
Understanding BatchNorm in Ternary Training
Eyyüb Sari Huawei Noah’s Ark Lab, QC, Canada
Vahid Partovi Nia Huawei Noah’s Ark Lab, QC, Canada

Abstract

Neural networks are comprised of two components, weights and
activation function. Ternary weight neural networks (TNNs) achieve
a good performance and offer up to 16x compression ratio. TNNs
are difficult to train without BatchNorm and there has been no study
to clarify the role of BatchNorm in a ternary network. Benefiting
from a study in binary networks, we show how BatchNorm helps in
resolving the exploding gradients issue.

1 Introduction

Compression of Deep Neural Networks (DNNs) is crucial for de-
ploying these huge and energy-hungry model on edge devices.
Quantization methods are a set of techniques targeting reduced
bit-precision representation. Two well-known extreme cases are
binary and and ternary networks, that allow up to 32x and 16x
compression rate, respectively. Contrary to binary weights −1,+1,
ternary weights −1,0,+1 allow for representing 0. Greater flexibility
is provided by this scheme, because it offers discarding a value as
a builtin operation, which is specially helpful in keeping accuracy
in the presence of point-wise, depth-wise convolution. The role of
BatchNorm in binary networks with binary activations is already
studied in [1]. [2] reports BatchNorm helps training binary and
ternary networks. As ternary networks with full-precision activations
are very different models, we are wondering if BatchNorm plays a
similar role in ternary networks.

2 Notation

Ternary neural networks (TNNs) use full-precision weights during
training which are ternarized during forward propagation. The full-
precision weights act as latent parameters and allow for incremental
updates. Let x ∈ IR, given a threshold ∆ we define the ternary
function as,

tern(x) =

−1 if x <−∆

+1 if x > ∆

0 if −∆≤ x≤ ∆

(1)

For a weight w for which we apply tern(w) during forward propaga-
tion, we define its gradient with respect to a loss function L(.) as
∂L
∂w

∣∣∣
w=tern(w)

. The gradient is evaluated for the ternarized weight

but accumulated in full-precision. However, at the initialization step,
weights are drawn from a given random number generator. Thus,
applying ternary function on them can be seen as applying a trans-
formation on a random variable, w̃t .

tern(w) = w̃t =

−1 with p1 = P(w <−∆)

+1 with p2 = P(w > ∆)

0 with p3 = 1− p1− p2

(2)

This setting is very similar to the binary setting of [1], for ∆ = 0, or
equivalently p3 = 0. This property helps to use the result of [1] and
generalize it towards the ternary case.

Following the initialization schemes such as [3] or [4], weights
are drawn from symmetric distributions about zero (eg. uniform).
Therefore p1 = p2 and we obtain the following identities for the
expectation and variance of the transformed random variable

E[w̃t] = 0 V(w̃t) = 2p1. (3)

The variance of the initial full-precision random variable plays a
crucial role in the variance of the ternary random variable, and this
is where this study differs from [1]. We follow the notation of [1] to
save space. Denote the dot product sl

b ∈ IRKl of the batch sample b
in the neural network layer l, that has Kl number of neurons. Define
f to be the element-wise activation function, and xb to be the input,
Wl ∈ IRKl−1×Kl with elements Wl = [wl

kk′] to be the weight matrix;.

Here we use wl [i, j] to refer to a single element of Wl , in which all of
them are i.i.d. so we drop the index [i, j] and simply denote it by wl .

∂L
∂ sl

bk
= f ′(sl

bk)
Kl+1

∑
k′=1

wl+1
kk′

∂L
∂ sl+1

bk′
, (4)

∂L
∂wl

k′k
=

B

∑
b=1

sl−1
bk′

∂L
∂ sl

bk
. (5)

for the details of development see [1].
Assume that the feature element x and the weight element w

are centred and i.i.d. Let k denote the current neuron and k′ denote
the previous or the next layer neuron. For the ReLU activation
function, one can show V(sl

bk) =V(x)∏
l−1
l′=1

1
2 Kl′ V(wl′), where V(wl′)

is the variance of the weight in layer l′ if w is drawn from a uniform
distribution symmetric about zero.

By applying similar mathematical mechanics of [1], the variance
of the gradient for a neuron is

V(
∂L
∂ sl

bk
) = V(

∂L
∂ sL)

L

∏
l′=l+1

1
2

Kl′ V(wl′), (6)

which explodes or vanishes depending on V(wl′). This is the main
reason common full-precision initialization methods suggest V(wl)=
2
Kl

.

3 BatchNorm Role

To control the variance throughout layers during backpropagation
we know V(wl) = 2

Kl
is needed. In the ternary weight case, we need

V(w̃l
t) = 2p1 = 2

Kl
. It is easy to see p1 = 1

Kl
is required. Common

initialization [4] draws w̃l ∼ U(−
√

6
Kl
,
√

6
Kl
)

P(wl <−∆) = p1 =
1
2
− ∆

2
√

6
Kl

(7)

To satisfy (7), the threshold has to be properly set

∆ = 2

√
6
Kl

(1
2
− 1

Kl

)
. (8)

In real world settings, e.g. for a convolutional layer with 3×3 kernel
and 128 filters, p1 ≈ 8× 10−4. Therefore, the threshold would be
set so that more than 99% of the weights are zero to control the
variance. As a big downfall, learning is made impossible in this case
as most of the weights are set to zero. Contrary to our conclusion,
let’s suppose the threshold is given so that the learning is feasible,
for instance ∆ is given so that < 50% of ternary weights are set to
zero

V(w̃l
t) = 2p1 = 1− ∆√

6
Kl

, (9)

for any given ∆. In the literature [5] suggests to set ∆l = 0.7E[|wl |].
Following common initialization schemes

∆l =
0.7
2

√
6
Kl

(10)

and (9) reduces to V(w̃l
t) = 1− 0.7

2 = 0.65. In this setting, variance is
bigger than 2

Kl
which produces exploding gradients. The situation is

similar to the binary case reported in [1], giving us a reason to take
a closer look to BatchNorm in ternary setting.

Suppose a mini batch of size B for a given neuron k. Let µ̂k, σ̂k
be the mean and the standard deviation of the dot product sl

bk,b =
1, . . .B. For a given layer l, BatchNorm is defined as BN(sbk)≡ zbk =

γk ŝbk +βk, where ŝbk =
sbk−µ̂k

σ̂k
is the standardized dot product and

the pair (γk, βk) is trainable, and often initialized to (1,0). Following
[1], it is easy to show

V
(

∂L
∂ sl

bk

)
=

(γ l
k

Bσ̂ l
k

)2
{B2 +2B−1+V(ŝl2

bk)}

1
2

Kl+1V(w̃l+1
t)V

(
∂L

∂ sl+1

)
. (11)

Following common full precision initialization [4] assumptions, i.e.
weights and activation are i.i.d. and weights are centred about zero,
for a layer l,

σ̂
2
k = Kl−1

1
2
V(ŝl−1

b)V(w̃l
t) = Kl−1

1
2
V(w̃l

t). (12)

Therefore (11) reduces to,

V
(

∂L
∂ sl

bk

)
=

{B2 +2B−1+V(ŝl2

bk)}
B2

Kl+1

Kl−1
V
(

∂L
∂ sl+1

)
(13)

=

{
1+o

(
1

B1−ε

)}
Kl+1

Kl−1
V
(

∂L
∂ sl+1

)
. (14)

The equation (13) gives confirms a similar conclusion as in
binary case, i.e. BatchNorm indeed prevents exploding gradients.

4 Numerical Experiment

We evaluate four different scenarios on the CIFAR-10 dataset [6].
It contains 50,000 training images and 10,000 test images. Each
image is 32×32 pixels with RGB channels. While training, data aug-
mentation is applied. We pad the images with 4 zeroes on each side.
After this step, a random crop of 32×32 is taken out the 36×36px
padded images. Finally, images are uniformly randomly flipped
horizontally. During training and test time, the images are normal-
ized with µ = (0.4914,0.4822,0.4465), σ = (0.247,0.243,0.261). We
use the VGG-7 architecture defined in [5] with BatchNorm, ReLU
activation function and ternary weights. Experiments on ResNet-56
[7] are also performed. The shortcut connection can alleviate the
exploding gradient issues to some extent. Lightweight model are
rather harder to train and are much sensitive to instabilities, there-
fore we also include a study on MobileNet-v1 that clarifies the effect
of exploding gradient. Each model is trained for 150 epochs using
SGD optimizer with momentum set to 0.9 and a starting learning
rate set to 0.1. The learning rate is decayed by 10 at epochs 80 and
120. L2 regularization is applied with λ = 10−4. The mini-batch size
is 100.

We experiments four setting for each architectures. i) Batch-
Norm and TWN threshold [5] (BN), ii) removing BatchNorm but
keeping TWN threshold (No BN), iii) using BatchNorm but setting
threshold as defined in (10) (Sparse BN), iv) and no BatchNorm
with threshold from (10) (Sparse No BN). In fact, i) can be regarded
as the baseline, not to be confused the fully full-precision model. ii)
provides an interesting observation, relatively shallow model such
as VGG-7 still achieve decent accuracy even if BatchNorm is not
present, the model is too shallow to be show the exploding gradient
effect. On the other side, ResNet-56 which is a deeper model and
supposed to suffer from accuracy loss, but recovers because of
the short-cut connection. MobileNet diverges without BatchNorm
because the model being deeper than VGG-7 and includes no
shortcut connection to compensate for the exploding gradient effect.
Items iii) and iv) confirms if the thresholds ∆l are selected to ensure
variance control (10), most of the weights are ternarized to zero
and the models do not converge due to bad initialization. Even in
this setting, ResNet-56 is still able to produce better outputs than a
random predictor because of the information being carried on via
the shortcut connections.

5 Conclusion

We find that theoretically, gradient explosion could be prevented
without the use of BatchNorm by setting a proper threshold for
mapping to zero and these results are backed up with numerical
experiments. In our theoretical finding choosing an appropriate
threshold ∆ sets most of the weights to zero, which in practice do
not allow TNNs to converge. Also, BatchNorm indeed also prevents
gradient explosion independent of the chosen ∆.

BN No BN Sparse BN Sparse No BN
VGG-7 93.5 78.1 - -
ResNet-56 92.7 85.7 38.9 39.3
MobileNet 88.3 - - -

Table 1: Ablation of BatchNorm and threshold on VGG-7, ResNet-56
and MobileNet, maximum accuracy achieved after training. Batch-
Norm and TWN threshold [5] (BN), removing BatchNorm but keep-
ing TWN threshold (No BN), using BatchNorm but setting threshold
as defined in (10) (Sparse BN), and no BatchNorm with threshold
from (10) (Sparse No BN). Results are not reported if the network
did not converge (i.e. not better than random)

6 Acknowledgement

We would like to thank Huawei CBG Software Shanghai colleagues
Mohan Liu and Li Zhou for their fruitful technical discussions. We
also thank Yanhui Geng and Jin Tang for their support throughout
the project.

References

[1] Eyyüb Sari, Mouloud Belbahri, and Vahid Partovi Nia. How
does batch normalization help binary training? arXiv,
abs/1909.09139, 2019.

[2] Arash Ardakani, Zhengyun Ji, Sean C. Smithson, Brett H. Meyer,
and Warren J. Gross. Learning recurrent binary/ternary weights.
In International Conference on Learning Representations, 2019.

[3] Xavier Glorot and Yoshua Bengio. Understanding the difficulty
of training deep feedforward neural networks. In Proceedings of
the thirteenth international conference on artificial intelligence
and statistics, pages 249–256, 2010.

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delv-
ing deep into rectifiers: Surpassing human-level performance
on imagenet classification. CoRR, abs/1502.01852, 2015.

[5] Fengfu Li and Bin Liu. Ternary weight networks. arXiv,
abs/1605.04711, 2016.

[6] Alex Krizhevsky. Learning multiple layers of features from tiny
images. 2009.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. CoRR,
abs/1512.03385, 2015.

	Introduction
	Notation
	BatchNorm Role
	Numerical Experiment
	Conclusion
	Acknowledgement

