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Table 1: Accuracy of the student networks produced using direct
distillation.

Cropped Length (ms) 500 600 700 800 900
Test Acc (%) 85.82 90.12 92.58 93.81 94.91

Abstract

Much of the focus in the area of knowledge distillation has been
on distilling knowledge from a larger teacher network to a smaller
student network. However, there has been little research on how
the concept of distillation can be leveraged to distill the knowledge
encapsulated in the training data itself into a reduced form. In this
study, we explore the concept of progressive label distillation, where
we leverage a series of teacher-student network pairs to progres-
sively generate distilled training data for learning deep neural net-
works with greatly reduced input dimensions. To investigate the effi-
cacy of the proposed progressive label distillation approach, we ex-
perimented with learning a deep limited vocabulary speech recog-
nition network based on generated 500ms input utterances distilled
progressively from 1000ms source training data, and demonstrated
a significant increase in test accuracy of almost 78% compared to
direct learning.

1 Introduction

Due to the limited computational resources available in such on-
device edge scenarios, many recent studies [1, 2, 4] have put
greater efforts into designing small, low-footprint deep neural net-
work architectures that are more appropriate for embedded devices.

In this study, we explore a concept we will call progressive la-
bel distillation, where a series of teacher-student network pairs are
leveraged to progressively generate distilled training data. The pro-
posed approach enables the learning of computationally efficient
DNNs with greatly reduced input dimensions without the need for
collecting and labeling new data. The proposed strategy can be
used in conjunction with any efficient deep neural network architec-
ture to further reduce computational costs and memory footprint.

2 Method
An overview of the progressive label distillation strategy can be de-
scribed as follows. First, we train a teacher network using an orig-
inal training data with dimensions greater than the target input di-
mension. Second, a new training data with reduced dimensions is
generated from the original training data (e.g., in the case of limited
vocabulary speech recognition, one can generate short audio sam-
ples by randomly cropping segments from longer audio samples),
with the associated labels generated using the prediction results of
the teacher network for these dimension-reduced samples. Since
the labels are generated based on the knowledge of the teacher
network, we will refer to these generated labels as distilled labels.
Third, a student network with reduced input dimensions is trained
with the new input data and the distilled labels generated using the
teacher network. This process is repeated in a progressive manner
until the desired target input dimension is reached.

3 Experiments and Discussion
To better investigate and explore the efficacy of the introduced no-
tions of label distillation and progressive label distillation, a number
of experiments were performed for the task of limited vocabulary
speech recognition [2, 3, 5], where the underlying goal is to iden-
tify which word from a limited vocabulary was spoken based on an
input audio utterance recording. In general, we will first explore di-
rect label distillation for learning student networks with various input
dimensions. We will then investigate the effectiveness of progres-
sive label distillation through different teacher-student network pair
configurations.

Table 2: Test accuracy of networks learnt using progressive label
distillation

# Steps C900 C800 C700 C600 C500
1 85.82
2 90.12 86.71
2 92.58 87.92
2 93.81 89.22
2 94.91 88.94
3 92.58 91.18 84.98
3 93.81 90.97 88.24
3 94.91 93.07 86.12
4 93.81 93.38 90.96 84.90
4 94.91 94.34 92.85 84.25
5 94.91 94.34 92.85 89.15 79.50

Direct Label Distillation In the first experiment, Table 1, we
evaluate the efficacy of direct label distillation of learning input-
efficient student networks via soft labels and hard labels for a
set of student networks with five different input dimensions (i.e.,
{500ms,600ms,700ms,800ms,900ms}) by computing their respective
test accuracies.

Progressive Label Distillation In the second experiment, Table
2, we evaluate the efficacy of progressive label distillation of learn-
ing input-efficient student networks for different combinations of se-
ries of teacher-student networks with progressively smaller input di-
mensions.

4 Conclusions and Future Work
In this study, we show that progressive label distillation can be lever-
aged for learning deep neural networks with reduced input dimen-
sions without collecting and labeling new data. This reduction in
input dimension results in input-efficient networks with significant
reduction in the computation cost. Experiment results for the task
of limited vocabulary speech recognition show that the use of pro-
gressive label distillation can lead to an input-efficient student net-
work with half the input dimension with a test accuracy of 89.22%,
compared to just 12.03% without using label distillation.
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