
  

 

Abstract 

Segmentation of prostate and related anatomic structure, such as 

transitional zone, in medical images facilitates prostate cancer 

detection, as well as a number of other clinical practices. In this 

paper, we propose a semi-automatic local ROI-specific atlas-based 

segmentation (LABS) method to segment prostate gland and 

transitional zone in diffusion magnetic resonance images. Inspired 

by a sequential registration-based segmentation method, the 

proposed method further reduces the amount of user intervention 

and focuses on the vicinity of prostate for atlas matching and atlas-

to-target registration by specifying the bounding boxes of prostate 

gland on key slices of volume images. We evaluated the method 

on an atlas database with the 100 cases by performing a leave-one-

out study. Our proposed method produced favorable outcomes 

with an average Dice similarity coefficient of 0.85±0.03 for 

prostate gland and 0.77±0.06 for transitional zone segmentations, 

which indicates the effectiveness of the proposed method and its 

potential to be used in relevant clinical applications. 

1. Introduction 

Accurate localization and segmentation of the prostate gland and 

related anatomic structures, such as transitional zone, in medical 

images is needed in different phases of clinical practices for 

prostate cancer diagnosis, treatment, and monitoring [1]. In 

computer-aided prostate cancer detection, it is usually the first step 

to segment prostate from the medical images [2]. In treatment 

planning for radiation therapy, delineation of prostate is usually 

performed on magnetic resonance (MR) images, for their superior 

soft-tissue contract to computed tomography (CT) images [3].  

The current practice of manually contouring the prostate gland 

in MR images is a tedious task. The long time required to process 

and delineate the volumetric datasets of prostate images by 

clinicians imposes a serious burden on the healthcare system and 

prevents timely patient access to proper care. The availability of a 

computer-assisted segmentation method could reduce the time 

spent manually contouring the prostate gland and potentially 

reduce the inter-user variability of diagnosis [4]. 

A popular class of algorithms in literature for prostate 

segmentation is atlas-based segmentation (ABS) algorithms [5]. 

Briefly, this method first constructs a database, or an “atlas”, 

containing the original images with corresponding labels (i.e., 

segmented binary images) of desired anatomy (e.g., prostate) 

contoured by experts. To segment the prostate in a target image, 

all of the images in the atlas are registered to the target image using 

an image registration method. The registered images in the atlas 

are then compared to the target image using an image similarity 

matching technique to find the most similar registered image in 

the atlas. Once the matched registered image is selected, the 

corresponding image transformation is applied to the original 

segmented images (or labels) to produce the registered labels as 

the final segmentation.  

 

 

ABS makes use of a large set of contours from experts as prior 

knowledge, and generally assumes that registration will eliminate 

the differences between images (i.e., atlas images and the target 

image). However, the registration between atlas images and the 

target image, in particular for MR images, can be difficult, if not a 

failure, due to several factors. Those factors include large 

variability of the MR images in terms of image intensity 

characteristics (e.g. scanner variability), structure (e.g., different 

field of views (FOVs) and different imaging center), and 

anatomical variabilities of scanned regions.  

 To overcome these limitations and to make image registration 

more robust, we propose a semi-automatic local ROI-specific 

atlas-based segmentation (LABS) method to segment prostate 

gland and transitional zone in diffusion MR images. This method 

is inspired by ABS and a sequential registration-based 

segmentation (SRS) method proposed in [4,6]. Instead of pre-

generating an atlas, SRS makes initial contours on some key slices 

of a patient’s volume images. Then it propagates a given label (or 

segmentation) to its neighboring slices exploiting the inter-slice 

similarity. Rather than contouring the exact segments similar to 

SRS, our method proposes to further reduce the amount of user 

intervention, by only specifying the bounding boxes of prostate 

gland on key slices (e.g., the base, middle, and the apex). A user 

specified ROI volume is then generated by propagating the ROIs 

through the slices. Thus, in addition to minimizing user 

intervention, we focus only on the vicinity of prostate for atlas 

matching and atlas-to-target registration to ensure better 

correlation of ROIs and increase the accuracy in registration and 

hence, segmentation.  

In the following, we will describe details of our pipeline in 

Section 2, and present the experimental results in Section 3. 

Section 4 discusses and concludes the paper.  

2. Methods 

We describe the proposed method in this section. The whole 

pipeline is depicted in Fig. 1. In this figure, the gray box contains 

the pre-segmented atlas database. The four main steps of the 

pipeline are contained in the four colored boxes.  

Step I: User-specified Bounding Box 

In the first step, the user specifies the bounding boxes (BBs) of 

the prostate gland on some key slices. It is important to correctly 

locate the first and last slices in which the base and the apex of the 

prostate appear. Identifying the slice in mid-gland region with 

largest cross sections is also essential. At least 3 BBs in the 

beginning, middle and end of the gland are needed to produce the 

prostate volume of interest (VOI) by interpolating the BBs across 

slices. Specifying extra BBs on more slices will increase the 

accuracy of segmentation. In practice, the ROI on each slice is 

enlarged (i.e., by 100%) to ensure the whole prostate region is 

covered on the corresponding slice in atlas images.  
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Fig. 1: The proposed pipeline. We specify the region-of-interests (ROIs) 
of patient images by interpolating the user-drawn bounding boxes of 
prostate gland (I). All the consequent image matching (II), registration 
(III), and transformation (IV) is focused on the local specific image ROIs. 

Step II: Atlas Selection 

The corresponding prostate VOIs for each patient images in the 

atlas database is first extracted with respect to the prostate VOI of 

target images. Then a selection is made of VOI images in the atlas 

that are most similar to the VOI images of the target patient. The 

selection is made based on two criteria: the similarity 

measurement (i.e., correlation coefficients, Eq. (1)) and volume 

ratio (see Eq. (2)) between the prostate VOIs of the atlas and that 

of the target images: 
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where 𝑚 and 𝑛 are the row and column of images 𝐼𝐴 and 𝐼, 𝐼𝐴̅and 

𝐼 ̅are the mean values of images 𝐼𝐴 and 𝐼. The similarity measure 

is the average correlation coefficients of all ROIs between the 

selected atlas and target images. 

Volume ration is defined as: 

 𝑉𝑟𝑎𝑡𝑖𝑜(%) =
𝑉𝐴

𝑉
× 100 (2) 

where 𝑉𝐴 is the volume of the prostate VOI of atlas images and 𝑉 

is that of the target images. The corresponding atlas whose 

prostate VOI has the highest correlation with the target images 

VOI while its volume ratio is within a certain range (i.e., 

100±25%) is selected as the best matched atlas. 

Step III. ROI-based Registration 

In this stage, the registration is carried similar to typical ABS 

method, but it is constrained to the enlarged user-specified ROIs. 

Each image 𝐼𝐴
𝑖  in the constructed VOI of the selected atlas images 

is registered to that 𝐼𝑖  of the VOI of the target images, using a 

registration method as follows: 

 𝑇𝑖 = 𝑅𝑒𝑔(𝐼𝐴
𝑖 , 𝐼𝑖) (3) 

where Reg is an affine registration method and 𝑖 ∈ {1, 2, … , 𝑛} and 

n is the number slices in the target images. The computed 

registration transformation, 𝑇𝑖 , is then applied to labels of atlas 

VOI to produce the registered/deformed label VOI in Step IV. 

Step IV: Transformation and Post-processing 

Before we put the transformed label VOI (or mask) back onto 

each target image to form the final segmentation result, we add a 

post-processing step to scale the label mask (with label=1 

representing the prostate) back to the size of interpolated bounding 

box. It is supposed the post-processing step could further increase 

the localization accuracy of the label mask, and hence, the 

segmentation result. The segmentation results of prostate gland 

and transitional zone with and without the post-processing are 

presented in Section 3. 

3. Experimental Results 

The entire LABS pipeline was implemented and integrated into 

ProCanVAS (Prostate Cancer Visualization and Analysis System) 

platform, developed at Sunnybrook Research Institute, Toronto, 

ON, Canada. The platform is a complete clinical decision support 

system, providing a set of tools for computational diffusion MRI, 

image contouring (manually and semi-automatically, i.e. LABS), 

image feature extraction, and prostate cancer detection (Fig. 2). 

 

Fig. 2: The prostate gland and transitional zone (TZ) generated by LABS 
in ProCanVAS (Right). Left image shows the manual segmentation 
(ground truth). 

The proposed LABS method was evaluated on 100 patients’ 

diffusion-weighted MRI data via a leave-one-out cross validation. 

The images were acquired using a Philips Achieva 3.0T machine 

at Sunnybrook Health Sciences Centre, Toronto, ON, Canada. All 

data was obtained under the local institutional research ethics 

board. 



  

The prostate glands and transitional zones of images of 100 

patients’ diffusion-weighted MRI data ( 𝑏 = 0𝑠/𝑚𝑚2 ) were 

manually contoured by an expert using ProCanVAS platform. A 

leave-one-out cross validation was implemented to generate labels 

for prostate gland and transitional zone for each case using the 

remaining 99 patients’ images as the atlas database. Fig. 2 shows 

an example of the segmentation result of the prostate gland and 

transitional zone in ProCanVAS (right), with manual contoured 

(ground truth) displayed on the left side.  

The performance of LABS was evaluated by comparing the 

semi-automatically generated segmentations for both the prostate 

gland and transitional zone with the ground-truth labels using Dice 

similarity coefficient (DSC), the well-known measure of 

segmentation overlap defined as: 

 𝐷𝑆𝐶(𝑆𝐿 , 𝑆𝐺) =
2|𝑆𝐿∩𝑆𝐺|

|𝑆𝐿|+|𝑆𝐺|
 (4) 

where 𝑆𝐿  and 𝑆𝐺  represent the segmentation generated by the 

proposed LABS method and the ground-truth, respectively. ∩ 

denotes the shared information in the two binary images. DSC 

ranges from 0 (no overlap) to 1 (perfect overlap). A higher DSC 

indicates a better correspondence.  

In our experiment, we produced results with both 3 and 5 user-

specified bounding boxes, and the segmentation results with (w.) 

and without (w/o. or original) post-processing. The accuracy 

results are presented in Tables 1 and 2 and Fig. 3. 

Table 1. DSC (%) of prostate gland segmentation.  

 3 BBs 5 BBs DSC  

w/o. post-processing  76.8±8.2 78.3±6.5 +1.5 

w. post-processing 80.2±4.7 85.4±3.2 +5.2 

DSC  +3.4 +7.1  

Table 2. DSC (%) of transitional zone segmentation. 

 3 BBs 5 BBs DSC  

w/o. post-processing  69.1±9.6 70.6±8.4 +1.5 

w. post-processing 73.7±6.8 77.3±5.9 +3.6 

DSC  +4.6 +6.8  

 
Fig. 3: Results (DSC) for prostate gland (left) and transitional zone (right) 
segmentation. Each boxplot shows the effect of number of user-specified 
bounding boxes and with/without post-processing on the segmentation 
results. 

Tables 1 and 2 show the average value of DSC with standard 

deviation of the LABS generated segmentations of prostate gland 

and transitional zone, compared with ground truth, respectively, 

under different experimental configurations. Final segmentations 

with 5 user-specified BBs and post-processing exhibit the highest 

average DSCs with smallest standard deviations for both cases 

(prostate: 85.4±3.2, and transitional zone: 77.3±5.9). Fig. 3 shows 

the trend clearly: segmentations with 5 user-specified BBs always 

outperform those with 3 user-specific BBs, and post-processing 

could further boost the segmentation accuracy in the final stage. 

The improvement by post-processing is more significant for 5 

user-specified BBs cases, which could be due to the fact that more 

user-specified BBs enable a more accurate localization of the 

prostate gland during the interpolation of ROIs. Compared with 

prostate gland, the segmentation results of transitional zone have 

lower average DSCs and higher standard deviations. This is not 

surprising due to the relative ambiguous boundaries of transitional 

zones in anatomical structure in the prostate gland, which 

contribute to the difficulty in segmenting them accurately. 

4. Conclusions 

In this paper, we proposed a semi-automatic local ROI-specific 

atlas-based (LABS) algorithm for prostate gland and transitional 

zone segmentation in diffusion MR images. Inspired by a 

sequential registration-based segmentation method, our proposed 

method attempts to further reduce the amount of user intervention 

and increase the registration accuracy by focusing on the vicinity 

of prostate region for atlas matching and atlas-to-target 

registration using user-specified bounding boxes on key slices. 

The proposed LABS method was evaluated on an atlas database 

with 100 cases by performing a leave-one-out cross validation. 

Compared with the manual ground-truth segmentation, our 

proposed method produced favorable outcomes with an average 

Dice similarity coefficient 0.85±0.03 for prostate gland 

segmentation and 0.77±0.06 for transitional zone segmentation. 

The results show that the proposed algorithm could be used to aid 

the prostate gland and transitional zone segmentation in diffusion 

MR images, with great potential to improve the efficiency and 

reduce the inter-user variability of prostate cancer diagnosis. 
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