
Design space exploration of Convolutional Neural Networks based on Evolutionary Algorithms
Abeer Al-Hyari University of Guelph, ON, Canada
Shawki Areibi University of Guelph, ON, Canada

Abstract

This paper proposes a framework for design space exploration of
Convolutional Neural Networks (CNNs) using Genetic Algorithms
(GAs). CNNs have many hyperparameters that need to be tuned
carefully in order to achieve favorable results when used for im-
age classification tasks or similar vision applications. Genetic Al-
gorithms are adopted to efficiently traverse the huge search space
of CNNs hyperparameters, and generate the best architecture that
fits the given task. Some of the hyperparameters that were tested
include the number of convolutional and fully connected layers, the
number of filters for each convolutional layer, and the number of
nodes in the fully connected layers. The proposed approach was
tested using MNIST dataset for handwritten digit classification and
results obtained indicate that the proposed approach is able to gen-
erate a CNN architecture with validation accuracy up to 96.66% on
average.

1 Introduction

Convolutional Neural Networks (CNNs) have proven their superi-
ority in many vision tasks. The main reason behind the success
of CNNs deep architecture is their ability to learn useful, rich, and
invariant features through deep, nonlinear transformations. This
represents an attractive property to adopt in various vision tasks,
such as object detection and object tracking.

Figure 1 depicts the architecture of AlexNet that won the Ima-
geNet Large-Scale Visual Recognition Challenge (ILSVRC) in 2012
[1]. It consists of five convolutional layers, three max-pooling lay-
ers, and three fully connected layers including a softmax layer. De-
spite the great success that CNNs have achieved in vision tasks,
there is no single architecture that can target all type of domains.
Moreover, there is an exponential relationship between the num-
ber of layers and their corresponding parameters. Thus, searching
for suitable CNN architecture in a systematic way is an important
step, which is referred to as design exploration. Design exploration
for CNNs can be defined as selecting the hyperparameters, layers,
type of layers, connectivity between layers and also the order of
various layers. Hyperparameters in CNNs are the parameters that
cannot be learned during the training process of the model. Instead
their values are assigned and predefined by the designer of CNN
prior to the training process. The most common ways to select the
hyperparameters values are either based on experience or based
on previous successful models. The associated models are im-
plemented, trained, and then the model with the highest validation
accuracy is selected.

In this paper, we propose a simple yet efficient approach for the
design automation of CNNs. Section 2 presents a brief background
of the most representative work in this domain. The methodology
section provides more details about the proposed framework. Sec-
tion 4 presents a summary for the results that were obtained. Con-
clusions and future work are presented in Section 5.

2 Background

Recently there has been lots of interest in implementing different
approaches for design space exploration of CNNs. Examples of
these approaches include reinforcement learning [2] [3], Bayesian
optimization [4], and Genetic algorithms [5, 6, 8, 9, 10, 11, 12].

Genetic algorithms (GAs) are metaheuristic methods that were
inspired by the process of natural selection. GAs rely on biology-
inspired operators, such as mutation, crossover, and selection. GAs
were adopted as a design exploration tool for Artificial Neural Net-
works (ANNs) and CNNs due to their efficiency in searching and
exploring the huge solution space. The most representative work
using GAs in this domain is explored in this section. NEAT (Neu-
roEvolution of Augmenting Topology) is considered among the ear-
liest work in this domain [6]. NEAT addresses the evolution of
both the topology and weights of ANNs. NEAT was later extended

in 2009 to Hypercube-based NEAT (HyperNEAT) [7]. The main
goal of this extension is to enable the effective evolution of high-
dimensional ANNs by introducing indirect encoding in which the
weights are generated as a function of geometry. Following the
great success of CNNs in 2012, there were some attempts to ex-
tend HyperNEAT to be applicable to deep neural networks as in
DeepNEAT [10], in which each gene represents a layer instead of
representing a single neuron as in NEAT. The gene also contains
a table of hyperparameters that may be mutated during the evo-
lution context. Cooperative DeepNEAT (CoDeepNEAT) was next
introduced to evolve two subpopulations: one is for modules and
the other is for the blueprints.

Multi-node Evolutionary Neural Networks for the Deep Learn-
ing (MENNDL) framework is proposed to address the optimization
of CNN hyperparameters using GAs [8]. The hyperparameters
that were optimized are the filter size and the number of filters for
each convolutional layer, which was restricted to three layers. The
resulting network is fully-trained and no further post-processing
is required. Tirumala et al. [9] studied the reduction of training
time of Deep Neural Networks (DNNs) by adopting evolutionary
approaches. The training time of DNN was accelerated over the
regular approach when using MNIST dataset. GAs thus provide a
promising start for the deep learning by evolving optimized DNNs
instead of adopting heuristic random initial architecture. Real et al.
[5] examined the feasibility of using GAs to generate fully-trained
CNNs that do not need any further interventions from humans. A
novel and intuitive set of mutation parameters was introduced to
mimic the actions that human designers are following in design-
ing CNNs. Using GAs as a tool to efficiently traverse the huge
search space related to CNN design was investigated by Xie and
Yuille [11]. However, their proposed approach was based on a con-
strained case that assumed a CNN consisted of only three convolu-
tional layers. Cartesian Genetic Programming (CGP) was used to
automate CNN design for image classification task [12]. It enables
the generation of variable-length networks and skip connections.
Thus, it enables the generation of highly competitive CNN archi-
tectures that can compete with the state-of-the-art networks.

3 Methodology

In this section we introduce the chromosome representation used
in this work followed by proposed framework.

3.1 Proposed chromosome structure

Figure 2 depicts the chromosome structure. It consists of two sub-
parts: the first part is for the convolutional layer parameters, while
the second part is for the fully connected layer parameters. The
proposed method assumes that the maximum number of convolu-
tional layers is six, while the maximum number of fully connected
layers is two including the softmax layer. The chromosome of each
convolutional layer is of fixed-length, which consists of nine genes,
and five genes for the fully connected layer. Therefore, each chro-
mosome (individual) in the population consists of (9×6+5×1= 59)
genes. Table 1 lists the possible values that each gene can have
for both the convolutional and the fully connected layers. An active
gene determines whether this layer will appear in the phenotype of
this chromosome or not. Batch normalization gene has a binary
value that reflects whether there is normalization or not. Batch nor-
malization is considered to be one of the essential steps in any
image processing or image related application since it has a posi-
tive impact on the performance and the robustness of the CNN.

Dropout rate is considered since it prevents overfitting of the
CNN. The possible percentage of dropout are between 10% to
50%. The pooling active gene determines the presence or absence
of a pooling layer. The pooling type gene determines the type of
pooling; the two possible options are either max pooling or aver-
age pooling. Lastly for the pooling size, the only available option is
(2x2) region. For the chromosome part that is responsible for the
fully connected layer encoding, the first gene determines whether



Fig. 1: AlexNet [1]

Fig. 2: Proposed chromosome structure

Convolutional layer
Gene Values
Active {yes, no}
Number of filters { 8, 16, 32, 64, 128, 256}
Filter size {(1x1), (3x3), (5x5), (7x7)}
Batch normalization {yes, no}
Activation function {Relu, Sigmoid}
Dropout rate {10%, 20%, 30%, 40%, 50%}
Pooling active {yes, no}
Pooling type {max pooling, average pooling}
Pooling size {(2x2)}

Fully connected layer
Gene Values
Active {yes, no}
Number of nodes {16, 32, 64, 128, 256, 512, 1024}
Batch normalization {yes, no}
Activation function {Relu, Sigmoid}
Dropout rate {10%, 20%, 30%, 40%, 50%}

Table 1: The possible values for the genes of the proposed chro-
mosome structure

the layer is active or not. The second gene decides the number
of nodes, the options are: 16, 32, 64, 128, or 256. Also, for the
activation function it is either Relu or sigmoid. The last gene of the
chromosome determines the dropout rate for the fully connected
layer.

3.2 Proposed framework

Figure 3 presents a flow of the proposed approach. Firstly, the
chromosomes of the initial population are initialized randomly so
that each gene holds one value of the possible values that it might
take according to Table 1. The validation accuracy of each CNN
network is assigned as a fitness measurement to each chromo-
some. The genetic operators in the form of crossover, mutation,
and selection are then applied to the current population. The cur-
rent population is updated and a test of convergence is applied.
The process of building the new CNNs, evaluating, and evolving
these CNNs is repeated until the final generation is reached. The
best chromosome with its corresponding CNN architecture is saved
for further analysis.

4 Results

4.1 Experimental setup

The proposed framework was written in Python 3.5.2 and was run
on a Unix (Ubuntu 16.04) operating system. Each evolved CNN ar-
chitecture was implemented using Keras deep learning framework
[13]. The experiments were run on NVIDIA GeForce GTX TITAN

Initilize the population

Build the corresponding CNN of each chromosome

Train the CNN on a training dataset

Evaluate the CNN on the validation dataste

Apply genetic operators (crossover, mutation, 
and selection) on the population’s chromosomes

Assign each chromosme its validation accuracy
as a fitness measurement

Update the population

generation == final generation

Select the fittest chromosome

No

Yes

Fig. 3: Flowchart of the proposed approach

Black GPU. The MNIST dataset is a handwritten digit recognition
task [14] that is commonly used for training various image process-
ing systems. It consists of 60000 images for training, and 10000
images that are used for validation purposes. The images are of
size (28x28) pixels in grayscale.

4.2 Parameters tuning

GAs have many related parameters that need to be configured. In
order to find out the best parameters combination, several experi-
ments were conducted using the MNIST dataset and the obtained
results are discussed in this section. Firstly, to have a baseline for
parameters tuning experiments of GAs and to prove the conver-
gence of the proposed approach, baseline settings were set. Table
2 lists the parameter values that were used for the baseline case.

Figure 4 depicts the improvement of average validation accu-
racy over generations. It is clear that there is an increasing trend in
the validation accuracy when evolving from one generation to the
next. Fine tuning for a certain parameter is tested in each of the
following experiments to end up with the best parameter configu-
rations of the GAs approach for CNN design exploration. All the
parameters are set up according to Table 2 except the parameter
that is under testing.

Table 3 lists the various parameters and their values or meth-
ods that were tested in addition to the average validation accuracy



Parameter Value/Method
Population size 12
Number of Generations 10
Crossover rate 95%
Crossover method One point crossover
Mutation rate 0.1%
Selection method Roulette wheel selection
Replacement policy Best individuals (elitism)

Table 2: Parameter settings for the baseline case

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12

Generation

Average accuracy

Fig. 4: Average validation accuracy over generations

achieved for each case. In the first experiment, various popula-
tion sizes were tested, starting from two individuals up to ten in
addition to 15 and 20 individuals. The best overall average accu-
racy of 96.99% is achieved with population size of eight chromo-
somes. Crossover is a critical operator in GAs since it simulates
the exchange of genetic material between mating parents. The
crossover rate determines the probability of randomly mated par-
ents. The rates that were tested are: 80%, 85%, 90%, and 98%,
and the best achieved average validation accuracy is 96.6% with a
crossover rate of 98%. The mutation rate decides the rate at which
genes are randomly mutated or flipped after performing crossover.
The genes that are prone to mutation are the active genes since
they will result in either adding one whole layer to the network or
discard a layer. The mutation rates that were tested are: 0.1%,
5%, and 10%. From Table 3, it is clear that 0.1% can be picked as
an optimal mutation rate since it has the highest average validation
accuracy.

The crossover operator is responsible for generating new off-
spring from the genetic material of the mated parents. In general,
there are mainly two methods for performing crossover in GAs. The
first is one-point crossover in which a random gene is selected
and the genes after that point are swapped between mated par-
ents. In the two-point crossover, two points are selected randomly
and the genes between those two points are swapped between
the mated parents. In the fourth experiment validation accuracy of
both methods were measured and the results are shown in Table
3. One-point crossover has a slight improved performance over
the two-point crossover. The selection operator in GAs is respon-
sible for determining the individuals that are used to act as parents
and generate the next generation of offspring. Usually, the indi-
viduals with the highest fitness values are selected. The methods
that were examined in the fifth experiment are: roulette wheel se-
lection, random selection, and tournament selection. In roulette
wheel selection, the fittest parents are selected, while in random
selection the parents are selected randomly. Lastly, selecting an
individual in tournament selection depends on the fitness of the in-
dividual and the size of the sample to select from it. Table 3 shows
that roulette wheel selection is the favored strategy. Further, some
individuals have to be replaced after generating the new offspring
by the crossover operator in order to maintain the population size.
The two main replacement policies that were examined in the sixth
experiment are: the best, and replace all population. The best
(elitism) replacement policy chooses the best individuals from both
parents and evolved offspring. By contrast in the replace all pol-
icy, the new evolved offspring are replacing their parents. The best
policy has a higher validation accuracy than replace all policy.

5 Conclusion

In this paper we proposed a design exploration framework for CNNs
which is promising and achieves high accuracy on the MNIST dataset.
There are many directions that can further extend this proposed
approach, including (i) modifying the chromosome structure to in-
troduce tuning additional hyperparameters of the CNNs, such as

Parameter Value/Method Average validation
accuracy

Population size 8 96.99%
15 87.12%
20 90.86%

Crossover rate 80% 90.3%
85% 85.5%
90% 87.5%
98% 96.6%

Mutation rate 0.1% 90.92%
5% 77.6%
10% 84.22%

Crossover method One-point 85.39%
Two-point 84.57%

Selection method Roulette wheel selection 92.12%
Random selection 86.09%

Tournament selection 70.85%
Replacement policy Best individuals 94.27%

All 82.99%

Table 3: Parameter tuning results

stride, pooling filter size, etc, (ii) studying the diversity of the pop-
ulation at the inception of the evolution process and after evolving
each generation, and (iii) applying this approach on more com-
plicated dataset, such as CIFAR-10, Street View House Number
(SVHN), and CIFAR-100.

References

[1] Krizhevsky, A. Sutskever, I. and Hinton, G. Imagenet classifi-
cation with deep convolutional neural networks. Advances in
neural information processing systems (2012).

[2] Baker, B. Gupta, O. Naik, N. and Raskar, R. Designing
Neural Network Architectures using Reinforcement Learning.
arXiv:1611.02167 (2016).

[3] Zoph, B. and Le, Q. Neural Architecture Search with Rein-
forcement Learning. arXiv:1611.01578 [cs] (2016).

[4] Snoek, J. Larochelle, H. and Adams, R. Practical bayesian op-
timization of machine learning algorithms. Advances in neural
information processing systems(2012).

[5] Real, E. Moore, S. Selle, A. Saxena, S. Suematsu, Y. Le,
Q. and Kurakin, A. Large-scale evolution of image classifiers.
arXiv:1703.01041 (2017).

[6] Stanley, K. and Miikkulainen, R. Evolving Neural Networks
Through Augmenting Topologies. Evol. Comput. (2002).

[7] Stanley, K. D’Ambrosio, D. and Gauci, J. A Hypercube-Based
Encoding for Evolving Large-Scale Neural Networks. Artificial
Life (2009).

[8] Young, S. Rose, D. Karnowski, T. Lim, S. and Patton, R. Opti-
mizing deep learning hyper-parameters through an evolution-
ary algorithm. Proc. ACM (2015).

[9] Tirumala, S. Ali, S. and Ramesh C. Evolving deep neural net-
works: A new prospect. 2016 12th International Conference
on Natural Computation, Fuzzy Systems and Knowledge Dis-
covery (ICNC-FSKD) (2016).

[10] Miikkulainen, R., Liang, J. Meyerson, E. Rawal, A. Fink,
D. Francon, O. Raju, B. Shahrzad, H. Navruzyan, A.
Duffy, N. and Hodjat, B. Evolving Deep Neural Networks.
arXiv:1703.00548 [cs] (2017).

[11] Xie, L. and Yuille, A. Genetic CNN. arXiv:1703.01513 [cs]
(2017).

[12] Suganuma, M., Shirakawa, S. and Nagao, T. A Genetic Pro-
gramming Approach to Designing Convolutional Neural Net-
work Architectures. arXiv:1704.00764 [cs] (2017).

[13] Chollet, F. et al. Keras.https://github.com/fchollet/
keras (2015).

[14] LeCun, Y. The mnist database of handwritten digits. http:
//yann.lecun.com/exdb/mnist/ ( 1998).


