
A Bayesian Multi-Scale Framework for Photoplethysmogram Imaging Waveform Processing
Brendan Chwyl University of Waterloo, ON, Canada
Robert Amelard University of Waterloo, ON, Canada
David A. Clausi University of Waterloo, ON, Canada
Alexander Wong University of Waterloo, ON, Canada

Abstract

Photoplethysmography imaging (PPGI) is an increasingly popular
technique for remotely creating signals with a plethora of medical
information, referred to as PPGI waveforms. However, PPGI wave-
forms are often heavily affected by illumination variation and motion
artefacts. Current PPGI waveform processing methods are useful
for estimating heart rate, however, structural detail is not preserved,
rendering the signal incapable of providing additional medical infor-
mation. For this reason, we propose a multi-scale framework based
on the Bayesian residual transform which aims to suppress noise
and preserve structural details necessary for extracting cardiovas-
cular information beyond the scope of heart rate. Experiments con-
ducted on a dataset consisting of 24 different PPGI waveforms and
corresponding PPG waveforms captured via a finger pulse oxime-
ter suggests a high level of noise and ambient illumination variation
suppression is achieved while signal fidelity is largely retained.

1 Introduction

The measurement of blood volume as it varies over time is criti-
cal for non-invasive heart rate measurement devices such as pulse
oximeters. This measurement is referred to as a photoplethysmo-
graph (PPG) waveform and is acquired by measuring the absorp-
tion of light through a thin extremity (e.g., finger tip, ear lobe). Due
to the optical absorption spectrum of hemoglobin, a protein present
in blood, the amount of light absorbed in certain wavelengths varies
depending on blood volume, allowing blood volume to be inferred
from optical measurements.

While PPG waveforms are invaluable to heart rate estimation,
the analysis of detailed PPG waveforms can also provide insight
into cardiac output, vasomotor tone, and fluid loading [1]. Though
PPG waveforms acquired from pulse oximeters are typically clean
enough for analysis, there is a growing trend in constructing PPG
waveforms remotely via camera systems due to improvements in
cleanliness, comfort, and convenience. This technique is referred
to as photoplethysmogram imaging (PPGI) and the waveforms cap-
tured via PPGI, referred to here as PPGI waveforms, are contami-
nated with a high degree of noise due to motion artefacts, ambient
illumination changes, and relatively low signal strength. A compar-
ison of a PPG waveform acquired from a finger pulse oximeter and
a PPGI waveform acquired from a near-infrared video recording
can be seen in Fig 1, where the signal fidelity of the PPGI wave-
form is significantly lower than the PPG waveform. Subsequently,
detrending and smoothing techniques are often applied to clean
the PPGI waveform such that heart rate can be estimated; how-
ever, signal fidelity is often lost in the process, making it difficult to
extract detailed cardiovascular information.

Typical PPGI systems aim to estimate heart rate and are pri-
marily concerned with the frequency response of the acquired PPGI
waveforms. The PPGI waveforms are often transformed into the
frequency domain via the Fourier transform prior to being band-
pass filtered to reject frequencies out of the scope of reasonable
heart rates. Though this has proven to be an effective technique
for heart rate estimation, high frequency components correspond-
ing to structural detail in the time domain are lost, and using the
processed PPGI waveform for measurements beyond heart rate
becomes infeasible. While PPG waveform processing techniques
aimed at preserving structural detail exist, motion artefacts and
ambient illumination changes introduced by PPGI systems make
these methods unsuitable for processing PPGI waveforms.

We propose a multi-scale signal processing framework based
on the Bayesian residual transform (BRT) as a means of process-
ing a PPGI waveform while retaining signal fidelity. In addition, this
framework does not require a band of reasonable heart rates and is
subsequently more robust to heart rates which fall above or below
the cut-off frequencies of bandpass filter methods.

2 Methods

In this section, a multi-scale signal processing framework based
on the Bayesian residual transform (BRT) is described. The pro-
posed framework consists of three components. First, detrending
is performed by removing the low frequency components of the raw
PPGI waveform. Second, the BRT [5] is applied to decompose the
PPGI waveform into multiple residual signals at different scales.
Lastly, the noise within each residual signal is suppressed and a
noise suppressed PPGI is constructed via the inverse BRT.

2.1 Detrending

To compensate for ambient illumination changes, the low frequency
components of the raw PPGI signal are suppressed. This is ac-
complished via a smoothness of priors detrending method described
by Tarvainen et al. [3]. This method was selected as it is specif-
ically designed for processing cardiac signals (e.g., PPG wave-
forms, PPGI waveforms, and ECG signals). The effects of detrend-
ing a PPGI waveform can be seen in Fig. 2.

2.2 Bayesian Residual Transform

The Bayesian Residual Transform [5] (BRT) aims to decompose
a signal into multiple residual signals, where each residual signal
represents information at a different scale. This can be represented
as

B(φ(t)) = {r1(t),r2(t), ...,rn(t)} (1)

B−1(r1(t),r2(t), ...,rn(t)) = φ(t) =
n

∑
i=1

ri(t) (2)

where B(φ(t)) is the BRT performed on a PPGI waveform, φ(t),
ri(t) is a residual signal containing information at the ith scale, and
B−1 is the inverse BRT. Let φΣ, j(t) represent the summation of all
residual signals from signal j to signal n:

φΣ, j(t) =
n

∑
i= j

ri. (3)

The ith residual signal can then be calculated as

ri(t) = φΣ,i(t)−φΣ,i+1(t). (4)

Each increasing scale can be treated as an inverse problem of es-
timating φΣ,i+1(t) given φΣ,i(t):

φ̂Σ,i+1(t) = E(φΣ,i+1(t)|φΣ,i(t)), (5)

where φ̂Σ,i+1(t) is an estimate of φΣ,i+1(t) and E(.) is the conditional
expectation. Practically, residual signals can be calculated by iter-
atively solving Eq. 5 via kernel regression, a technique described
in detail by Wong et al. [5].

2.3 Noise Suppression

To generate a noise suppressed PPGI waveform, φ̂(t), from the
estimated residual signals, noise is suppressed from each individ-
ual residual signal prior to performing the inverse BRT. The noise
suppression for the ith residual signal, ri(t), is formulated as

r̂i(t) =

{
0 |ri(t)|< θi

ri(t) otherwise
, (6)

where θi is a threshold calculated based on the seminal noise. The
seminal noise is computed as



Table 1: Tabulated averages (Mcorr) and standard deviations (σcorr)
of Pearson correlation values calculated for PPGI waveforms pro-
cessed with the proposed framework, as well as the raw PPGI
waveform and detrended PPGI waveform.

Mcorr (σcorr)
Proposed 0.62 (0.13)
Detrended 0.38 (0.10)
Raw 0.22 (0.10)

θi =
MAD(ri(t))
Φ−1(3/4)

, (7)

where MAD(.) is the median absolute deviation and Φ−1 is the nor-
mal inverse cumulative distribution function. The noise suppressed
PPGI waveform can then be generated as

φ̂(t) = B−1(r̂1(t), r̂2(t), ..., r̂n(t)). (8)

3 Experiments

3.1 Experimental Setup

To verify the effectiveness of our method, we use a near-infrared
(NIR) dataset collected by Amelard et al. [4]. This dataset consists
of near-infrared video and finger pulse oximeter PPG waveform
recordings for 24 different participants laying still in a supine po-
sition. From each video, a PPGI waveform was constructed via the
method described by Chwyl et al. [2]. Because the ground truth
PPG waveform is obtained via a finger pulse oximeter, the con-
structed PPG waveforms are a measure of blood volume absorp-
tion. Since the PPGI waveforms are constructed from near infra-
red video recordings, the resulting signals are based on hemoglobin
reflectance. Therefore, it is necessary to convert the PPGI wave-
forms from reflectance to absorption to provide a proper compar-
ison to the ground truth PPG waveforms. The PPGI waveform is
converted into absorption via the Beer-Lambert law:

φa(t) =− ln(φr(t)+1), (9)

where φa(t) is the PPGI waveform in terms of absorption and φr(t)
is the normalized PPGI waveform in terms of reflectance. The re-
sulting absorption PPGI waveforms were then processed by the
framework described in this paper. Residual signals at eight differ-
ent scales were used in the BRT processing step as this value was
empirically determined to produce favourable results.

3.2 Experimental Results

To offer quantitative results, the Pearson correlation between each
processed PPGI waveform and corresponding PPG waveform was

Fig. 1: An example of a PPG waveform acquired from a finger
pulse oximeter versus a PPGI waveform acquired via a near infra-
red video video recording.

(a) Raw PPGI waveform

(b) Detrended PPGI waveform

Fig. 2: Comparison of a raw PPGI waveform (A) and a detrended
PPGI waveform (B).

calculated. The same metric was also calculated for the raw PPGI
waveforms and for the detrended PPGI waveforms, once again us-
ing the ground truth PPG waveforms as the reference. The aver-
age and standard deviation of the resulting Pearson correlations
are tabulated in Table 1 where a value of 1.0 indicates perfect cor-
relation, negative 1.0 indicates perfect negative correlation, and a
value of 0 indicates no correlation. It can be seen that the proposed
framework improves correlation, however, the correlation remains
relatively low. Although the PPG waveforms offer a reference for
quantitative analysis, discrepancies between the PPGI waveforms
and PPG waveforms are expected as these signals were captured
at different locations on the body (cheek region versus finger tip)
as well as via different modalities (near-infrared video versus fin-
ger pulse oximeter). For this reason, qualitative analysis was also
performed.

A subsection of results can be seen in Fig 3. We observe that
the proposed method typically retains structural detail of the wave-
form and suppresses most noise. In particular, individual pulses
often retain both the primary peak, referred to as the systolic peak,
as well as the subsequent peak, referred to as the dicrotic notch.
The location of the dicrotic notch is useful in the estimation of vaso-
motor tone; a metric which can give indication to increased blood
pressure.

4 Conclusions

A multi-scale framework designed to process PPGI waveforms was
proposed, with the aim to suppress noise and ambient illumination
variations while pre- serving medically relevant structures. Quan-
titative results indicate an improved level of correlation between
the ground truth PPG waveform and the processed PPGI wave-
form. Qualitative analysis shows a high level of noise suppression
while structural detail was retained. Future works will include a
more comprehensive comparison between the proposed method
and current state-of-the-art PPG processing methods as well as
exploring the feasibility of using the resulting PPGI waveforms to
estimate vasomotor tone.
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Fig. 3: Segments of a PPG waveform acquired from a finger pulse oximeter, the unprocessed PPGI waveform, and the PPGI waveform
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