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Abstract

Model selection methods based on stochastic regularization such
as Dropout have been widely used in deep learning due to their
simplicity and effectiveness. The standard Dropout method treats
all units, visible or hidden, in the same way, thus ignoring any a pri-
ori information related to grouping or structure. Such structure is
present in multi-modal learning applications, where subsets of units
may correspond to individual modalities. In this abstract we de-
scribe Modout, a model selection method based on stochastic reg-
ularization, which is particularly useful in the multi-modal setting.
Different from previous methods, it is capable of learning whether
or when to fuse two modalities in a layer. Evaluation of Modout
on the Montalbano gesture recognition dataset demonstrates im-
proved performance compared to other stochastic regularization
methods, and is on par with a state-of-the-art carefully designed
fusion architecture.

1 Introduction

Deep learning methods have proven effective on various multi-
modal learning problems due to their ability to learn complex and
useful representations in a domain-agnostic way [1, 2, 3]. However,
fusing multiple modalities effectively is an unsolved problem. It is
already well-known that good results are not likely to be achieved
by simply concatenating features belonging to different modalities
into a single "fully-connected" layer. Previous work has mainly fo-
cused on multi-modal analysis of RGB-D action videos [4, 5, 6].
For example, [6] proposed carefully designed multimodal layers
for RGB-D object recognition, which fuse color and depth informa-
tion by enforcing the transformed features to share a common part.
[4] also attempted to discover the shared and informative compo-
nents of RGB-D signals using a deep autoencoder-based nonlinear
common component analysis. But the generalized performance of
these methods to modalities beyond RGB-D videos is unknown. [3]
explored the fusion of multiple modalities including RGB-D videos,
mocap, and audio. They used a carefully-designed network archi-
tecture to gradually fuse modalities, and they found empirically that
it is better to fuse modalities that have higher correlation (e.g., vi-
sual modalities first, then motion capture, then audio).

In the context of multi-modal gesture recognition, [3] introduced
a Dropout-like regularization scheme called Moddrop. During train-
ing, Moddrop randomly removes the input from one or more modal-
ities. This was shown, at test time, to improve robustness to cor-
ruption or loss of modalities. Our proposed Modout algorithm takes
a different approach than ModDrop [3]. Instead of dropping the
units belonging to a modality, in Modout the connections between
the units in two adjacent layers are dropped with prior knowledge
of modality-specific groupings. It has mainly two advantages over
ModDrop. First, Modout can learn whether and when to fuse two
modalities by optimizing the probabilities of dropping the connec-
tions between the two modalities. Second, Modout can be applied
to any layer — not just the input layer. Although outside the scope
of this abstract, Modout could, in theory, apply to other types of
known groupings beyond modalities.

2 Related work

Regularization is a crucial component of training large neural net-
works, and advances in regularization have played a role in deep
learning’s advancement across large-scale applications. Traditional
methods of regularization such as early stopping, weight decay,
weight constraints, or addition of noise during training can be viewed
as a means of limiting the capacity within a model and therefore its
ability to overfit.

A new class of regularization methods that are stochastic have
been widely used in deep learning due to their simplicity and ef-
fectiveness. At training time, these methods randomly remove cer-

tain structural elements of the network for each presented example,
or collection of examples. The elements can be hidden or visible
units (Dropout [7]), connections (DropConnect [8]), or even layers
(stochastic depth [9]). At test time, the original network is used for
prediction with a rescaling factor to compensate for the absence of
elements during training. By pruning the network in a stochastic
manner, stochastic regularization methods can be considered as a
kind of ensemble that improves generalization via model averaging.

In the standard Dropout method, all units in a layer are dropped
at the same rate, and therefore it ignores any structuring of the in-
puts which may result in more correlation among certain inputs. For
example, pixels in an image are more correlated if they are spatially
adjacent to each other. Also, for multimodal learning, there are
more correlations for features within a modality. Recently, several
variants of Dropout have been proposed which aim to exploit this
correlation. Tompson et al. [10] proposed SpatialDropout for con-
volutional layers, in which adjacent pixels in the drop-out feature
maps are either all dropped-out or all preserved. Neverova et al. [3]
proposed ModDrop for multimodal learning, in which the input fea-
tures belonging to the same modalities are either all dropped-out
or all preserved. These methods have been shown to outperform
standard Dropout, while their drop-out rates are pre-defined hyper-
parameters.

[11] have recently proposed a method of learning the structure
of deep neural networks via deterministic regularization. They in-
sert, between each pair of fully connected layers, a sparse diagonal
matrix whose entries are [; penalized. This implicitly defines the
size of the effective weight matrices at each layer. The approach
has a similar effect to Dropout.

An exception to the Dropout-variants is Blockout [12], which
is also very related to our work. Blockout generalizes Dropout by
introducing cluster assignments for each unit. Both the (implicit)
dropout rates and the parameters are learned using backpropaga-
tion. Similar to Dropout and DropConnect, Blockout does not use
the information regarding structural groupings among units, and
the number of clusters needs to be set and tuned. Instead, at ev-
ery layer, Modout ties the clusters to the modalities, and only learns
the probability of fusion between each pair of modalities. The re-
sult is a substantial reduction in number of free parameters and
one less hyperparameter to tune.

3 Model description

Most stochastic regularization methods can be considered as ap-
plying a stochastic mask to the weight matrix. The proposed Mod-
out method shown in Fig. 1 is similar to Blockout in the sense that
units are assigned to clusters. But instead of generating the cluster
assignments randomly, the clusters in Modout are assigned based
on knowledge of modalities. Therefore, in our case, each unit is
assigned a unique cluster label, while in Blockout units can be as-
signed to more than one cluster. The number of units that belong to
each modality in a hidden layer can be set to be proportional to the
number of features in the input layer if it is not otherwise specified.
During the entire process, the cluster assignments for all the units
remain the same. Different from Blockout, which learns the proba-
bility of assigning units to clusters, Modout learns the probabilities
of connecting the units belonging to different modalities.
In Modout, given N,, modalities, the stochastic mask M; for
layer j is defined as
M;=CjUiC] (1)
where C; is a N; x Ny, binary matrix and U; is a Ny, x Ny, binary ma-
trix, U; ~ Bernoulli(P;). In our work, the modality-wise probability
matrix P is trained together with the rest of the network parameters.
However, the diagonal elements of P are fixed to unity in order to
guarantee that all the signals for a modality can be passed to the
units which belong to that modality in the next layer. We note that
the number of additional parameters to learn for a mask is only
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Fig. 1: Three typical fusion architectures achievable by Modout,
and their corresponding weight masks.

N (N, — 1), which is significantly less than Blockout which requires
learning K probabilities for each unit.

To learn the probability matrix P, ideally we want to update it via
gradient descent like the other network parameters. However, the
gradient of P is not available because P is related to the cost func-
tion by sampling, which is not differentiable. [12] addressed a sim-
ilar problem when attempting to compute the gradient of the loss
with respect to the cluster probabilities parameterizing the cluster
assignments. Here, they simply used the gradient of the loss with
respect to the cluster assignments, masked by the assignment ma-
trix such that the gradient of unselected clusters is zero. We use a
similar method to learn the gradients of the probability matrix.

4 Experiments

In this section, we investigate the ability of Modout to learn a strat-
egy that is competitive with a hand-designed fusion structure [3] on
a large-scale gesture recognition benchmark.

4.1 Montalbano gesture recognition dataset

The Montalbano dataset, originally released as part of the Chalearn
2014 Looking at People Challenge (track 3) [13], is used for evalu-
ating our approach. It consists of 13,858 instances of Italian con-
versational gestures performed by different people and recorded
with a consumer RGB-D sensor. It includes color, depth video and
mocap (articulated pose) streams. The gestures are drawn from a
large vocabulary, from which 20 categories are identified to be de-
tected and recognized, while the rest are considered as arbitrary
movements. Each gesture in the training set is accompanied by
a ground truth label as well as information about its start-and-end
points. An additional audio modality not in the 2014 competition
was re-synced and added in [3], which we also consider.

4.2 Network Architecture and experimental setup

The network architectures for testing are based on the one in [3].
In that work, each modality is pre-trained as an individual classifier
(video modalities use two-stage convolutional networks, the audio
stream uses a one-stage convolutional network, and the mocap
stream uses a MLP with two hidden layers). The penultimate layer
of each modality-specific classifier is then connected via a shared
hidden layer to a softmax output and the whole system is then
trained by a two-stage procedure. First, the weights to and from
the shared layer are initialized such that the overall network per-
forms a simple fusion of modalities. Then, this constraint is grad-
ually relaxed to permit a more flexible fusion strategy. In addition
to this careful initialization and relaxation process, prior knowledge
influences the order in which modalities are fused. The depth and
intensity channels corresponding to each hand are fused, while
cross-modality fusion involving the other channels are postponed
until the shared layer. This network architecture achieved first place
out of 17 teams in the ChalLearn 2014 Looking at People Challenge
(gesture recognition track) [13].

Two experiments are conducted to evaluate the performance of
Modout. The first experiment aims to compare the performance of

Modout with other stochastic regularization methods using a sim-
ple network architecture, namely a MLP. Due to the high dimen-
sionality of the raw data and limited number of training sequences,
directly applying a MLP to the raw data leads to poor generaliza-
tion. Instead, we use the intermediate outputs from the first fully-
connected layer of the pre-trained classifiers as the input features
for each modality. The number of total input features is 2600, in-
cluding 800 audio features, 900 mocap features, 450 color fea-
tures, and 450 depth features. Color and depth features have been
concatenated into a single video modality. The methods we include
for comparison include standard (non-regularized) backpropaga-
tion, Dropout, Blockout, ModDrop, Modout, and the combination of
Modout and Dropout. A MLP with two hidden layers followed by a
softmax regression layer is used for all the tests. The number of
units in each hidden layer is set to 3,000. This experiment is only
performed on the data released early in the challenge. We apply
the standard practice of removing frames with no gesture present
during preprocessing. The frames are divided into training data,
validation data, and testing data using the same split as in [3].

The second experiment aims to evaluate the performance of
Modout by integrating it into the network architecture in [3]. This is
done by concatenating each of the last two layers for each modality
into a single layer and adding connections which are modulated by
Modout. Thus, the network structure becomes a MLP with two
hidden layers and one softmax regression layer. The real test data
released later in the challenge are used for testing. Similar to [3],
we first use a motion detector to remove the frames without motion
in the test data, and then use the learned model to classify all the
frames. The Jaccard index is used to measure performance:
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where A, , and B, , denote the binary ground truth and predictions
for gesture category n and sequence s respectively. The final score
is measured by the mean Jaccard index over all categories and
sequences.

The input to the network is a so-called dynamic pose consist-
ing of synchronized multi-modal measurements concatenated from
several frames temporally spaced with a given stride. In [3], differ-
ent networks are trained on different strides and results are com-
bined. In our experiments, we only use a single temporal stride of
4 for sampling for all the modalities, as the result is very close to
using a combination of strides as also shown in [3].

4.3 Experimental results and analysis

Table 1 shows the result of different stochastic regularization meth-
ods using the pre-trained intermediate representation of each modal-
ity as input. The drop-out rate is set to 0.2 for the first hidden layer
and 0.5 for the second hidden layer. The number of clusters in
Blockout is set to 2 which was found empirically to have the best
performance. For both Blockout and Modout, the probabilities are
initialized to 0.5 in order to maximize uncertainty at the beginning
of training. The results show that there is no significant difference
between Dropout and ModDrop, while Modout and its combination
with Dropout significantly outperform the other methods which ig-
nore modality information. In this first experiment we report perfor-
mance on classification of dynamic poses (as opposed to gesture
localization), therefore the metric used is classification accuracy.
The best test accuracy is achieved by a combination of Modout
and Dropout.

Table 1: Classification accuracy(%) of different stochastic regular-
ization methods.

Validation accuracy  Test accuracy
BackProp 91.1 92.0
Dropout 91.5 92.5
Blockout 91.7 92.6
ModDrop 92.1 924
Modout 91.6 93.6
Modout+Dropout 92.9 93.8

Table 2 gives results on full gesture detection and localization
reported as Jaccard Index (Eq. 2). It shows that our approach
(Modout + Dropout) achieves a score of 0.888, which is higher
than [3] using either Dropout or ModDrop + Dropout on a similar



but carefully chosen fusion architecture. Compared to previously
reported results, our result is only eclipsed by the state-of-the-art,
[14] which uses a combination of temporal convolution layers and
Long Short-Term Memory (LSTM). One possible reason is that the
temporal correlation between two adjacent spatio-temporal blocks
is not considered in our approach. Our result could be further im-
proved by using a simple 1-D Markov Random Field model as a
post-processing step.

Table 2: Comparison with state-of-the-art results recently pub-
lished for the same task.

Approach Jaccard index
Wu et al. (2016) (HMM, DBM, 3DCNN) [15] 0.809
Chang (2014) (MRF, KNN, HoG) [16] 0.827
Monnier et al. (2014) (AdaBoost, HoG) [17] 0.834
Neverova et al. (2016) (Dropout) [3] 0.876
Neverova et al. (2016) (ModDrop + Dropout) [3] 0.880
Pigou et al. (2016) (Temp Conv + LSTM) [14] 0.906
Ours (Modout + Dropout) 0.888

4.4 Comparing Modout to early fusion and late fusion

Early fusion and late fusion are the two most common fusion strate-
gies. They are actually two extremes of Modout, i.e., when the off-
diagonal elements of the probability matrix are set to p; ; =1 and
pi,j = 0 respectively. In this section, we show that by effectively
learning the probability of fusing modalities in each layer, Modout
can learn a structure that outperforms both early fusion and late
fusion.

To validate this assumption, experiments are performed on two
datasets. The first dataset is a simulated multimodal dataset using
the well-known MNIST handwritten digit database. The image is
split into four segments similar to ModDrop, each segment rep-
resenting one modality. The second dataset is the Montalbano
dataset considered above. Similar to the previous experiment, in-
termediate features of three modalities including video, skeleton,
and audio are used. The network is first trained with Modout. After
the probabilities are learned, a weight mask is created by binarizing
the probabilities, and the model is trained again using the weight
masks in a deterministic manner.

Table 3: Comparison with early fusion and late fusion (error rates
in percentages).

MNIST Montalbano
Modout 1.03 6.44
Early fusion 1.19 7.23
Late fusion 1.88 6.94
Re-trained using learned structure 1.04 6.01

The result is shown in Table 3. We see that early fusion is better
than late fusion for the MNIST dataset, while late fusion is better for
the Montalbano dataset. The rationale behind is that the modalities
of the MNIST dataset are highly correlated because they are from
the same image, while the audio, video, and skeleton modalities
in the Montalbano dataset have less correlation. For the case of
Montalbano, we also see that binarizing the probabilities and fine-
tuning deterministically learns a superior model.

5 Conclusions

We have presented Modout, an extension of ModDrop that is par-
ticularly useful for multi-modal learning. It can be applied to multi-
ple layers, and has the capability of learning modality fusion. While
motivated by the challenge of learning fusion structure, Modout can
leverage any known grouping of the inputs.

We presented experimental results on a challenging multimodal
dataset, which shows that Modout outperforms other stochastic
regularization methods, and achieves close to the state-of-the-art
for gesture recognition. Also, pruned network structure using the
probabilities learned by Modout performs better than both early fu-
sion and late fusion. Future work includes applying our approach
to other types of neural network structures and validating on other
multimodal datasets.
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