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Abstract
Radial basis function (RBF) networks provide an interesting mecha-
nism for learning complex non-linear activation functions in a neural
network. However, the interest in RBF networks has waned due
to the difficulty of integrating RBFs into deep neural network archi-
tectures in a tractable and stable manner. In this work, we present
a novel approach that enables end-to-end learning of deep RBF
networks with fully learnable activation basis functions in a tractable
manner. We demonstrate that our approach for enabling the use of
learnable activation basis functions in deep neural networks, which
we will refer to as DeepLABNet, is an effective tool for automated
activation function learning within complex network architectures.

1 Method
RBF networks [1] have three main sets of parameters: i) basis func-
tion parameters, ii) the radial distance parameters, and iii) the kernel
coefficients. Normally, the basis function parameters are prede-
termined, and the radial distance parameters are initialized either
uniformly or to a sub-set of training samples. The kernel coefficients
are then learned through linear optimization. These constraints make
it difficult to use RBF networks in a hierarchical context. To solve
these challenges, we introduce DeepLABNet, a novel approach that
facilitates end-to-end learning of fully trainable deep RBF networks
with fully learnable activation functions. Our proposed approach
unlocks the power of RBF networks in a hierarchical environment by
i) decoupling inter-channel dependencies within each sub-RBF net-
work, ii) using polyharmonic radial basis functions, and iii) strategic
regularization and initialization for improved stability during training.

Decoupling Inter-Channel Dependencies. RBF networks uti-
lize global basis functions where each basis function is dependent
on every input feature and affects every output feature. Such a
relationship results in a high computational cost during training and
inference. Furthermore, without a good initialization, a fully learnable
RBF network will have difficulty learning and may be unstable, par-
ticularly for the case of deep RBF networks. To tackle this issue, we
decouple the input features within an RBF, thus significantly reducing
the computational cost during training and inference, allowing for bet-
ter initialization strategies to be utilized and increased model stability
during training, and allows additional basis functions to be utilized
on a per-feature-basis. More specifically, DeepLABNet’s feature-level
RBF networks leverage the following design:

y = f (x) =
s

∑
i=1

λiφ(|x− ci|)+ v0x+ v1 (1)

where x and y are the input and output of any given feature-level RBF
network, respectively. φ(·) is the radial basis function, and ci is the x
coordinate of the ith control point. v0 and v1 are scalar components
added to the RBF network.

Polyharmonic Spline Radial Basis Function. Common prac-
tice when using RBF networks is to use Gaussian basis functions [1].
However, such networks tend to fail when input samples are too
distant from a basis function centroid as all basis function output’s
approach zero. Another class of basis functions are the polyhar-
monic spline functions, which can be defined as

Uk(r) =

{
rk, if k is odd
rk logr, if k is even

(2)

where r is the output of some radial distance function (e.g., Eu-
clidean), and k is the degree of the kernel. Note for all k’s that
Uk(0) = 0. Unlike the Gaussian basis function, polyharmonic basis
functions implicitly handle outliers as inputs further from a basis
centroid are given additional weighting.

Strategic Initialization and Regularization. Random initializa-
tion of an RBF network can result in a function whose gradients
quickly explode (depending on the kernel), especially when the basis
centroids are positioned near one another, or set everything to zero.
To avoid such issues, we utilize a initialization scheme where con-
trol point pairs {(x,y)i∈s} are uniformly placed along a ’hockey stick’
curve and the parameters {λi∈s}, v0, and v1 are solved for using
linear regression. To ensure stability when training the kernel coeffi-
cients, {λi∈s} must remain balanced, otherwise the RBF output can

become overly sensitive to updates to λi’s during learning and result
in drastically different non-linear functions. We use the following loss
function to aid in stability

LDeepLABNet = Lmodel +λsum
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A
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λai| (3)

where LDeepLABNet is the loss function for a network using DeepLAB-
Net, Lmodel is the loss function for a given model without the added
RBF functions, λsum is the regularization strength, and A is the num-
ber of RBF functions in a DNN.

2 DeepLABNet vs RBF Networks

Fig. 1: A DeepLABNet RBF activation function throughout training. The RBF
function centroids are marked with red dots.

We analyze DeepLABNet by comparing to two other network
designs: i) a traditional single layer RBF network, and ii) a deep
convolutional neural network that uses traditional RBF networks
for activation (which we call RBF activation network). A standard
deep convolutional neural network with ReLU activation is used as a
baseline reference. Each design is tested against the following three
benchmark datasets: MNIST [2], CIFAR-10 [3], and CIFAR-100 [3].
The baseline network, RBF activation network, and DeepLABNet
use LeNet-5 [4] and ResNet-20 [5] architectures for MNIST and
CIFAR-10/CIFAR-100 datasets, respectively. The single layer RBF
networks use 250 hidden neurons for the MNIST dataset, and 1000
hidden neurons for both the CIFAR-10 and CIFAR-100 datasets. The
validation accuracy of each model is shown in the table below.

Table 1: Comparison of the different types of RBF networks
Baseline RBF

Network
RBF

Activation
Network

DeepLABNet

MNIST 97.9 94.3 69.7 98.9
CIFAR-10 90.6 51.5 33.4 91.5
CIFAR-100 65.4 22.8 3.55 66.3

It can be observed that DeepLABNet has the best performance
on all three datasets. DeepLABNet outperforms the baseline network
by 1.0%, 0.9%, and 0.9% on MNIST, CIFAR-10, and CIFAR-100,
respectively. Comparatively, the RBF network has far greater number
of parameters to the other models but was still unable to reach
performance of the base line model and DeepLABNet. This result is
not surprising as the RBF network is single layer. On the other hand,
the RBF activation network is as deep as DeepLABNet while having
more parameters but still fails to outperform even the single layer
RBF network. The poor performance of the RBF activation network
is mostly due to the network getting stuck in a local minimum during
training. Moreover, this lack in performance effectively highlights
the difficulty of naively integrating RBF networks directly in a deep
learning pipeline and demonstrates DeepLABNet’s merits.
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