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Abstract

A novel approach for inferring depth measurements via multispec-
tral active depth from defocus and deep learning has been de-
signed, implemented, and successfully tested. The scene is ac-
tively illuminated with a multispectral quasi-random point pattern,
and a conventional RGB camera is used to acquire images of the
projected pattern. The projection points in the captured image of
the projected pattern are analyzed using an ensemble of deep neu-
ral networks to estimate the depth at each projection point. A final
depth map is then reconstructed algorithmically based on the point
depth estimates. Experiments using different test scenes with dif-
ferent structural characteristics show that the proposed approach
can produced improved depth maps compared to prior deep learn-
ing approaches using monospectral projection patterns.

1 Introduction

Depth measurement plays an important role in the understanding
of a scene and depth-sensing cameras allow for recovering this
vital information in many applications.

The use of active depth-sensing techniques has been gaining
popularity due to its superior performance, efficiency, and ease of
application, and a number of such techniques exist. For example,
laser scanners are widely used in robotics and autonomous driv-
ing to recover accurate depth measurements [1]. Although such
technologies have improved over the years, they remain very ex-
pensive and thus not feasible in a wide range of applications where
there are stricter cost and complexity constraints. Stereo-based
structured light systems are another popular approach due to lower
cost and complexity, but require a fundamental trade-off between
baseline and depth accuracy that makes it ineffective to utilize for in
certain scenarios. Furthermore, while newer active depth-sensing
technologies are constantly being advanced and address many
of of the drawbacks of the previous methods, they nevertheless
rely on specialized hardware that increase cost and complexity.
As such, alternative active depth-sensing techniques that address
these challenges are required.

In this paper, we present a novel approach for inferring depth
measurements using a single camera by leveraging the idea of
depth from defocus using multispectral active quasi-random point
projections and deep learning. The proposed approach eliminates
the need for a baseline (the projector can be completely in-line with
the camera), has a relatively simple setup, and provides improved
spatial resolution beyond what can be done with single-wavelength
approaches [2, 3, 4], and would be expected to lead to very com-
pact and low-cost active depth-sensing systems.

The novel method involves actively illuminating a multispectral
quasi-random point pattern onto the scene of interest. The pro-
jected pattern is captured using a RGB camera, and an ensemble
of deep neural networks is used to estimate point-wise depth based
on the captured projected pattern. A computational reconstruction
method is used to generated a final depth map from the sparse
depth estimation results from the deep neural networks.

The paper is organized as follows. In Section 2, related work
in the area of depth from defocus is discussed. In Section 3, the
proposed depth inference method is described in detail, while in
Section 4 the experimental results are presented. Finally, conclu-
sions are drawn in Section 5.

2 Related Work

The concept of depth from defocus (DfD) has been explored in past
literature, and a number of approaches have been proposed. Tra-
ditional DfD methods estimate depth by studying the difference in
blurriness between two images that are captured at different focal
lengths. Different filters have been previously proposed for deter-
mining the degree of blur [5, 6, 7]. A major limitation to such DfD
approaches is that blur detection can be unreliable in a number
of different situations, especially in untextured areas of the image.

This problem faced by traditional DfD methods is mitigated in active
structured light-based depth-sensing approaches, where an optical
projection is used to find correspondences for triangulation. A re-
view of structured light approaches for depth measurement is pro-
vided by Salvi et al. [8]. The key benefit of such structured light-
based approaches is that they do not depend on the objects in the
scene, and as such, they are particularly effective in untextured re-
gions. In contrast, active structured light-based depth-sensing sys-
tems require a fundamental trade-off between baseline and depth
accuracy that makes the method ineffective in certain scenarios.
As such, we are motivated to leverage the strengths from both DfD
and active depth-sensing methods to design a method that miti-
gates their individual limitations, thus enabling systems with a sim-
ple setup yet achieve reliable results in the depth measurements.

The concept of using DfD using active projections has also
been explored in the literature. Pentland et al. [9] proposed the use
of evenly-spaced line projections to determine depth based on line
spread, and this simple method is able to achieve low-resolution
depth maps. Nayar et al. [10] proposed the use of a dual sen-
sor plane with an optimized projection and camera setup to pro-
duce a dense depth map while reducing front/back focal ambiguity.
Ghita et al. [11] proposed the use of a dense projected pattern
with a tuned local operator designed for finding the relationship be-
tween blur and depth. Moreno et al. [12] proposed the use of
an evenly spaced point pattern with defocus to approximate depth
in the context of automatic image refocusing. Furthermore, these
methods use high density projection patterns which require either
a custom projector or more specialized calibrated hardware. Re-
cently, an alternative approach was proposed by Ma et al. [2, 3, 4]
that leveraged the active projection of quasi-random point projec-
tion patterns, which shows considerable promise as it does not re-
quire custom projectors or specialized calibration hardware, and
thus can enable low-cost, compact depth-sensing systems.

One area that was not well explored in previous work [2, 3, 4]
that can be very promising is the use of multispectral quasi-random
point projection patterns, which are leveraged in the method de-
signed and implemented in this paper. The use of multiple wave-
lengths that can be separated when captured using a conventional
RGB camera has the potential to increase the spatial resolution of
depth measurements made while retaining the simplicity and low
complexity of the approach.

3 Method

The depth inference approach via multispectral active depth from
defocus and deep learning can be summarized as follows. First,
a multispectral quasi-random point pattern is projected onto the
scene, which is then captured by a RGB camera. The camera’s
focus is fixed such that the degree of focus of each point in the pro-
jected point pattern as it appears to the camera is dependent on
the depth of the surface. Second, the projected pattern as captured
by the camera is then passed into an ensemble of deep convolu-
tional neural networks, with each network responsible for estimat-
ing the depth of a projected point at a different spectral wavelength.
As such, the ensemble of deep convolutional neural networks pro-
duces sparse depth measurements at different wavelengths. The
final depth map is reconstructed via triangular-based interpolation
based on the sparse depth measurements. A one-time calibration
step is required to learn the ensemble of deep convolution neural
networks.

3.1 Multispectral Quasi-random Point Projection

The core concept underlying the depth inference method is shown
in Fig 1. The scene is illuminated by a quasi-random projection
pattern consisting of numerous one-pixel points in blue and red
wavelengths, and then captured by a RGB camera. When out-of-
focus, the projected point will appear blurred, with the degree of
blurriness correlated with the depth of the scene at that point. Al-
though both blue and red projection point share the same one-pixel



point structure, the blur effects as captured by the camera can be
drastically different. Therefore, given interspersing points at differ-
ent wavelengths in a quasi-random manner within an active projec-
tion, one can achieve higher spatial resolution in the reconstructed
depth map.

3.2 Ensemble of Deep Neural Networks for Depth Infer-
ence

The purpose of the ensemble of deep convolutional neural net-
works is to learn and extract intrinsic features to effectively char-
acterize the blurriness of point patterns at different depths at differ-
ent wavelengths. In the ensemble, each deep convolutional neural
network is responsible for performing depth inference at a particu-
lar wavelength.

Fig. 1: Projected points on a vertical surface at various distances
(left to right: 36cm to 45cm) away from the setup, as captured by a
Raspberry Pi camera. The focus for both camera and projector are
fixed at 50cm.

To train each deep convolutional neural network in the ensem-
ble, a point pattern is projected onto a vertical surface placed at
known distances away from the projector-camera setup. The pro-
jected points are extracted from the acquired images and a 20x20
image patch of pixels is formed at each point location and labelled
accordingly. For each depth level, a total of four quasi-random point
patterns are projected and captured to train and validate the net-
works. The four point patterns consist of the actual quasi-random
point pattern and three one-pixel-shifted versions (horizontal, ver-
tical, and diagonal) of the actual pattern which closely resembles
the blurriness of the original pattern.

Point patterns captured from the projection of the three shifted
versions of the quasi-random point pattern are used to train the
convolutional deep neural networks in the ensemble, and the actual
quasi-random pattern is used for testing. There are 3883 points in
the original quasi-random point pattern. The three shifted versions
of the pattern result in a total of 11,649 20x20 images for each
depth label.

Fig. 2: Architecture of the proposed ensemble of convolutional neu-
ral networks for depth inference using red projection pattern(left)
and blue projection pattern (right)

The training procedure is visualized in Fig 2. Each deep con-
volution neural network in the ensemble contains three convolution
layers and a fully-connected layer. The use of Rectified Linear Unit
layer provides non-linearity at the end of every convolution and fully
connected layer. Each network, responsible for a different spectral
wavelength, takes the pixel-intensity values from the 20x20 image
patch as input and predicts the depth label corresponding to the
image patch. The first convolution layer filters the 20x20x1 input
image patch with 20 kernels of size 5x5x1. The second convolu-
tion layer takes the output of the first convolution layer and filters it
with 10 kernels of size 5x5x20. The last convolution layer 5 kernels
of size 5x5x10 connected to the output of the second layer.

3.3 Depth Inference Pipeline

With the ensemble of deep convolutional neural networks, the depth
of the scene can be estimated. To this end, the depth recovery
method can be divided into 3 main stages outlined in Fig 3 and de-
scribed as follows.

Pattern Projection Point Localization Depth Inference

Fig. 3: Illustration of the proposed depth inference pipeline. The
scene is actively illuminated with a multispectral quasi-random
point pattern and a RGB camera is used to capture images of
the projected pattern. The ensemble of deep convolutional neu-
ral networks then analyses the captured image and predict depth
at each point in the projected pattern. With depth measurements
at all locations predicted using the ensemble, triangulation-based
interpolation is performed to generated the final depth map.

Stage 1: Multispectral Active Quasi-random Point Projec-
tion: A multispectral quasi-random point pattern is projected onto
the scene. Poisson-disc sampling (PDS) method was utilized to
generate the quasi-random point pattern such that the random points
are tightly packed together, but no closer than a specified minimum
distance [13]. Given projector resolution [x,y], the PDS algorithm
φ(·) can be expressed as:

P = φ(x,y,ρ,d) (1)

where ρ is the desired pattern density, d is the minimum distance
between points and P is the quasi-random point map. Compared to
other random sampling methods such as Sobol sequence and Hal-
ton sequence [14], PDS method significantly reduces the chances
of having overlaps between blurred projected points, which would
result in erroneous depth recovery. To generate the multispectral
point pattern, PDS is performed once for each wavelength and the
results are concatenated into a single projection pattern.

Stage 2: Point Localization: After the projected point pattern
has been captured by the camera, projection points corresponding
to the same wavelength can be effectively separated by taking the
single channel measurements from the camera. We use Otsu’s
method to obtain a binary map consisting of regions of the pro-
jected points [15]. The centroid of each region is computed and a
20x20 image patch is formed at each point location.

Stage 3: Depth Inference and Depth Image Reconstruc-
tion: After identifying the projected point in the acquired scene, the
ensemble of deep convolutional neural networks can then be used
to predict the depth corresponding to that projected point. By per-
forming this on all projected points in the quasi-random point pro-
jection pattern, the sparse depth estimation can be obtained. With
depth measurements at all detected locations, triangulation-based
linear interpolation is performed to reconstruct the final depth map.

4 Results

In this section, the efficacy of the depth inference method is demon-
strated on test scenes. The main goal of this current realization is
to build a compact and portable system to obtain depth information
of the scene. For this purpose, the scene is imaged using a Rasp-
berry Pi camera and the multispectral quasi-random point pattern
is projected using a BENQ MH630 digital projector.

To investigate the performance, depth inference was performed
on two different scenes processing different types of structural de-
tails: smooth 3D-printed hemisphere, and complex human hand.
For comparison purposes, we compare with two variant of a pub-
lished method in [3], one for each tested spectral wavelength.

In Fig 4, we illustrate the difference between depth maps gen-
erated using [3] and that generated using the proposed multispec-
tral method. For the hemisphere shape, the depth maps produced
using the compared method fail to accurately distinguish measure-
ment data from first two depth labels, whereas the multispectral
approach produces a smoother surface in the region. Similar im-
provements can be seen in the hand depth map, where the pro-
posed method produced a significantly improved depth map with
clearer depth discrimination in the gap between middle finger and



Fig. 4: A grayscale representation of the reconstructed depth maps for the tested methods. From left to right: illuminated scene
of interest as captured by camera, depth map generated by [3] using blue projection points, depth map generated by [3] using red
projection points, depth map generated using proposed method.

ring finger. Furthermore, in the hand depth map, the five fingers
are clearly more visible depth map produced by the proposed mul-
tispectral approach.

5 Conclusion

A depth inference system based on multispectral active depth from
defocus using a deep learning approach has been presented. The
proposed system can be used to reconstruct full depth maps with
the acquisition of a single image, enabling rapid depth measure-
ments without fundamental trade-off between baseline and accu-
racy constraining previous structured light approaches. We demon-
strate this by using multispectral quasi-random projection patterns,
enhancing the depth map of the scene significantly. The main ad-
vantage is our method’s simplicity in hardware and computation,
requiring merely a conventional RGB camera and projected point
pattern.
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