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The disruption of supply chain due to Covid-19 and the war in Ukraine, render the 

prediction of agricultural output a determinant factor of economic life. We consider the 

predictability of agricultural output based on a set of explanatory variables, that include 

agricultural input, prices and consumer demand among others, for Greece and explore the 

usefulness of these variables compared to standard, univariate, forecasting methods. We 

evaluate the impact of using combined information in the form of principal components, 

and the use of averaging for producing accurate forecasts. Our results indicate that 

agricultural output is predictable and, moreover, we identify the factors that, for the case 

of Greece, lead to such predictability. Our outcomes can be used in a variety of ways, the 

least of which can be scenario analysis that might be very useful in real-world policy 

making.  
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1    Introduction 

The disruption of supply chain due to Covid-19 and the war in Ukraine, render the prediction 

of agricultural output a determinant factor of economic life. Agricultural output does generally 

 
 Kyriazi: Department of Agribusiness and Supply Chain Management, Agricultural University of 

Athens, fkyriazi@aua.gr; Xylangouras: Adam Smith Business School, University of Glasgow, 

efthymiosxyl@gmail.com; Papadogonas: Department of Business Administration, School of 

Economics and Political Science, National and Kapodistrian University of Athens, thpap@ba.uoa.gr. 

©  2024  Foteini Kyriazi, Efthymios Xylangouras and Theodoros Papadogonas. Licensed under the 

Creative Commons Attribution - Noncommercial 4.0 Licence 

(http://creativecommons.org/licenses/by-nc/4.0/. Available at 

http://rofea.org. 

mailto:fkyriazi@aua.gr
mailto:efthymiosxyl@gmail.com


Review of Economic Analysis 16 (2024) 443-467 

 

 

444 

 

 

 

www.RofEA.org 

 

vary with global economic trends and is believed to influence price levels more broadly and thus 

is of interest to central banks, policy makers, firms, consumers and of course farmers (Groen 

and Pesenti, 2011). On the other hand, agricultural productivity is very vulnerable generating 

important economic problems for the farmers and the consumers (Kyriazi et al., 2023). Thus, it is 

of considerable interest to examine how we can achieve forecastability of agricultural output. The 

magnitude of this issue is to ensure that there will be knowledge for the governments to implement 

appropriate trade policies as well as for the farmers adequate market information. 

In this paper we consider the forecastability of agricultural output based on a set of 

explanatory variables, that include agricultural input, prices and consumer demand among 

others, for Greece. As a small open economy, with limited fiscal freedom and a very large 

dependence on tourism, Greece is a prime example of how one should monitor, via forecasting, 

the agricultural markets. In the paper we explore the usefulness of explanatory variables 

compared to standard, univariate, forecasting methods, the impact of using combined information in 

the form of principal components, and the use of averaging for producing accurate forecasts. Our 

results indicate that agricultural output is predictable (Midmore, 1993) and, moreover, we 

identify the factors that (for the case of Greece) lead to such forecastability. Our results can be 

used in a variety of ways, the least of which can be scenario analysis that might be very useful in 

real-world policy making. Furthermore, along with emphasizing on the forecasting accuracy of 

our models, we also seek to establish inferential relationships relevant for policy and decision 

making. 

The remainder of the paper is organized as follows: in section 2 we review some related literature 

for forecasting commodity prices and output; in Section 3 we present our data and explain all the 

useful transformations; in section 4 we introduce our methodology, while in section 5 we discuss our 

empirical results; finally, in section 6 we offer some concluding remarks and potential extensions 

for future research. 

2    Literature Review 

In this section, we review some of the literature on commodity price and output forecasting. We 

use this review to direct our work and help us understand and interpret our results later on. 

Forecasting the indices of agriculture, estimating their elasticities, and predicting prices is an 

issue of considerable practical significance as the volatile nature of agricultural products makes 

them responsive to a higher level of variability. Therefore, forecasts of agricultural production 

and prices have become pivotal for researchers, and policymakers (Allen, 1994). Still, central 

banks, the agribusiness sector, and consumers, whose choices are based on their projections of 

future inflation, will also find them valuable (Groen & Pesenti, 2011), since agricultural output 

usually shifts with economic and financial trends worldwide. (Zhang, Lohr, Escalante, & Wetzstein, 

2009) . Furthermore, governments have made an effort to measure and regulate agricultural 
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output because a stable food supply is crucial to maintaining national security and driving 

sustainable management (Kechagia and Kyriazi, 2021). Due to this higher degree of 

uncertainty, an understanding of the interactions between the various components of an agro-

system is necessary, taking into account human factors, natural resources, and agricultural 

production. For these reasons, models are required in order to comprehend and forecast the overall 

performance of agriculture (Jones et al., 2017) guiding decisions and policies. This higher 

volatility across space and time suggests that forecasts and all additional tools and information 

required to interpret and convey the outcomes of agricultural analysis can be used as part of 

agricultural monitoring systems (Atzberger, 2013). Thus, the question of the forecastability of 

agricultural output is extremely intriguing, and the volatile nature of the products suggests a 

number of explanatory variables that could be used for the generation of such forecasts. 

Commodity forecasting goes back to the first half of the 20th century (Sarle, 1925; Cox et al. 

1956; L’Esperance, 1964). However, it wasn’t until the 1970s oil crisis that forecasting 

agricultural output and prices were thoroughly examined. A vast number of studies documented 

the fact that futures markets appear to offer the most reliable price predictions when they are readily 

available (Just & Rausser, 1981; Tomek, 1996;). Later landmark studies revealed the use of the 

out-of-sample predictability of commodity prices, like Gargano and Timmermann (2014) or 

Ahumada & Cornejo, (2016), indicating futures prices as the best available “predictors” of future 

spot prices. In the same vein of the literature is the work of Fowowe (2016) documenting the fact 

that agricultural prices are neutral to global oil prices in both the short and long run. Furthermore, 

Nazlioglou and Soytas (2012) provide compelling proof of how shifts in the price of 24 

agricultural commodities are affected by changes in the value of the US dollar in a panel setting. 

Other literature that is related to our work includes the following. Kyriazi et al. (2019) 

introduced a new methodological approach to forecasting agricultural time series1. Ramirez and 

Fadiga (2003) developed an asymmetric-error GARCH model for forecasting agricultural time 

series and generating solid confidence intervals for these forecasts. Onour and Sergi (2012), 

declared that there is a mean-reverting trend to the volatility of food commodity prices, which 

is symbolized by intermediate and short-memory behaviors. Gan-qiong et al. (2012) used a 

quantile regression approach to show that their VECM-MSVR method is a promising alternative 

for forecasting interval-valued agricultural commodity futures prices. In a related work, De 

Nicola (2016) provided an in-depth analysis of the degree of co-movement (measured by 

correlation coefficients) between the nominal price returns of eleven important commodities 

related to agriculture, food, and energy. This is in line with the finding that related commodities 

 
1 For some other forecast methodology, see Kyriazi and Thomakos, 2020, 2020 and Tarani & Kyriazi, 

2024 
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usually have close substitutes in the market. In addition, Law (2023) considered a structural 

VAR approach to examine the demand shocks of the financial crisis and the structural break in 

energy prices, indicating a new regime post the financial crisis period. That is an important 

consideration, especially when modeling periods that do not correspond to normal market 

conditions. Noor and Erickson (2023) highlight the importance of achieving long-run economic 

stability to protect against relevant unexpected economic downturns. Especially when aiming to 

draw inferences and not only to achieve high forecasting accuracy, there is always a tradeoff 

between including data anomalies and reflecting the long-run average of the data generating 

process. 

3    Data 

Our dataset stems from the official website of the Greek Statistical Authority (ELSTAT), a 

national independent organization of Greece, which is responsible, among other operations, for the 

construction and the provision of various economic statistical reports of the Greek market. Due 

to the aforementioned responsibility of ELSTAT, we rely on its reports to employ the economic 

variables necessary for our empirical investigation. 

Gathering data from the press release on input and output price indices of the Greek agricultural 

market, we selected the following economic variables: The Total Agricultural Output, Total 

Agricultural Input, Retail Sales Turnover, and Volume. 

The purpose of the Total Agricultural Output, the dependent variable, is to measure the 

relative changes in prices received by producers in the agriculture-livestock sector when selling 

their agricultural products. The selected explanatory variables correspond to the Total 

Agricultural Input and Retail Sales Turnover. The purpose of the Total Agricultural Input is to 

measure the relative changes in prices paid for the acquisition of consumable means, goods, and 

services used in the production process. Additionally, transactions involving olive oil and wine, 

which fall under the manufacturing sector, are also covered by the Total Agricultural 

Output/Input, specifically when their processing or production is carried out by agricultural 

enterprises and is considered an activity of the agricultural sector. Moreover, the agricultural and 

livestock production sector is characterized by seasonality, resulting in certain products not 

being available in the market every month of a calendar year. For this reason, the weighting 

factors of output products vary monthly throughout the year. Breaking down the index of the 

Total Agricultural Output, we can further utilize its sub-components to provide more 

explainability in our empirical research. The Gross Agricultural Output is comprised of the 

Agricultural Output (Plant based production) and the Animal Output (Livestock production). 

The most significant component with respect to the weighted factors of the Agricultural Output 
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is the produce of fruits, olive oil, and vegetables, playing a pivotal role in the Greek market and 

contributing substantially to its agricultural economy and consumer demand. On the other hand, 

Animal Output consists of the production of livestock and other animal products such as beef, 

poultry, and dairy products. Furthermore, the Gross Agricultural Input is comprised of the 

Consumables Input and Fixed Capital Input. More specifically, Consumables are primarily 

attributed to the consumption of energy and fuels, followed by animal feed, while Fixed Capital Input 

is fundamentally driven by the capital expenditures on machinery and equipment used for 

agricultural production. The compilation of the Total Agricultural Output/Input indices in the 

Agricultural market in Greece is based on voluntary agreements between the member states of the 

European Union (EU) and Eurostat. The foundations for these agreements were laid in the early 

’70s. Thus, the compilation process and methodology are common across member countries of the 

European Union (EU). Moreover, they are fixed-base indices with a base year of 2015=100. 

To ensure the robustness of our analysis and filter the signal from the overall noise present 

in most time series we undertake a thorough process of variable inspection and transformation. That 

is by involving logarithmic, first differences, and seasonal differences transformations. By 

taking the natural logarithm of each variable under consideration, we aim to address 

heterogeneity and scale the non-linear structure that is commonly encountered in economic time 

series. Thus, the logarithmic transformation helps stabilize the variance of our sample and makes 

the relationship between observations of our data series more linear. Therefore, once we make 

our variables more linear, we can employ regression parameter estimation techniques such as 

OLS. Following the logarithmic transformation, we compute the first differences for each 

logged variable. That is, in order to remove trends and address issues of non-stationarity, 

making the data suitable for certain econometric frameworks that assume stationarity (e.g., 

ARIMA models). Moreover, by transforming our data series into the log returns setting, we 

can leverage the nice property of the time-additive compounded returns. This allows us to 

obtain the return over a period of lower frequency (e.g., quarterly returns, yearly returns) by 

simply adding up the monthly log returns within the specified window. Additionally, as already 

mentioned dealing with seasonality is a common challenge for the agricultural and livestock 

production sector. That is because the dynamics of supply and demand for several agricultural 

commodities are heterogeneous. Thus, we apply seasonal difference transformation to each log 

returns variable, intending to eliminate the presence of seasonality. That is, we correct/transform 

our sample data to ensure capturing underlying trends and patterns, while removing seasonal 

noise. In addition, although we are not working in high-dimensional spaces, we aim to 

incorporate a degree of data aggregation through dimensionality reduction, by implementing 

PCA analysis on all available explanatory variables. The objective is to evaluate the performance 
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of a compressed version of a handful of variables by capturing the important information, 

translated into variance in their respective data generating processes, simultaneously. For 

simplicity, we utilize the first three principal components that capture the highest degree of 

variance among the explanatory variable, as well as we enrich our employed dataset by including 

lagged versions of the corresponding principal components. As expected from Figure 3 it can 

be derived that the first principal component is more volatile than the other components, thus 

capturing the highest degree of information. However, that does not necessarily mean that it is 

the most appropriate predictor by design. Empirical analysis on the forecastability of low signal 

principal components (i.e., ”weak factors”) has demonstrated the importance of including them 

in our pool of explanatory variables (Giglio & Xiu and Zhang, 2023). 

As the data frequency plays an important role in determining price transmission (Nazlioglou, 

2011) and the selected economic variables are available at a monthly frequency, we constrain 

ourselves to the use of monthly observations that span the period 2000 to 2019. We choose to 

exclude the most recent observations that correspond to the Covid-19 period. That is, due to the 

irregular economic disruptions during that time that could lead us to misunderstand the underlying 

trends. By excluding the Covid-19 period, we aim to develop models that lead to more reliable 

predictions. Thus, we consider economic cycles that include one financial crisis and correspond 

to a mix of good/bad periods. Additionally, due to data length constraints, we use two rolling 

windows of 36 and 60 for estimating the parameters of our models. Finally, all variables employed 

in our empirical investigation enter the analysis as monthly growth rates (log returns). We aim to 

provide forecasts starting from the first month of 2017 until the end of 2019, using the rest of the 

observations in our training set. 

 

Table 1: Summary Statistics 

 

Variable Mean Median S.D. Min Max 

Total Output 85.94 91.50 13.64 53.20 104.2 

Agricultural Output 83.83 88.35 16.10 47.60 113.3 

Animal Output 93.44 96.75 7.755 75.10 105.8 

Total Input 89.75 95.60 14.17 62.70 106.9 

Consumables Input 87.74 94.60 16.68 58.00 109.0 

Fixed Capital Input 94.46 99.55 8.423 73.80 102.8 

Retail Sales Turnover 114.8 106.0 19.87 80.89 161.5 

Retail Sales Volume 127.0 124.7 24.14 94.16 176.7 
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Figure 1: Temporal Evolution of Greek Agricultural Time Series 

 

Figure 2: Temporal Evolution of Transformed Greek Agricultural Time Series 
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Figure 3: Extracted PCA Factors of the Transformed Greek Agricultural Time Series 

4   Methodology 

In this section, we describe the methodology we followed for our analysis. There are two main 

concepts that we consider when constructing and testing our forecasting models: model significance 

and model/dimension reduction. Let {Yt, Xt} be the dependent and explanatory variables of 

interest, where Xt is considered a vector. As the data in their original levels are both non-stationary 

and devoid of practical meaning (in their original units of measurement), we will work with the 

growth rates of the variables thus defining yt = ∆ log(Yt) and xt = ∆ log(Xt). For the case of model 

reduction, we shall consider the principal components (factors) of the explanatory variables which 

we shall denote by ft = PCA(xt). For convenience of notation in what follows, we concentrate the 

explanatory variables into the vector zt = [xt, ft]
T. This technique of dimensional reduction allows 

us to leverage the signal included in the available variables by identifying characteristics with 

higher variance, circumventing manual selection. Through PCA, we aim to enhance the efficiency 

of information representation by compressing the available explanatory variables through Singular 

Value Decomposition (SVD). Therefore, we not only utilize the extracted principal components 
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(factors) in their standard form but also make use of their versions considering lags up to three 

month period. 

Our main vehicle for estimation and forecasting is the class of ARMAX(P, Q, K, S) models, 

where p denotes the number of autoregressive lags, q the number of moving average lags, K denotes 

the number of explanatory variables entering the model and s denotes the number of lags of the 

explanatory variables (i.e., Total Agricultural Input, and Retail Sales Turnover). We thus write: 

 

where by appropriate parametric restrictions we can nest all kinds of different models, including 

the standard ARMA(P, Q) class, regressions, and their combinations - we have also considered 

models that include seasonal moving average components but for brevity and compactness we 

do not write it in the above form. This addition of seasonal moving average components is used 

to enable the models to capture and respond to excess seasonal variations. Table 2 has the description 

of our modeling framework and the various combinations that stem from it; Table 3 has all models 

considered with an ID, model category, and model form for easier reference when discussing the 

results. 

We consider both rolling (36 and 60 month-windows) and recursive estimation windows, on 

which the factors are also computed.2 The selection of 36 and 60-month rolling windows allows 

us to capture mainly short-term trends of the agricultural market, utilizing more recent 

observations that are more relevant to the current conditions of the market.  

Table 2: Description of Modeling Frameworks  

Model Explanation 

AR(i ) The AR(i ) forecast, with i = 1, 2, 3, 4 

AR(p) The AR(p) forecast, p by the AIC 

MA(j ) The MA(j ) forecast, with j = 1, 2, 3, 4 

ARMA(i,j ) The ARMA(i, j ) forecast 

ARMA(i,j )xSMA(p) The ARMA(i, j ) forecast with Seasonal MA(p)  

ADL-NS  The adaptive learning forecast, no smoothing 

ADL The adaptive learning forecast, with smoothing 

TI(p) Total Agricultural Input with p lags 

RS(p) Retail Sales Turnover with p lags 

CONSI(p) Consumables Input with p lags 

FCI(p) Fixed Capital Input with p lags 

Fj (p) j th Principal Component Factor with p lags 
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Table 3: Overview of Employed Forecasting Models 
 

ID Model Category Model Form 

A01 AutoRegressive AR(i ) 

A02 AutoRegressive AR(i)/TI(p) 

A03 AutoRegressive AR(i )/CONSI(p) 

A04 AutoRegressive AR(i )/FCI(p) 

A05 AutoRegressive AR(i )/TI(p)/RS(p) 

B01 Moving Average MA(i ) 

B02 Moving Average MA(i)/TI(p) 

B03 Moving Average MA(i )/CONSI(p) 

B04 Moving Average MA(i )/FCI(p) 

B05 Moving Average MA(i )/TI(p)/RS(p) 

C01 AutoRegressive Moving Average ARMA(i,j )xSMA(p) 

C02 AutoRegressive Moving Average ARMA(i,j )xSMA(p)/TI(p) 

C03 AutoRegressive Moving Average ARMA(i,j )xSMA(p)/CONSI(p) 

C04 AutoRegressive Moving Average ARMA(i,j )xSMA(p)/FCI(p) 

C05 AutoRegressive Moving Average ARMA(i,j )xSMA(p)/TI(p)/RS(p) 

D01 AutoRegressive with Factors AR(i )/Fj (p), where j=1 

D02 AutoRegressive with Factors AR(i )/Fj (p), where j=2 

D03 AutoRegressive with Factors AR(i )/Fj (p), where j=3 

D04 AutoRegressive with Factors AR(i )/Fj (p), where j=1,2 

D05 AutoRegressive with Factors AR(i )/Fj (p), where j=1,2,3 

E01 Moving Average with Factors MA(i )/Fj (p), where j=1 

E02 Moving Average with Factors MA(i )/Fj (p), where j=2 

E03 Moving Average with Factors MA(i )/Fj (p), where j=3 

E04 Moving Average with Factors MA(i )/Fj (p), where j=1,2 

E05 Moving Average with Factors MA(i )/Fj (p), where j=1,2,3 

F01 AutoRegressive Moving Average with Factors) ARMA(i,j )/Fj(p), where j=1 

F02 AutoRegressive Moving Average with Factors ARMA(i,j )/Fj(p), where j=2 

F03 AutoRegressive Moving Average with Factors ARMA(i,j )/Fj(p), where j=3 

F04 AutoRegressive Moving Average with Factors ARMA(i,j )/Fj(p), where j=1,2 

F05 AutoRegressive Moving Average with Factors ARMA(i,j )/Fj(p), where j=1,2,3 

G01 Model Averaging of top 3 RMSE Forecasts ModelAvgRMSE 

G02 Model Averaging of top 3 MAE Forecasts ModelAvgMAE 

 

 

2Note that all factor calculations are in-sample and are not forward-looking; once the model is estimated 

we then add the new observation, on which the forecast is to be evaluated, compute the forecast errors 

and only then update the factors. 
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On the other hand, the selection of a recursive window facilitates a continuous adaptation to evolving 

market conditions, incorporating all the available information captured in the agricultural sector. 

Each model is estimated and then the corresponding one-month ahead forecast is computed and 

stored for post-processing later. Our forecasting strategy considering projecting the future value of 

the Total Agricultural Output one month ahead, aims to capture short-term fluctuations so as to 

account for timely market responses. Once all forecasts are available, we compute the forecast errors 

and descriptive measures of forecast evaluation, the root mean-squared (RMSE) and the mean-

absolute (MAE) forecasting errors. We sort the forecasting results and we report the top three 

models of each forecasting window category regarding the minimum RMSE and MAE 

accordingly. The rationale for reporting the results of these two performance metrics is due to 

the fact that RMSE focuses on penalizing larger errors, while MAE considers the absolute 

magnitude of errors and thus offers a more balanced view. Based on these measures we perform two 

additional steps: first, we re-forecast the top-performing models using the adaptive learning method 

of Kyriazi et al. (2019), to examine if further performance enhancements could be affected and, 

second, we compute the Diebold-Mariano (DM) test of equal forecasting performance. The DM 

test compares the forecasting performance between two non nested models, evaluating whether 

one statistically outperforms the other, taking into account the underlying loss function and 

sampling variation in the average losses. The test provides p-values indicating the significance 

of differences in forecasting accuracy. Thus, the rejection of the null hypothesis suggests a 

statistically significant distinction in the predictive performance of the models. (Diebold and 

Mariano, 1995). Additionally, we consider a version of the Diebold & Mariano Test that 

incorporates small-sample corrected degrees of freedom adjusted t-statistics, to ensure the 

robustness of the results (Harvey et al., 1997). 

5    Results 

We start off our discussion with some general remarks on the three presented tables (i.e., Table 

6, Table 9, and Table 12). The tables focus on the relative performances of the top three 

models/methods based on the RMSE and MAE rankings in each forecasting window category. 

In addition, we generate two additional forecasts, by employing an averaging approach on the top 

3 RMSE and top 3 MAE forecasts, assigning equal weights to each model. By utilizing the 

model averaging framework, we look forward to mitigating the impact of individual model 

idiosyncrasies, thereby testing the effectiveness of ensembling on forecasting performance. To 

facilitate the discussion of the results, we rank the top-performing models based on RMSE and 

MAE into two distinct tables (Table 4 & Table 5), accompanied by an indicator of whether the 

model is causal or not and a ”*” indicator highlighting whether a model rejects the Null hypothesis 

of the Diebold and Mariano (DM) test (i.e., not statistically equivalent). Overall, estimating and 
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comparing a total of 527 models across different frameworks and variable combinations, our 

empirical analysis highlighted the following results: 

In the recursive window setting, key models such as MA(2)/TI(1)/RS(1) and MA(2)/TI(1) 

underscore the significance of the Total Agricultural Input (TI) and Retail Sales Turnover (RS) 

as explanatory variables in our models, as well as the moving average setting which is present in 

the top 3 models. More specifically, the inclusion of Retail Sales Turnover (RS) slightly 

improves the forecasting performance, showcasing MA(2)/TI(1)/RS(1) as the best individual 

 

 Table 4: Model Ranking based on RMSE  
 

Window ID Model RMSE Causal DM 

Recursive G01 ModelAvgRMSE 0.874 N - 

Recursive B05 MA(2)/TI(1)/RS(1) 0.885 Y - 

Recursive B02 MA(2)/TI(1) 0.885 Y - 

Recursive E02 MA(2)/F2(p), where p=1,2,3 0.891 N - 

Rolling 36   G01   ModelAvgRMSE 0.889 N - 

Rolling 60  G01    ModelAvgRMSE 0.906 N - 

Rolling 60    C04  ARMA(1,1)xSMA(1)/FCI(1) 0.908 Y - 

Rolling 60  C02  ARMA(1,1)xSMA(1)/TI(1) 0.912 Y - 

Rolling 36  A05  AR(2)/TI(1)/RS(1) 0.913 Y - 

Rolling 60  A05  ARMA(1,1)xSMA(1)/CONSI(1) 0.914 Y - 

Rolling 36  A05  AR(3)/TI(1)/RS(1) 0.915 Y - 

Rolling 36  B02  MA(2)/TI(1) 0.923 Y - 

Table 5: Model Ranking based on MAE  

 

Window ID Model MAE Causal DM 

Recursive G02 ModelAvgMAE 0.591 N * 

Recursive B04 MA(2)/FCI(1) 0.644 Y - 

Recursive A02 AR(1)/TI(1) 0.659 Y - 

Recursive C04 ARMA(2,2)xSMA(1)/FCI(1)   0.660 Y - 

Rolling 36   G02   ModelAvgMAE 0.883 N - 

Rolling 36   C02   ARMA(1,1)xSMA(1)/TI(1) 0.892 Y - 

Rolling 36   C04   ARMA(1,1)xSMA(1)/FCI(1) 0.892 Y - 

Rolling 36   C03   ARMA(1,1)xSMA(1)/CONSI(1) 0.896 Y - 

Rolling 60   G02   ModelAvgMAE 0.898 N - 

Rolling 60   C04   ARMA(1,1)xSMA(1)/FCI(1) 0.906 Y - 

Rolling 60   C02   ARMA(1,1)xSMA(1)/TI(1) 0.909 Y - 

Rolling 60   C03  ARMA(1,1)xSMA(1)/CONSI(1) 0.913 Y - 
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Table 6: recursive window: Top 3 models for RMSE & MAE 

 

Table 7: Diebold & Mariano Test of Equal Forecasting Accuracy 

(recursive window) 

ID B05 B02 E02 B04 A02 C04 G01 G02 

B05 - 0.9196 0.91 0.7011 0.3194 0.3194 0.5312 0.3686 

B02 0.9196 - 0.9188 0.719 0.3411 0.7088 0.5662 0.3674 

E02 0.91 0.9188 - 0.9264 0.275 0.7232 0.6324 0.3314 

B04 0.7011 0.719 0.9264 - 0.4128 0.7653 0.38 0.366 

A02 0.3194 0.3411 0.275 0.4128 - 0.9396 0.1594  0.0942  

C04 0.3194 0.7088 0.7232 0.7653 0.9396 - 0.6609 0.37 

G01 0.5312 0.5662 0.6324 0.38 0.1594 0.6609 - 0.4334 

G02 0.3686 0.3674 0.3314 0.366  0.0942  0.37 0.4334 - 

H0 - Null hypothesis: Forecasts are equally accurate  

Note: The reported values are the p-values of the DM test 

model regarding the minimum RMSE. In the case of MAE, again the use of the moving average 

framework outperforms the rest of the models, aligning with the model selection based on the 

minimum RSME. 

Therefore we can observe that when utilizing the recursive window setting (i.e., full sample 

and thus more observations), moving average models with additional explanatory variables tend 

to outperform. Notably, model averaging proved the most effective in both MAE and RMSE 

settings, producing the most accurate projections. That emphasizes the importance of 

employing generalization approaches when dealing with uncertainty. 

ID Model RMSE ADL-RMSE 

G01 ModelAvgRMSE 0.874 - 

B05 MA(2)/TI(1)/RS(1) 0.885 - 

B02 MA(2)/TI(1) 0.885 - 

E02 MA(2)/F2(p), where p=1,2,3 0.891 - 

ID Model MAE ADL-MAE 

G02 ModelAvgMAE 0.591 - 

B04 MA(2)/FCI(1) 0.644 - 

A02 AR(1)/TI(1) 0.659 - 

C04 ARMA(2,2)xSMA(1)/FCI(1) 0.660 - 
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Another prominent feature is the appearance of the factor-based forecasting model in the top 

3 RMSE-based forecasts. The respective model interestingly makes use of the second principal 

component extracted by PCA, which incorporates the second highest degree of 

information/variance. That indicates the importance of lower signal PCA factors used for tackling 

uncertainty. The factors were computed by using the signals from all the available variables 

employed in our empirical examination (i.e., Agricultural Output, Animal Output, Total Input, 

Consumables Input, Fixed Capital Input, Retail Sales Turnover & Volume). 

For the rolling window setting of 60 periods, ARMA(1,1)xSMA(1)/FCI(1) consistently 

demonstrates strong performance across both minimum RMSE and MAE. Once again, including 

exogenous variables improves the forecasting accuracy. More specifically, the inclusion of Fixed 

Capital Input (FCI) enhances the forecastability of Agricultural Output more than Agricultural 

and Consumables Input do, indicating Fixed Capital Input (FCI) as the strongest predictor when 

using the ARMA framework. Additionally, the use of Total Agricultural Input (TI) and 

Consumables Input (CONSI) as predictors separately demonstrates a positive contribution to the 

forecastability of the Total Agricultural Output. Moreover, the performance of model averaging 

further justifies the reliability of generalization techniques, outperforming every model 

employed in both RMSE and MAE. 

Table 8: Diebold & Mariano Adjusted Test of Equal Forecasting Accuracy (recursive 

window) 

ID B05 B02 E02 B04 A02 C04 G01 G02 

B05 - 0.9185 0.9088 0.6971 0.3127 0.3127 0.5255 0.3619 

B02 0.9185 - 0.9176 0.7151 0.3344 0.7049 0.5608 0.3607 

E02 0.9088 0.9176 - 0.9253 0.2683 0.7195 0.6276 0.3247 

B04 0.6971 0.7151 0.9253 - 0.4063 0.762 0.3734 0.3593 

A02 0.3127 0.3344 0.2683 0.4063 - 0.9387 0.1537  0.0899  

C04 0.3127 0.7049 0.7195 0.762 0.9387 - 0.6564 0.3634 

G01 0.5255 0.5608 0.6276 0.3734 0.1537 0.6564 - 0.427 

G02 0.3619 0.3607 0.3247 0.3593  0.0899  0.3634 0.427 - 

H0 - Null hypothesis: Forecasts are equally accurate 

Notes:   Small-sample corrected degrees of freedom adjusted t-statistics  

The reported values are the p-values of the DM test 
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Figure 4: recursive window Forecasts: Top 3 RMSE models 

 

Figure 5: recursive window Forecasts: Top 3 MAE models 
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Table 9: rolling window 60: Top 3 models for RMSE & MAE 

ID Model RMSE ADL-RMSE 

G01 ModelAvgRMSE 0.906 0.900 

C04 ARMA(1,1)xSMA(1)/FCI(1) 0.908 0.904 

C02 ARMA(1,1)xSMA(1)/TI(1) 0.912 0.904 

C03 ARMA(1,1)xSMA(1)/CONSI(1) 0.914 0.909 

ID Model MAE ADL-MAE 

G02 ModelAvgMAE 0.898 0.894 

C04 ARMA(1,1)xSMA(1)/FCI(1) 0.906 - 

C02 ARMA(1,1)xSMA(1)/TI(1) 0.909 0.901 

C03 ARMA(1,1)xSMA(1)/CONSI(1) 0.913 0.901 

 

Table 10: Diebold & Mariano Test of Equal Forecasting Accuracy (rolling window 60) 

ID C04 C02 C03 G01/02 

C04 - 0.8812 0.8188 0.2558 

C02 0.8812 - 0.8787 0.4755 

C03 0.8188 0.8787 - 0.3352 

G01/02 0.2558 0.4755 0.3352 - 

H0 - Null hypothesis: Forecasts are equally accurate  

Note: The reported values are the p-values of the DM test 

Table 11: Diebold & Mariano Adjusted Test of Equal Forecasting Accuracy (rolling 

window 60) 

ID C04 C02 C03 G01/02 

C04 - 0.8795 0.8163 0.2493 

C02 0.8795 - 0.877 0.4693 

C03 0.8163 0.877 - 0.3285 

G01/02 0.2493 0.4693 0.3285 - 

H0 - Null hypothesis: Forecasts are equally accurate 

Notes:  Small-sample corrected degrees of freedom adjusted t-statistics 

The reported values are the p-values of the DM test 
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Figure 6: rolling window 60 Forecasts: Top 3 RMSE & MAE models 

 

Table 12: rolling window 36: Top 3 models for RMSE & MAE 

ID Model RMSE ADL-RMSE 

G01 ModelAvgRMSE 0.889 - 

A05 AR(2)/TI(1)/RS(1) 0.913 - 

A05 AR(3)/TI(1)/RS(1) 0.915 - 

B02 MA(2)/TI(1) 0.923 0.922 

ID Model MAE ADL-MAE 

G02 ModelAvgMAE 0.883 0.880 

C02 ARMA(1,1)xSMA(1)/TI(1) 0.892 - 

C04 ARMA(1,1)xSMA(1)/FCI(1) 0.892 0.886 

C03 ARMA(1,1)xSMA(1)/CONSI(1) 0.896 0.892 
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Table 13: Diebold & Mariano Test of Equal Forecasting Accuracy (rolling window 36) 

H0 - Null hypothesis: Forecasts are equally accurate 

Note: The reported values are the p-values of the DM test 

Table 14: Diebold & Mariano Adjusted Test of Equal Forecasting Accuracy (rolling 

window 36) 

ID A05(i =2) A05(i =3) B02 C02 C04 C03 G01 G02 

A05(i =2) - 0.9311 0.8331 0.7771 0.5338 0.5338 0.6723 0.299 

A05(i =3) 0.9311 - 0.8765 0.8003 0.5552 0.792 0.7063 0.32 

B02 0.8331 0.8765 - 0.8201 0.5329 0.8114 0.7308 0.2675 

C02 0.7771 0.8003 0.8201 - 0.3298 0.2418 0.7391 0.6808 

C04 0.5338 0.5552 0.5329 0.3298 - 0.3465 0.4341 0.4507 

C03 0.5338 0.792 0.8114 0.2418 0.3465 - 0.2912 0.4973 

G01 0.6723 0.7063 0.7308 0.7391 0.4341 0.2912 - 0.6126 

G02 0.299 0.32 0.2675 0.6808 0.4507 0.4973 0.6126 - 

H0 - Null hypothesis: Forecasts are equally accurate 

Notes:  Small-sample corrected degrees of freedom adjusted t-statistics  

The reported values are the p-values of the DM test 

 

 

 

 

ID A05(i =2) A05(i =3) B02 C02 C04 C03 G01 G02 

A05(i =2) - 0.932 0.8354 0.7801 0.5395 0.5395 0.6766 0.3057 

A05(i =3) 0.932 - 0.8782 0.8031 0.5607 0.7948 0.7102 0.3268 

B02 0.8354 0.8782 - 0.8226 0.5386 0.814 0.7344 0.2741 

C02 0.7801 0.8031 0.8226 - 0.3365 0.2483 0.7426 0.685 

C04 0.5395 0.5607 0.5386 0.3365 - 0.3532 0.4405 0.457 

C03 0.5395 0.7948 0.814 0.2483 0.3532 - 0.2979 0.5033 

G01 0.6766 0.7102 0.7344 0.7426 0.4405 0.2979 - 0.6175 

G02 0.3057 0.3268 0.2741 0.685 0.457 0.5033 0.6175 - 
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Figure 7: rolling window 36 Forecasts: Top 3 RMSE models 

 

Figure 8: rolling window 36 Forecasts: Top 3 MAE models 

 

For the rolling window of 36 periods, the RMSE-based forecasts indicate model specifications 

such as AR(2)/TI(1)/RS(1) and AR(3)/TI(1)/RS(1), highlighting the influence of autoregressive 

structures and the significance of Total Agricultural Input (TI) and Retail Sales Turnover (RS) 

as exogenous predictors. In the case of the MAE-based forecasts, the highlighted models are 
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similar to the case of the rolling window of 36 periods setting. That is, models the 

ARMA(1,1)xSMA(1)/TI(1) and ARMA(1,1)xSMA(1)/FCI(1) specifications, which once again 

highlight Total Agricultural Input (TI) and Fixed Capital Input (FCI) as strong predictors. 

Moreover, the model averaging framework once again dominates the forecasting landscape, 

yielding the highest accuracy in both RMSE and MAE model selection scenarios. 

Overall we observe that model averaging strategies dominate in all the forecasting scenarios 

considered, achieving stability and recommending parsimonious ensemble models for informed 

decision-making. Across the RMSE-based forecasts, the MA(2)/TI(1) model emerges as a 

strong performer, showcasing its resilience in both the recursive window and the rolling window 

of 36 periods settings. 

In contrast, MAE metric forecasts underscore the prevalence of the 

ARMA(1,1)xSMA(1)/TI(1) and the ARMA(1,1)xSMA(1)/FCI(1) models, highlighting their 

reliability in capturing forecast deviations. Notably, Fixed Capital Input (FCI) and Total 

Agricultural Input (TI) consistently feature in our top-performing models. These consistent findings 

across metrics highlight the reliability and importance of specific models and variables, providing 

valuable insights for decision-makers. 

Also, a notable insight is that the recursive window forecasts tend to outperform the rolling 

window setting forecasts. In the recursive window approach, the forecasting model is updated with 

the addition of each new observation, allowing it to capture evolving patterns and trends in the 

data over time. This adaptability can result in more accurate predictions as the model continuously 

incorporates the most recent information. In contrast, a rolling window setting maintains a fixed 

sample size, potentially leading to the exclusion of informative data as the window shifts. That 

may correspond to the model’s ability to effectively adapt to evolving patterns, explaining the 

comparatively better performance of the recursive window forecasts. 

In addition to producing our point estimate forecasts, we consider a meta analysis of the top 

performing forecasting models of each window setting. Therefore, we utilize the adaptive learning 

forecasting methodology to improve our forecasts by subjecting them to post-estimation forecast error 

learning. By adjusting and testing the relative learning rate we produce re-calibrated forecasts, and 

our results support the effectiveness of the forecastability of agricultural prices. Although we 

achieve better forecasts for both rolling window settings, adaptive learning is ineffective for the 

recursive window. Moreover, despite the improvement in the rolling window adaptive learning 

forecasts, they do not surpass those produced by the recursive window. 

Furthermore, by examining the results of the DM tests across all window settings, we can 

infer that in most cases the null hypothesis which corresponds to the equality of the forecasting 

accuracy of the models is not being rejected. That signals the presence of model equivalence 

and model indeterminacy, where distinct models produce practically statistically similar forecasts. 

That contributes to the lack of statistical distinctions, except in only one case where the null 
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hypothesis is being rejected, and thus AR(1)/TI(1) model forecasts are being favored against the 

model averaging forecasts. 

In exploring the implications of model equivalence, it is important to consider the interplay 

between model parsimony and the selection of explanatory variables. Model equivalence 

complicates the process of model selection, highlighting the importance of understanding the 

relative performance of models beyond statistical significance alone. The results of our recursive 

window forecasts in Table 6 indicate that model equivalence is present in our empirical 

investigation not only in terms of the Diebold & Mariano tests but also regarding the forecasting 

performance of the models. The top-performing models of the recursive window setting are all 

nested under the Moving Average process with a lag of 2 months. Consequently, the relatively 

identical forecasting performance of these models makes it challenging to distinguish one that 

stands out. The inclusion of Total Agricultural Input (TI) may capture broader trends in 

agriculture, while Retail Sales (RS) might reflect its specific impact on consumption patterns, 

influencing forecastability differently. However, based on our empirical findings, there is no 

statistically significant distinction between whether Model B05 or B02 is more relevant and 

appropriate for drawing inferences. What is evident is the interplay between model parsimony and 

the addition of more explanatory variables. The least effective model in terms of RMSE is the 

less parsimonious Moving Average model, highlighting the trade-off between model complexity 

and predictive accuracy. Therefore, while Principal Component Analysis (PCA) may capture 

the most important information from the input variables, it does not necessarily imply that the 

compressed information may not contain some degree of noise, enough to penalize model performance 

compared to more parsimonious model specifications. This emphasizes the importance of balancing 

explanatory power with model simplicity. Therefore, overly complex models may introduce 

unnecessary noise without significantly improving forecasting performance. 

Thus, in that case, it is indicated that we make context-based decisions regarding model 

selection. To achieve greater forecasting accuracy one may select the model averaging 

compositions of the recursive window forecasts which outperform the rest of the considered 

models. However, decision and policy makers tend to prefer more parsimonious and explainable 

model specifications. Thus, to draw inferences policy makers might account for the trade-off 

between the accuracy and explainability of the model and potentially select models that illustrate 

statistically equivalent forecasts such as MA(2)/TI(1)/RS(1) and/or MA(2)/FCI(1). In that way 

we can draw inferences about the impact of Agricultural Input (TI), Retail Sales Turnover (RS), 

and Fixed Capital Input (FCI) on the relative change in wholesale prices of agricultural products, 

as well as the impact of the historical white noise error terms of the regressand (i.e., Moving 

Average process). 
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6    Conclusions 

In our empirical investigation, our primary objective is to identify the most impactful drivers of 

the Greek agricultural market’s output. Specifically, we aim to uncover the factors that influence 

the relative change in wholesale prices of agricultural products. Thus, in addition to examining relevant 

drivers of the agricultural market employed in the existing literature, we assess the forecastability 

of the Greek market output with regard to the local market trends. Along with focusing on the 

forecasting accuracy of our models, we also aim to establish inferential relationships useful for 

policy and decision making. 

In all the evaluated scenarios we observe that the model averaging framework provides 

significant enhancements in both RMSE and MAE based forecasts, showcasing as the strongest 

forecasting modeling method in our toolbox. Thus, by mitigating the impact of errors in any 

single model, ensemble methodologies (i.e., model averaging) lead to more robust and reliable 

forecasts. That is by leveraging the strengths of multiple individual models exhibiting a 

remarkable ability to generalize well to different scenarios of unseen data. Furthermore, model 

averaging tackles over fitting by promoting a balance between bias and variance in the overall 

prediction. 

Moreover, we can further extend our analysis by considering alternative directions. Given 

that the compilation of the Total Agricultural Output/Input indices is similar across the member 

states of the European Union (EU), we can consider expanding our analysis to other EU countries 

and potentially consider examining the spillover effects of price transmission between the EU 

member countries. This approach can provide insights into how pricing dynamics and economic 

factors in one country may influence neighboring EU countries. By examining the relevant 

spillover effects, we can aim to enhance our understanding of the interconnectedness within the 

EU agricultural sector, facilitating more informed decision-making and policy recommendations on a 

broader scale. 

A plausible alternative direction could also refer to the expansion of our modeling techniques 

by increasing the dimensionality (including more variables) in our analysis. By utilizing the 

power of shrinkage estimators (e.g., Ridge/Lasso Regression) we can uncover the most 

important in-sample factors. Then, the selected factors can then be integrated into a second-stage 

estimation, complementing our classical auto-regression frameworks. Additional variable selection 

techniques based on information criteria (e.g., AIC, BIC) can be also employed to support the 

analysis. We can further enrich our empirical investigation by comparing our causal models to 

more complex modeling techniques (e.g., Neural Networks) that have been used to predict price 

fluctuations in the commodity markets (Stathakis, Papadimitriou & Gogas, 2021). That is, to 

further explore the tradeoff between the bias and variance of our models and assess how much 

predictive accuracy we may sacrifice to maintain causal relationships. Finally, since agricultural 

commodities play an instrumental role in the financial landscape of Greece, it would be of great 
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interest to investigate how financial market mechanics impact agricultural prices. That is, to 

evaluate the effect of sovereign bond yields, which are main determinants of the risk profile, and the 

lending/investment capacity of a country, on the interconnectedness of the financial market and 

agricultural sector within Greece’s economy. 
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