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Abstract
Evolutionary deep intelligence has recently shown great promise
for producing small, powerful deep neural network models via the
synthesis of increasingly efficient architectures over successive
generations. However, little has been done to directly assess archi-
tectural similarity between networks during the synthesis process.
We present a preliminary study into quantifying architectural simi-
larity via the percentage overlap of architectural clusters. Results
show that networks synthesized using architectural alignment (via
gene tagging) maintain higher architectural similarities within each
generation, potentially restricting the search space of highly efficient
network architectures.

1 Introduction
The use of deep neural networks (DNNs) [1, 2] has become ubiq-
uitous over the last few years due to their demonstrated efficacy in
many challenging application areas; however, the modelling accu-
racy of high-performance DNNs is a result of increased model size
and complexity, rendering them impractical for real-world scenarios
with limited computational and memory resources and motivating
the need for methods that reduce the computational requirements of
DNNs while maintaining performance accuracy. Inspired by nature,
evolutionary deep intelligence [3] is a one such method, synthesiz-
ing increasingly efficient and compact network architectures over
successive generations from existing high-performance DNNs.

While the seminal papers in evolutionary deep intelligence [3, 4]
formulated the synthesis process as asexual evolutionary synthesis,
recent work [5, 6] has investigated the use of sexual evolutionary
synthesis to produce populations of increasingly compact DNNs at
each generations. Most recently, Chung et al. [7] conducted an ini-
tial study into mitigating architectural mismatch during sexual evolu-
tionary synthesis via a gene tagging system. While results showed
no notable difference in performance accuracy, it raises an inter-
esting question: how can we assess the archi-tectural similarity of
DNNs in a meaningful and useful way?

2 Methods
We investigate the quantification of architectural similarity using
generations of networks synthesized via multi-parent evolutionary
synthesis with and without gene tagging [7]. Using the idea of archi-
tectural clusters from [4], we propose the use of percentage overlap
of architectural clusters as an intuitive representation of network ar-
chitecture similarity made viable in the context of multi-parent evo-
lutionary synthesis via the gene tagging system [7]. As such, gene
tagging (which allows for architectural alignment during evolutionary
synthesis) can similarly be used to calculate percentage overlap of
existing architectural clusters originating from the same location in
the ancestor network. Percentage overlap is indicative of network
population diversity within a generation, e.g., relatively low average
percentage overlap would indicate a generation of synthesized net-
works with comparatively higher architectural variability.

3 Results
In this study, we used the network architectures synthesized in [7]
with the least aggressive environmental factor model (Rc

g(i),R
s
g(i) =

50) and trained on the MNIST dataset [8]. Architectural similar-
ity was assessed on the first seven generations of networks (af-
ter which the performance accuracy degraded to random guessing)
synthesized with and without gene tagging.

Synthesizing networks with and without gene tagging (Figure 1)
both produced architectures that increase in variability over succes-
sive generations; however, networks synthesized with gene tagging
diversify more slowly than those without gene tagging (as shown
in Table 1). Figure 1 and Table 1 also suggest that generations of
networks approaching an optimal tradeoff between performance ac-
curacy and storage size tend to also have the highest architectural
variability, e.g., in generations 3 and 4. Lastly, note that the increas-
ing percentage overlap in generations 6 and 7 of networks synthe-
sized without gene tagging is a result of sparse, low-variability ar-
chitectures that can no longer represent the problem space.

Table 1: Average percentage overlap of architectural clusters in net-
work models for the first seven generations of 5-parent sexual evo-
lutionary synthesis.

Gen No. Gene Tagging No Gene Tagging
1 93.75% 93.71%
2 87.59% 78.11%
3 83.49% 68.84%
4 71.81% 66.64%
5 73.17% 68.44%
6 69.09% 82.74%
7 73.48% 91.05%

Fig. 1: Performance accuracy as a function of storage size for the
first seven generations of 5-parent sexual evolutionary synthesis
for networks synthesized with gene tagging (diamond) and without
gene tagging (round). Plots best viewed in colour.

4 Discussion
We presented a preliminary study in assessing architectural similar-
ity between DNNs to improve the sexual evolutionary synthesis pro-
cess. Results show that networks synthesized using gene tagging
have less architectural variability than networks synthesized without
gene tagging, as quantified by relatively higher overlap percentages
of architectural clusters. This indicates that the use of gene tagging
is potentially restricting the exploration of highly efficient network
architectures in the search space. Future work includes further in-
vestigation into quantities of information, e.g., mutual information,
as well as the development of a custom similarity metric for optimal
architectural similarity during sexual evolutionary synthesis.
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