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Abstract

Diffusion weighted imaging (DWI) is a promising magnetic reso-
nance imaging (MRI) modality with wide applications in diagnosis
of different types of diseases such as prostate cancer. DWI pro-
vides a large amount of imaging data which often makes it difficult
to interpret accurately, mainly due to the fact that much of infor-
mation in diffusion imaging cannot be deciphered by human ex-
perts alone. Computational diffusion MRI (CD-MRI) aims to lever-
age computational means to generate imagery from diffusion sig-
nals which are easier to interpret by human experts. Recently, a
new CD-MRI modality called correlated diffusion imaging (CDI) has
been proposed which takes advantage of the joint correlation of dif-
fusion signal attenuation across multiple gradient pulse strengths
and timings to improve the separability of cancerous and healthy
tissues. In this paper, we propose a new CD-MRI modality called
Sparse CDI (sCDIl) where an optimally sparse subset of diffusion
signals contributes to the formation of the final diffusion signal lead-
ing to further separation of cancerous and healthy tissue in prostate
gland compared to CDI and conventional DWI.

1 Introduction

Canadian Cancer Society indicates that 1 in 8 Canadian men will
experience prostate cancer in their lifetimes [1]. Although it is one
of the most common types of cancer, prostate cancer has shown
to have high 5-year survival rate if diagnosed early [1]. As a result,
early and accurate detection of prostate cancer is key in achieving
high quality of lives for patients.

As part of multi-parametric MRI (mpMRI), diffusion-weighted
imaging (DWI) has shown promise in accurate diagnosis of prostate
cancer. Apparent diffusion coefficient (ADC) derived from DWI has
been found to be able to predict pathology results (i.e., Gleason
score) and clinically significant prostate cancer as well as differ-
entiate between low-risk, intermediate-risk, and high-risk prostate
cancer [2] (Figure 2-a). Even with the standardization of mpMRI re-
porting (PI-RADS [3]), the difficulty in interpreting mpMRI and par-
ticulary DWI leads to inter-observer variability among clinicians [4],
which reduces the overall accuracy of diagnosis.

Computational diffusion MRI (CD-MRI) modalities aim to lever-
age computational means to generate imagery from diffusion sig-
nals which are easier to interpret by human experts. This is accom-
plished by generating imagery that improves the delineation be-
tween cancerous tissue from healthy tissue in a given organ (e.g.,
prostate). Recently, a new CD-MRI modality called correlated dif-
fusion imaging (CDI) was introduced that takes advantage of joint
correlation in diffusion signal attenuation across multiple gradient
pulse strengths and timings to improve the delineation of cancer-
ous and healthy tissue in prostate [5]. CDI combines different dif-
fusion signals through a signal mixing function where local correla-
tion of signal attenuations across different gradient pulse strengths

and timings is computed [5] (Figure 2-b). It has been shown that
this leads to improved delineation of cancerous and healthy tissue
in prostate gland [5, 6, 7, 8]. A different configuration of CDI (dual-
stage CDI or D-CDI) was also introduced to include more anatom-
ical information of the prostate gland making it easier for visual as-
sessment [9]. This was done by incorporating an additional signal
mixing stage between the correlated diffusion signal from the first
signal mixing stage and an auxiliary diffusion signal or T2-weighed
image [9].

In both CDI and D-CDI, all diffusion signals contribute to the fi-
nal CDI signal equally. In an attempt to optimize the contribution of
each diffusion signal, a weighted CDI was introduced where each
signal’s contribution to the final CDI was controlled and optimized
by a coefficient [10, 11]. It was shown that the optimized CDI fur-
ther improved the separability of cancerous and healthy tissue in
prostate gland [10, 11].

In this paper, we introduce and explore a new CD-MRI modal-
ity called Sparse CDI (sCDI), where an optimally sparse subset of
diffusion signals is leveraged to further improve the separability of
cancerous and healthy regions in prostate. The goal is to find an
optimally sparse subset of diffusion signals which yields the best
results in terms of separability of cancerous and healthy tissue in
the prostate gland.

2 METHODOLOGY

Before describing the methodology behind sparse correlated diffu-
sion imaging (sCDI), let us first briefly describe the concept of cor-
related diffusion imaging (CDI) to provide the fundamentals behind
sCDI. In the CDI imaging process, axial single-shot echo-planar
sequences with two gradient pulses of equal magnitude (one pulse
in each side of the 180° pulse to dephase and rephase the spins,
respectively) are used to obtain multiple signal acquisitions using a
set of different configurations of gradient pulse strengths and tim-
ings, resulting in a set of n acquired diffusion signals S;,S3,...,S,.
These acquired signals are then mixed together to form a final sig-
nal using the following signal mixing function C(x) for characterizing
local signal attenuation correlation, which is parameterized by dif-
fusion range defined by [ga,qg] and is defined as [5]:
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where x denotes spatial location, S denotes the acquired signal,
f denotes the conditional joint probability density function, and
V(x) denotes the local sub-volume around x. It can be observed
in Equation 1 that all diffusion signals within the diffusion range
[9a,qp] contribute equally to produce the final signal. In the pro-
posed sparse correlated diffusion imaging (sCDI), we explore the
notion that an optimally sparse subset of the diffusion signals within



the diffusion range could potentially lead to improved delineation
between prostate cancer tissue and healthy tissue.

In sCDI, let R = [Ry ... Rg] be a sparse sampling vector, where
R; € {0,1} denotes a binary indicator of whether a particular diffu-
sion signal is sampled. Incorporating R, the signal mixing function
C(x) can be reformulated as:
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Since we wish to find the optimal sparse subset of diffusion sig-
nals within the diffusion range that yields the greatest delineation
between prostate cancer tissue and healthy tissue, we incorpo-
rate Equation 2 into the following optimization problem, where the
goal is to obtain the sparse sampling vector R and the associated
sCDI signal C that maximizes the area under the Receiver Opera-
tor Characteristic curve (denoted by A;), with the condition that the
number of non-zero elements in R must be equal to a sparsification
factor m:
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For this study, [ga.qg] was set at [1300s/mm?,2200s/mm?], and
V was defined as a 7 mm? spatial sub-volume for assessment
purposes as it was found to provide good tissue delineation, and
the sparsification factor set to m = 3. These diffusion-weighed im-
ages of b-values of [1300s/mm?,2200s/mm?| were computationally
created using a Bayesian model with the least squares estima-
tion technique using acquired diffusion images of [0,400,600, and
1000s/mm?] [12].

To maximize A; and find the optimal sparse sampling vector R ,
a training data was used in which the tumourous regions had been
marked by a radiologist as ground truth.

3 EXPERIMENTAL SETUP

In order to evaluate the performance of the proposed sCDlI, diffu-
sion imaging was performed on 17 patients. The images were ac-
quired using a Philips Achieva 3.0T machine at Sunnybrook Health
Sciences Centre, Toronto, Ontario, Canada. All data was obtained
under the local institutional research ethics board.

To find the optimally sparse subset of diffusion signals (i.e., the
optimal sparse sampling vector R), diffusion signals from 9 patients
with PI-RADS scores 4 and 5 where the tumour sites were anno-
tated and contoured by an experienced radiologist were analyzed.
PI-RADS scores of 4 and 5 indicate the high likelihood of clinically
significant cancer [3].

sCDI was performed based on the optimal sparse sampling
vector R using Equation 3. Eight patient cases with pathology-
confirmed significant prostate cancer (Gleason score 6 and above)
were used to evaluate sCDI performance. The performances of
sCDI, original CDI, and ADC (derived from DWI) were calculated
using the area under ROC curve (A;) compared to histology results
for these eight patient cases.

4 Results

Table 1 shows the area under ROC curve for for ADC, CDI, and
sCDI. As it can be seen, the area under ROC curve for sCDI is

0.92, which is higher than those for ADC (0.86) and CDI (0.88).
The results for sCDI is also significantly different than those for
ADC and CDI with P<0.05 for sCDI compared to CDI and ADC,
indicating statistical significance.

Table 1: Evaluation of sCDI results for prostate cancer detection

’ Modality ‘ ADC ‘ CDI ‘ sCDI ‘

’ Area under ROC curve ‘ 0.86 ‘ 0.88 ‘ 0.92 ‘

Figure 1 shows the ROC curves for ADC, CDI, and sCDI.
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Fig. 1: ROC curves and the area under ROC curves (A;) for ADC,
CDl, sCDI.

Figure 2 shows a confirmed prostate tumour in (a) ADC, (b)
CDI, and (c) sCDI. As it can be seen, the tumour region is more
distinguishable in sCDI compared to CDI and ADC, with respect to
surrounding healthy regions in the image. A better separation of
cancerous and healthy tissue can be beneficial to both qualitative
and quantitative assessments of prostate cancer. It can help the
clinicians with more accurate qualitative assessment of prostate
cancer and potentially reduce the inter-observer variability. In ad-
dition, visually different regions, as seen in sCDI, usually translate
to quantitative imaging features which belong to different classes
of features. Hence, improved separability of cancerous regions in
prostate in sCDI can also aid computer-aided detection algorithms
for prostate cancer where imaging features are used to classify the
pixels into cancerous and non-cancerous regions.

5 Conclusion

In this paper, sparse correlated diffusion imaging (sCDI) was intro-
duced as a computational diffusion MRI (CD-MRI) modality. sCDI
improves the separability of cancerous and healthy tissue in prostate
gland by selecting an optimally sparse subset of diffusion signals
and mixing them together. It was shown that sCDI is able to im-
prove the delineation of cancerous regions and healthy regions in
prostate. The improved ability to separate cancerous and healthy
regions in prostate using sCDI can improve diagnostic accuracy
and reduce the need for invasive methods such as biopsy, which is
both harmful and painful. In addition, the ability to optimize sCDI
using only PI-RADS score and radiologist’s contours eliminates
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Fig. 2: A confirmed prostate tumour in (a) ADC, (b) CDI, (c) sCDI, shown by an arrow. The tumour region is more distinguishable in
sCDL.

the need for wholemount or biopsy specimens as training data,
which are difficult to obtain. As a result, sCDI has the potential to
be configured and optimized easily and integrated into mpMRI or
computer-aided detection algorithms for prostate cancer, helping
to achieve high accuracy diagnostics for prostate cancer.
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