
Deep Learning Inference frameworks for ARM CPU
Vanessa Courville Huawei Noah’s Ark Lab, Canada
Vahid Partovi Nia Huawei Noah’s Ark Lab, Canada

Abstract

The deep learning community focuses on training networks for a
better accuracy on GPU servers. However, bringing this technol-
ogy to consumer products requires inference adaptation of such
networks for low-energy, small-memory, and computationally con-
strained edge devices. ARM CPU is one of the important compo-
nents of edge devices, but a clear comparison between the existing
inference frameworks is missing. We provide minimal preliminar-
ies about ARM CPU architecture and briefly mention the difference
between the existing inference frameworks to evaluate them based
on performance versus usability trade-offs.

1 Introduction

Real-time performance of deep model inference models is crucial
for most end-user applications. As neural network architectures
continue to become deeper and more complex, how these models
are deployed on hardware devices has a direct impact on response
time. As a result, optimized and architecture-dependent implemen-
tations are typically required to ensure maximum performance and
usability.

Many open-source inference frameworks exists that target dif-
ferent types of hardware devices. These devices include server-
grade CPUs, such as Intel x86 architectures, smaller embedded
CPUs such as ARM, domain-specific ASICs, or even reprogrammable
FPGAs. In all cases, the devices chosen are directly dependent on
the application.

One of the most common and readily-available hardware archi-
tectures used for neural network inference is the ARM CPU which
are based on Reduced Instruction Set Computer, ARM architec-
tures are designed to support a reduced set of instructions, result-
ing in a smaller die size, reduced energy requirements and allowing
it to run at higher frequencies. As a result, ARM processors are typ-
ically the go-to architecture for most small consumer electronics.

2 ARM Architecture

The ARM CPU architecture is typically made up of a multi-core
design wherein each core contains a 32-bit/64-bit CPU, a NEON
SIMD accelerator, a floating point unit, and a series of cache, as
shown in Figure 1

NEON SIMD
Engine

Floating
Point

CPU
32-bit /
64-bit

I-Cache D-Cache

Fig. 1: Example of typical ARM architecture.

2.1 NEON SIMD Engine

Single instruction, multiple data (SIMD) programming is a popu-
lar form of parallel processing supported by most modern CPU
architectures. Based on the concept of vectorization, a parallel
programming paradigm where an algorithm is modified to run a
single instruction on multiple different sets of data points concur-
rently. SIMD processors are typically represented as specialized
hardware accelerator components of a CPU. For ARM architec-
tures, the SIMD accelerators is known as NEON [1]. The NEON

accelerator can be programmed using either C-intrinsics or assem-
bly programming. Figure 2 shows the flow of a simple SIMD pro-
cessor.

Compute 
Unit

Data

Instruction

Result

Compute 
Unit

Compute 
Unit

Compute 
Unit

Result Result Result

Data Data Data

Fig. 2: Example of typical SIMD architecture.

The NEON SIMD accelerator is a key component of ARM ar-
chitectures and is vital for any performance-driven applications. It
allows for an other-wise small, inefficient processor to maximize
compute capability and significantly increase the number of con-
current operations possible.

The computations required in most neural network operations
can be treated as an embarrassingly parallel workload as a very
large number of independent operations take place. This makes it
very straight-forward to vectorize most neural networks operations,
making it a perfect application for SIMD acceleration.

2.2 big.LITTLE

ARM systems with big.LITTLE architectures [2] are heterogeneous
systems made up of multi-core processors of different compute ca-
pabilities. Typically, the system will contain both smaller, power-
saving processors (LITTLE) as well as larger, more compute-intensive
processors (big). Typically used for consumer electronics, these
architectures are designed to maximize both power savings and
performance by allowing the designer to pick and choose which
processor to use depending on the application requirements. An
example of a typical big.LITTLE architecture is shown in Figure 3

Cortex
A76

Cortex
A55

Cortex
A55

L2 Cache

Cache Coherent Interconnect

Cortex
A55

Cortex
A55

L2 Cache

Cortex
A76

IO Coherent
Master

big Cores LITTLE Cores

Fig. 3: Example of an ARM big.LITTLE architecture.

These types of architectures are typically found in most em-
bedded devices where performance and power-efficiency are im-
perative. Many mobile phones currently available in the market use
the ARM big.LITTLE architecture as a means of splitting up tasks
on the device. Performance-critical applications will run on the ’big’
processors whereas background applications will run on the ’LIT-
TLE’ processors.

As many neural network applications run on mobile devices,
it is vital that any inference framework designed to target mobile
platforms must be able to efficiently take advantage of this archi-
tecture.



3 Quantization

As neural networks continue to evolve, the number of applications
for typical consumer electronics continues to increase. Applica-
tions such as speech recognition, object character recognition and
model personalization all require large, complex neural networks
to provide high accuracy. These models require significant data
storage and compute capability which are constrained on edge de-
vices.

In order to run large neural network models on these edge
devices, the models must be compressed to not only reduce the
overall storage size, but also reduce the number of computations
needed to ensure that results can be achieved within a reasonable
delay and save energy consumption.

The most common technique of model compression is quanti-
zation. Quantization involves reducing precision, of either weights,
activations, or both in a typical neural network [3]. Say a full pre-
cision model contains weights and activations that are each 32-bit
floating point values. A quantized version of this model could in-
volve replacing the 32-bit float weights/activations with quantized
8-bit integers. This not only reduced storage by a factor of 4 times,
but also simplifies the compute required as there are no longer any
floating-point multiply-accumulate operations taking place. Instead
these can be replaced by simple 8-bit integer multiplications, effec-
tively simplifying the hardware, reducing the compute latency, and
saving energy.

In order to successfully support these compressed models, in-
ference frameworks targeting edge devices must be able to support
these quantization techniques. Therefore, an inference framework
must support different quantized data precisions for both weights
and activations.

4 Existing Inference Frameworks

There is currently no shortage of available open-source inference
frameworks targeting ARM architectures. These frameworks vary
in terms of performance, flexibility, usability, and data-precision sup-
port.

4.1 ncnn

Tencent’s neural network inference framework (ncnn) [4] is highly
optimized to target mobile platforms using ARM CPUs. The frame-
work targets the NEON accelerator using a combination of C intrin-
sics and low-level assembly instructions to maximize performance.
Written entirely in C++, it contains a big.LITTLE multi-core sched-
uler, and does not depend on any third party library. The framework
can also support 8-bit quantization, including 8-bit compute opera-
tions and half precision storage. It can also be extended to support
GPU offload. However, currently it does not support very low-bit
precision such as binary networks.

4.2 mnn

Alibaba’s Mobile Neural Network (mnn) [5] inference framework
strength is in its versatility. It can be integrated into multiple high-
level frameworks such as TensorFlow, ONNX, and Caffe. Much
like ncnn, it targets performance using hand-coded NEON assem-
bly code, and supports heterogeneous environments by offloading
certain operations to the GPU. MNN does not support 8-bit quan-
tization, but does support full half-precision compute (using ARM
v8.2 new features) differentiating it from ncnn.

4.3 NeoCPU

Amazon Web Services’ NeoCPU [6]was designed to be generic
and does not target a specific hardware architecture. Instead,
the framework supports multiple hardware devices including In-
tel, AMD and ARM CPUs because the framework is built upon a
TVM deep learning compiler stack. The code does not use any in-
trinsic of assembly code for performance optimization, but instead
focuses on algorithmic improvements such as transformation tech-
niques, layout optimizations and search space optimization. Al-
though versatile, it does not currently support low-bit precision net-
works.

4.4 BMXNet-v2

Hasso Platner Institute’s BMXNet-v2 [7] is an extension of the pop-
ular MXNet framework targeting binary and quantized networks.
This framework differs from the other frameworks by the fact that
it supports a wide array of quantization schemes including, 2 to
31 bits. Although it does not target performance, its wide range of
support is intended to allow researchers to evaluate different quan-
tization schemes.

4.5 dabnn

JD AI Research Group’s dabnn [8] is a binary neural network in-
ference framework targeting mobile platforms. The framework is
designed for highly optimized binary convolutions using ARM as-
sembly code. It integrates easily into ONNX by providing a con-
version tool. Although optimized for binary networks, DABNN does
not support 8-bit or half precision data formats.

4.6 ARM Compute Library

ARM’s neural network compute library [9] is a set of pre-built binary
functions for common neural network functions. Provided by ARM
directly, the library is highly-optimized and takes full advantage of
the NEON SIMD architecture. It supports some low-precision op-
erations such as 8-bit quantized convolutions but currently does
not support binary or half-precision networks. It is packaged as a
stand-alone library and does not have a pre-defined integration into
high-level frameworks.

4.7 Inference Framework Comparison

Each of the inference frameworks evaluated have varying sets of
trade-offs. Table 1 summarizes the features of all networks evalu-
ated.

Feature ncnn mnn Neo BMXNet dabnn CL
NEON X X x X X X

b.L. X x x x x x
GPU X X x x x X
half Storage X x x x x
8-bit X x x X x X

binary x x x X X x
Android X X x X X X

TF/ONNX x X X x X X
Opt x x X x x x

Table 1: Inference framework feature support comparison

5 Discussion

Many companies and academics have attempted to design performance-
optimized inference frameworks. These frameworks vary as some
target versatility, with the intent of being able to use the same
framework for different hardware devices, while others target per-
formance by hand-tuning the implementation using assembly code,
or by focusing on supporting low-bit quantized networks.

However, what is lacking is a comprehensive framework whose
sole focus is performance targeting resource constrained edge de-
vices. In order to get optimal performance on these devices, a
framework must be able to take full advantage of the hardware
resources available to it, including being able to maximize perfor-
mance on the SIMD accelerator, be able to schedule jobs across
a heterogeneous architecture including a multi-core big.LITTLE ar-
chitecture or GPU offload. It must have full support or model com-
pression techniques like quantization with multiple different sup-
ported precision types. In addition to these essentials, the frame-
work should also take advantage of algorithmic optimization tech-
niques as seen by the NeoCPU framework.

Industry and academia alike would significantly benefit from
such a framework as it would ensure that all neural networks mod-
els can be tested using realistic consumer-driven hardware and
conditions.



6 Acknowledgement

We appreciate fruitful technical discussions with Huawei Cloud Core
Shanghai colleagues Gang Chi and Pengcheng Tang. We also
thank Yan Zhou and Yanhui Geng for their support throughout the
project.

References

[1] ARM. Introducing neon development article. Technical report,
2009.

[2] ARM. big.little technology: The future of mobile. Technical
report, 2013.

[3] Raghuraman Krishnamoorthi. Quantizing deep convolutional
networks for efficient inference: A whitepaper. arXiv preprint
arXiv:1806.08342, 2018.

[4] Tencent. ncnn. https://github.com/Tencent/ncnn,
2019.

[5] Alibaba. mnn. https://github.com/alibaba/MNN, 2019.

[6] Yu Li Shaarma Wang Liu, Wang. Optimizing cnn model in-
ference on cpus. USENIX Annual Technical Conference 2019
1025-1040, 2019.

[7] Hasso Platner Institute. Bmxnet-v2. https://github.com/
hpi-xnor/BMXNet-v2, 2019.

[8] JD AI Research Group. dabnn. https://github.com/
JDAI-CV/dabnn, 2019.

[9] ARM-Software. Arm compute library. https://github.
com/ARM-software/ComputeLibrary, 2019.


