡) = 𝐾(𝑡)𝛼 − 𝐶(𝑡)     (3) 

so there is no depreciation. The planner solves  max
𝐶(𝑡)

∫ 𝑒−𝜌𝑡𝑈(𝐶(𝑡))𝜕𝑡
∞

𝛼
  subject to (3). The 

initial capital stock is denoted 𝐾0 and the transversality condition is lim
𝑡→∞

𝑒−𝜌𝑡𝐶(𝑡)−1/𝜂𝐾(𝑡) =

0. The usual derivation of the Ramsey equation yields 

  𝛼𝐾(𝑡)𝛼−1 = 𝜌 + 𝜂
𝐶̇(𝑡)

𝐶(𝑡)
     (4) 

Using equations (3) and (4) we can solve for the steady state 𝐶̇ = 𝐾̇ = 0, obtaining the steady 

state capital stock and consumption levels: 
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  𝐾𝑠𝑠 = (
𝜌

𝛼
)

1

𝛼−1
     (5a) 

  𝐶𝑠𝑠 =
𝜌

𝛼
𝐾𝑠𝑠     (5b) 

In order to obtain a tractable expression for the optimal capital and consumption paths it is 

necessary to set 𝜂 = 1/𝛼 (Pezzey and Withagen 1998). The above expressions then yield the 

time-paths 

  𝐾(𝑡) = [𝐾𝑠𝑠
1−𝛼 + (𝐾0

1−𝛼 − 𝐾𝑠𝑠
1−𝛼)𝑒−

(1−𝛼)𝜌𝑡

𝛼 ]

1

1−𝛼

   (6) 

and 

   𝐶(𝑡) =
𝜌

𝛼
𝐾(𝑡)     (7) 

The marginal product of capital, 𝑟(𝑡), is 𝛼𝐾(𝑡)𝛼−1. We show in the Appendix that 

differentiating this with respect to 𝜌 after applying equation (6) yields: 

  

  
𝑑𝑟(𝑡)

𝑑𝜌
=

𝛼2

𝜌2(1−𝜃𝑡)+𝐾𝜃𝑡(1−𝛼)𝑡

𝐾(𝑡)2−2𝛼
    (8) 

 

where  𝐾̃ ≡ (𝐾0
1−𝛼 −

𝛼

𝜌
) and 𝜃𝑡 = 𝑒

(𝛼−1)𝜌𝑡

𝛼 .  Note that 𝜃𝑡 → 1 as 𝑡 → 0 and 𝜃𝑡 → 0 as 𝑡 → ∞. 

Equation (8) thus implies that 
𝑑𝑟(𝑡)

𝑑𝜌
= 0 when 𝑡 = 0. Note also that 𝐾(𝑡)1−𝛼 =

𝛼

𝜌
+ 𝐾̃𝜃𝑡 so the 

limit of 𝐾(𝑡)2−2𝛼 as 𝑡 → ∞ is (
𝛼

𝜌
)

2
and lim

𝑡→∞

𝑑𝑟(𝑡)

𝑑𝜌
= 1 with the convergence from below. Hence 

when 𝜌 is allowed to vary endogenously, 
𝑑𝑟(𝑡)

𝑑𝜌
 only equals unity as capital converges on the 

steady state value.  

Figure 1 shows the profile of 𝑑𝑟/𝑑𝜌 against time using equation (8) with parameter values 

𝛼 = 0.5, 𝜌 = 0.02 and 𝐾0 = 1. From equation (5a) these parameter values imply 𝐾𝑆𝑆 = 625. 

The function begins at zero at 𝑡 = 0 and rises quickly to exceed 0.5, then “brakes” while 

remaining continuously differentiable, approaching unity monotonically from below. Reducing 

𝜌 slows the rate of convergence to unity but the shape of the function remains approximately 

the same, as it does for any other combination of parameters that yield 𝐾0 < 𝐾𝑆𝑆.   
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Figure 1. Path of 𝜕𝑟/𝜕𝜌 when 𝛼 = 0.5, 𝜌 = 0.02 and 𝐾0 = 1. 

 

3    Estimation of 𝒅𝒓/𝒅𝝆 and the pure rate of time preference  

3.1    Data 

Our discount rate measure was computed using two series, both obtained from the U.S. Federal 

Reserve. The Long Term Government Securities series (LTGOVBTD)1 provides the earliest-

available monthly average rate of return on all outstanding US government securities of 10 

years or more to maturity. It is available for complete years from 1925 to 1999, of which the 

years from 1930 onwards were used. It was extended from 2000 to 2015 using the series 

IRLTLT01USM156N2  which provides the monthly average rate of return on 10 year US 

Government Bonds from 1960 to the present. During the overlap period the two series exhibit 

a 98.4 percent correlation. They were averaged up to annual rates then converted to real rates 

by factoring out the annual inflation rate computed using the all-item (unchained) Consumer 

Price Index for Urban Consumers.3 Annual US real personal consumption expenditures from 

1930 to 2015 were also obtained from the U.S. Federal Reserve (series PCECCA)4 and were 

used with annual US population to convert to per capita terms from which we computed the 

annual rate of change in 𝐶(𝑡). Denote this as 𝑔(𝑡) ≡ 𝐶̇(𝑡)/𝐶(𝑡). The resulting series are shown 

in Figure 2.  

 

 
1 Source: https://fred.stlouisfed.org/series/LTGOVTBD.  

2 Source: https://fred.stlouisfed.org/series/IRLTLT01USM156N  

3 Source: https://fred.stlouisfed.org/series/CPIAUCNS. Chained US CPI measures are not available prior 

to the 1960s.  

4  Source; https://fred.stlouisfed.org/series/PCECCA; population from http://www.multpl.com/united-

states-population/table.   

https://fred.stlouisfed.org/series/LTGOVTBD
https://fred.stlouisfed.org/series/IRLTLT01USM156N
https://fred.stlouisfed.org/series/CPIAUCNS
https://fred.stlouisfed.org/series/PCECCA
http://www.multpl.com/united-states-population/table
http://www.multpl.com/united-states-population/table
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Figure 2: Annual percent change in US real per capita consumption expenditures (top) 

and real rate of return on long term US government securities (bottom) annually from 

1930 to 2015.  

  

3.2    Semi-Parametric Model 

Equation (1) can be implemented as a regression equation using 𝜌 and 𝜂 as parameters. A 

simple regression model corresponding to equation (1) would take the form 

  𝑟(𝑡) = 𝜌 + 𝜂𝑔(𝑡) + 𝑒(𝑡)    (9) 

where 𝑒(𝑡) is an additive error term. OLS estimation of equation (9) yields 𝜌̂ = 2.49 (standard 

error 0.479) and 𝜂̂ = −29.40 (standard error 13.41). However as can be seen in Figure 3, which 

shows the same data as in Figure 2 but in scatterplot format, there are two potentially influential 

observations (shown as open circles) where the real interest rate exceeds 10 percent. Dropping 

just these two data points changes the OLS results considerably, to 𝜌̂ = 1.53 (standard error 

0.465) and 𝜂̂ = 2.53 (standard error 13.53).  The 𝑅2 is zero and a Breusch-Godfrey test for no 

serial correlation strongly rejects. However OLS is not a suitable method in this case because 

we have established on theoretical grounds that the model coefficients are not constant over 

time in a growing economy so the regression model must likewise allow the intercept and slope 

coefficients to vary.  
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Figure 3: Same data as in Figure 2, shown as a scatter plot. 

 
 

We do this using a Time-Varying Semi-Parametric Smooth Coefficient (TVSSC) estimator 

based on Robinson (1989, 1991) that allows the parameters to vary smoothly as functions of 

other exogenous variables including time. Our exogenous variable is the normalized time trend 

𝑡/𝑇 , where T is the sample size, as recommended by Robinson (1989). This yields the 

semiparametric smooth coefficient estimator of the form: 

  𝑟(𝑡) = 𝑋(𝑡)′𝛿 (
𝑡

𝑇
) + 𝜖(𝑡), 𝑡 = 1,2, … , 𝑇   (10) 

where T is the sample size, 𝑋(𝑡) = [1,
𝐶̇(𝑡)

𝐶(𝑡)
]  is row t from a 𝑇 × 2  matrix of explanatory 

variables where the first entry is a column of ones and the second is the vector of observations 

on the growth rate, 𝛿 is a pair of smooth functions of 𝑡/𝑇 corresponding to the columns of X 

and 𝜖(𝑡) is the error term. Denoting 𝑧 ≡ 𝑡/𝑇, we estimate 𝛿(∙) using a local least squares 

estimator of the following form: 

𝛿(𝑧) = [(
1

𝑇ℎ
) ∑ 𝑋(𝑗)𝑋′(𝑗)𝐾 (

𝑧(𝑗) − 𝑧

ℎ
)

𝑇

𝑗=1

]

−1

× [(
1

𝑇ℎ
) ∑ 𝑋(𝑗)𝑟(𝑗)𝐾 (

𝑧(𝑗) − 𝑧

ℎ
)

𝑇

𝑗=1

] 

where 𝐾(∙) is the Gaussian kernel function, ℎ is the smoothing parameter for sample size T, 

and j is the time index. Li et al. (2002) and Ozturk and Stengos (2014) provide extensive details 

on the properties of this estimator.  
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The coefficient estimates are shown in Figure 4. The estimates of 𝜌̂, representing the pure 

rate of time preference, are highest around 1940 and decline to near zero in the 1950s and 1960s 

before rising to a post-1980 mean value of about 1.6 percent. Likewise our estimate of 𝜂̂(𝑡) is 

not constant, begins below zero, peaks around 1980 and then reaches a small positive value by 

the end of the sample. A negative value of 𝜂 is not consistent with risk-aversion in the utility 

function as it implies increasing marginal utility as consumption grows, so the estimates in the 

earliest decades of the sample should be considered less reliable. 

Figure 4. Time-varying estimates of 𝜌̂ and 𝜂̂ from the TVSSC model. 

 

We estimated 𝑑𝑟(𝑡)/𝑑𝜌 by regressing 𝜂̂(𝑡) on 𝜌̂(𝑡) (without an intercept), obtaining the slope 

coefficient, then regressing 𝑔(𝑡)  on 𝜌̂(𝑡)  again without an intercept obtaining the slope 

coefficient, then using these coefficients in equation (2) with the TVSSC parameters. The yearly 

results are shown in Figure 5 (gray dots) with a 10-year moving average (applying triangular 

weights) post-1940 (black line). Note that some stability is imposed on this estimator by treating 

the derivative terms as constants. The mean value of the yearly series shown in Figure 4 is 0.67 

and its standard deviation is 0.76. The time profile of the smoothed derivative is qualitatively 

very similar to the profile predicted by the theoretical model. While values for individual years 

are rather noisy and even exhibit unexpectedly negative values early in the sample, the 

derivative approaches unity from below as expected. The mean of the unsmoothed values in 

Figure 5 after 1980 is 0.91 and the standard deviation is 0.37 so a unit value for 𝑑𝑟/𝑑𝜌 cannot 

be ruled out. While a 95 percent confidence interval does not exclude unity, neither is there any 

indication in Figure 5 that the smoothed line is tending towards unity, and instead seems 

attracted to a mean value centered around 0.9.  
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Figure 5. Time-varying estimates of 𝑑𝜌/𝑑𝑟 from TVSSC model, 1930—2015 (gray dots) 

and results post-1940 smoothed using a 10-year moving average with triangular weights 

(black line).  

 

4    Conclusions 

Varying 𝜌 for the purpose of computing alternate discount rates in Cost-Benefit Analysis is 

common practice and assumes that the two vary identically, or 𝑑𝑟(𝑡)/𝑑𝜌 = 1. But the second 

term in the Ramsey equation (1) is also dependent on 𝜌 so this derivative cannot be assumed to 

equal unity. We find on theoretical grounds that 𝑑𝑟(𝑡)/𝑑𝜌 < 1 outside the steady state in an 

economic growth model, approaching unity from below. We find empirical support for this 

finding from examining long term US real interest and consumption growth. A semi-parametric 

model allowing for smoothly-varying coefficients over time yields an estimate in recent 

decades centered at around 0.9, however the confidence interval does not exclude unity. The 

empirical model implies a value of the pure rate of time preference after 1980 of about 1.6 

percent. 
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From equation (6) 

𝐾(𝑡) = [𝐾𝑆𝑆
1−𝛼 + (𝐾0

1−𝛼 − 𝐾𝑆𝑆
1−𝛼)𝑒−

(1−𝛼)𝜌𝑡
𝛼 ]

1
1−𝛼

. 

Note  𝐾𝑠𝑠 = (
𝜌

𝛼
)

1

𝛼−1
⇒ 𝐾𝑆𝑆

1−𝛼 =
𝛼

𝜌
.  Then 
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𝐾(𝑡)1−𝛼 =
𝛼

𝜌
+ (𝐾0

1−𝛼 −
𝛼

𝜌
) 𝑒−

(1−𝛼)𝜌𝑡
𝛼 . 

Denote 𝐾̃ ≡ (𝐾0
1−𝛼 −

𝛼

𝜌
) and 𝜃𝑡 = 𝑒−

(1−𝛼)𝜌𝑡

𝛼 . Note also: 

𝑑𝐾̃

𝑑𝜌
=

𝛼

𝜌2
 

𝑑𝜃𝑡

𝑑𝜌
= −

𝜃𝑡(1 − 𝛼)𝑡

𝛼
. 

It follows that 𝐾(𝑡)1−𝛼 =
𝛼

𝜌
+ 𝐾̃𝜃𝑡 and  𝑟(𝑡) = 𝛼𝐾(𝑡)𝛼−1 = 𝛼 (

𝛼

𝜌
+ 𝐾̃𝜃𝑡)

−1
. 

Differentiate with respect to 𝜌 to get 

𝑑𝑟

𝑑𝜌
= −𝛼 (

𝛼

𝜌
+ 𝐾̃𝜃𝑡)

−2

(−
𝛼

𝜌2
+ 𝜃𝑡

𝑑𝐾̃

𝑑𝜌
+ 𝐾̃

𝑑𝜃𝑡

𝑑𝜌
) 

= −𝛼 (
𝛼

𝜌
+ 𝐾̃𝜃𝑡)

−2

× (−
𝛼

𝜌2
+

𝛼

𝜌2
𝜃𝑡 −

𝐾̃𝜃𝑡(1 − 𝛼)𝑡

𝛼
) 

=

𝛼2

𝜌2 (1 − 𝜃𝑡) + 𝐾̃𝜃𝑡(1 − 𝛼)𝑡

𝐾(𝑡)2−2𝛼
. 

 


