
  

 

Abstract 

The prevailing framework consisted of complex feature 

extractors following by conventional classifiers. Nevertheless, 

the high spatial and high spectral dimensionality of each pixel in 

the hyperspectral imagery hinders the development of 

hyperspectral image classification. Fortunately, since 2012, deep 

learning models, which can extract the hierarchical features of 

large amounts of daily three-channel optical images, have 

emerged as a better alternative to their shallow learning 

counterparts. Within all deep learning models, convolutional 

neural networks (CNNs) exhibit convincing and stunning ability 

to process a huge mass of data. In this paper, the CNNs have 

been adopted as an end-to-end pixelwise scheme to classify the 

pixels of hyperspectral imagery, in which each pixel contains 

hundreds of continuous spectral bands. According to the 

preliminarily qualitative and quantitative results, the existing 

CNN models achieve promising classification accuracy and 

process effectively and robustly on the University of Pavia 

dataset. 

1. Introduction 

With the increasing number of airborne and space borne sensors, 

large amounts of high spatial, high spectral and high temporal 

resolution remotely sensed data are available for multiple kinds 

of scientific, military and civilian purposes [1-2]. An incomplete 

list consists of agricultural monitoring, security surveillance, 

disaster management, urban planning, land cover and land use 

analysis, and climate change surveying. Among all types of 

remote sensing data processing, hyperspectral imagery (HSI) 

classification, which means labeling each pixel of hyperspectral 

imagery with a certain type of land cover, attracts a lot of 

attention from different academic fields and becomes an 

interdisciplinary study.  

In recent years, deep learning models – which include deep 

belief network (DBN) [3], auto-encoder (AE) [4], and 

convolutional neural network (CNN) – have achieved multiple 

times the highest accuracy in the challenging contests of image 

classification, image segmentation, object detection, speech 

recognition and thematic labeling [4-6]. In 2006, Hinton et al. 

revitalized the tremendous enthusiasm of deep neural networks in 

computer vision and pattern recognition domains [7]. Equally 

important in 2012, Krizhevsky et al. demonstrated the powerful 

feature learning ability of deep CNNs in a large-scale labeled-

image classification contest [8]. At that time, because the 

shortage of powerful hardware graphic processing units (GPUs), 

the model was implemented in two GPUs parallelly. 

Concurrently, Mnih applied the CNN models to labeling 

buildings and streets using high spatial resolution imagery and 

achieved promising results [9].  

Some articles have tried to incorporate the deep learning 

models into the interpretation task of hyperspectral images. In 

2014, Chen et al. tested the deep feature learning ability of AE, 

which is the first deep learning model that has been used in this 

task, in two real hyperspectral datasets [10]. Recently, some 

papers have tried to use CNN models to classify HSI, but did not 

fully explain the multilevel feature learning ability of CNN [11]. 

We adopted existing and newly designed CNN models as a 

pixelwise spectral classifier to test their characteristics and 

conduct experiments using the open source hyperspectral 

imagery of the urban scene.  

This paper mainly focus on three aspects. First, we estimate 

the performance of two popular existing deep CNN models for 

traditional spectral information interpretation. Second, we 

analyze the basic fabric of CNN models and test models of 

different layers on an urban hyperspectral dataset. Finally, we 

discuss the potential approaches that can further improve the 

classification accuracy. For example, conditional random fields 

can be incorporated as a regularization procedure that stresses the 

prior spatial-contextual information conditioned on the 

classification outputs from the previous steps. 

2. Convolutional Neural Networks 

The discriminative properties of CNN models that distinct from 

other deep learning models mainly lies in three perspectives: (1) 

Convolutional layers and pooling layers inherently stress the 

importance of both spatial and contextual information and 

contribute to the reduction of dimensionality of data space; (2) 

Local receptive fields that guarantee the sparsity of the learned 

feature space;(3) Deep structure that helps the model easily 

learning the hierarchical and abstract semantic information. 

Although other deep learning models also could have very deep 

layers, the CNN models have an incomparable powerful 

performance regarding the learning speed and the ability to 

handling high dimensional data.  

 

Fig. 1. Basic layers of CNNs 

2.1 Basic structure of CNNs 

Fig. 1 shows three basic operational layers in CNNs: 

convolutional layer, pooling layer, and fully connected layer. It is 

obviously that the prominent structure of CNN models is the 

convolutional layers, which employ a bank of filters to extract 

features in a hierarchical way and share weights with the same 

corresponding neuron.  

Pooling layers also contribute a lot to reduce the 

dimensionality and thus facilitate the training process. Both 

average and maximum pooling could generate reasonable results, 

we select the maximum pooling in this project. The fully 

connected layers are nothing but the same as general neural 

networks. Although the fully connected layers contain the least 
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number of neurons, they contribute most of the training time 

during the forward inference and backward learning iterations.  

Recently, a lot of new activation function have been 

designed, some of which can increase the classification 

performance a bit. However, the newly designed activation 

function cannot generate fundamental improvement. Therefore, 

we still employ the most commonly used rectified linear unit 

(ReLU) as the activation function.  

         f(x) = max (0, x)                (1) 

As a generally supervised machine learning procedure, we 

need to build an object function, as known as loss function, to 

estimate the distance between the output prediction and the 

ground truth labeling and to configure the process of training. 

The loss function adopted in this project is the multinomial 

logistic regression.  

2.2 LeNet and AlexNet 

The LeNet was designed for hand written numbers. Owing to 

the introduction of convolution layers and the lightness of its 

framework, LeNet achieved a huge success in the early 1990s 

and is, in fact, the preliminary version of the models, including 

the AlexNet, that emerged afterward. The LeNet consists of three 

convolutional layers, two maximum pooling layers, and three 

fully connected layers. On the contrary, the AlexNet was built for 

the ImageNet Large Scale Visual Recognition Challenge 

(ILSVRC) held in 2012 and obtained the best results within all 

submitted models [8]. The AlexNet is composed of five 

convolutional layers, three pooling layers, and three fully 

connected layers.  

After setting the model, a training strategy, as known as a 

solver, should be selected to control the training process. We 

choose Nesterov’s accelerated gradient (NAG), which makes the 

training process faster than the models using stochastic gradient 

descent (SGD) as the solver. Besides, several hyper-parameters, 

such as learning rate and training epoch, also have a great 

influence on the training process If the learning rate is set to be 

too high, the training process is not likely to converge and the 

value of loss function always stays high. In contrast, if the 

learning rate is too small, the training process will become slow 

and the trained model is easily stuck into the local minimum of 

the solution space. 

3. Experiment results  

Caffe [12], which provides abundant resources and application 

interfaces for the development of CNNs, is the framework We 

used to train and test models. To estimate the two off-the-shelf 

CNN models and test the basic layers of CNNs, two experiments 

have been designed in this project. First, as the shortage of 

labeled data, Monte Carlo sampling method has been adopted to 

demonstrate the effectiveness and robustness of the trained 

models. We conduct 10 independent times of the whole training 

and testing processes on 10 different distribution of the UPavia 

dataset. Second, for demonstrating the property of the 

convolutional layer, three CNN models including one 

convolutional layer, two convolutional layers, and three 

convolutional layers are built and tested using the same 

hyperspectral dataset. Overall accuracy, average accuracy, and 

kappa coefficients are used to assess different models. In 

addition, the classification results of all the trained models are 

also presented as qualitative evaluation.  

3.1 Preprocess 

Considering the deep learning models need large amounts of 

data to fully unfold their capability, we choose the widely-used 

University of Pavia (UPavia) dataset, which has a very high 

resolution and enough number of samples to train CNN models. 

The UPavia dataset, which was acquired by the reflective optics 

system imaging spectrometer (ROSIS) sensor during a flight over 

northern Italy, contains 610×340 pixels of 103 bands with the 

1.3-meter resolution. All the hyperspectral pixels are classified 

into nine categories.  

 According to [13], the whole dataset of UPavia has been 

separated into three groups. 60%, 20%, and 20% of the whole 

hyperspectral pixels have been deployed into training, validation 

and testing datasets. When separating the data, we transform the 

103-dimensional vector of each pixel into a corresponding image 

with the size of 103×103 through simple duplication. 

3.2 Training process monitoring  

 

Fig. 2. The changing of training loss, accuracy and validation 

loss of LeNet 

The initial learning rate was set to be 0.001 for LeNet and 

0.01 for AlexNet. Moreover, for conducting more experiments, 

the training epoch is set to be 30 for all trained CNN models. The 

deeper the models are, the smaller the initial learning rate could 

set. The changing tendency regarding the loss value for both 

training and validation data is demonstrated in Fig. 2. 

Apparently, the accuracy is rising with the training epoch 

increasing and the decreasing of learning rate. Accordingly, the 

values of both the training and validation loss appear to have the 

opposite trend.  

3.3 LeNet and AlexNet 

With 10 minutes, the newly trained LeNet model achieved 

reasonable accuracy (OV = 91.71%, AA = 89.39%, and Kappa = 

0.8892) for pixelwise classification after only 30 epochs training. 

Specifically, this trained model performs very well for the 

Meadows class. However, for the Bitumen and Metal sheets 

categories, the LeNet model did not obtain high classification 

accuracy. To further test the credibility of the results, we conduct 

the same experiment for nine more times using independent 

sampling data, with which the LeNet and AlexNet models trained 

respectively.  
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After 10 times of independent sampling, for the trained LeNet 

model, the mean overall accuracy, average accuracy and Kappa 

coefficient are 93.11%, 91.24% and 0.9083. The average 

classification accuracy for LeNet is a little bit higher than that of 

AlexNet. However, from the standard deviation point of view, 

the AlexNet performed more robust than LeNet. My explanation 

of this phenomenon lies in the model scale of the two network. 

On the one hand, the AlexNet has larger network size than LeNet 

and the large size benefit the robustness. On the other hand, the 

relatively small LeNet has lower robustness, but the scale of the 

model fits better than that of AlexNet. 

3.4 Designed CNN models 

We tested three different layers of CNNs for comparison. The 

Conv_1 model consists of a convolutional layer followed by a 

pooling layer. Besides, the Conv_2 model contains two 

convolutional layers without pooling layers and the Conv_3 

model is composed of three convolutional layers. To compare all 

aforementioned models, the training and testing data of the first 

sampling process is adopted as the benchmark. As shown in Fig. 

4, the overall accuracy is given in the parenthoods for each 

model and the AlexNet obtained the high overall accuracy 

among all five trained models.  

 

Fig. 4. The output of CNN models trained and tested on the 

same dataset 

As to the three-new trained model presented by Fig. 5. (d-e), 

the Conv_2 model outperformed the other two with apparent 

superiority, which implies the importance of a moderate scale 

regarding given datasets. The simplest Con_1 model still 

achieved the overall accuracy of 87.54%. The overall accuracy of 

Conv_2 is higher than that of the Conv_1 model shows that the 

convolutional layer has better feature learning methods than the 

pooling layer. However, with the layer goes deeper, the 

performance of CNN model deteriorates. So, it is of vital 

importance to decide the best number of layers for classification 

using given dataset. 

4. Conclusions 

This project presents two off-the-shelf deep convolutional 

models of 2-D optical images that can be directly employed in 

hyperspectral image classification task. Moreover, three new 

models are designed to evaluate the classification performance of 

simple CNN models and presenting the ability of the basic 

structure of CNN models. According to the quantitative and 

qualitative results, the two experiments demonstrate the 

promising and reasonable classification performance on the 

urban hyperspectral dataset as pixelwise classifiers.  

As to the future research steps for this project, we have three 

major thoughts: First, combination of spatial information. Most 

the state-of-the-art classification models are spatial-spectral 

classifiers, which incorporated the strengths of both spectral and 

spatial-domain classifiers, that considered contextual prior 

information and pixelwise spectral signature. Second, comparing 

with the state-of-art. [10] describes the process of network 

designing, training and contrast experiments using stacked AE. 

Similarly, we will mainly focus on the implementation of the 

algorithm and comparison experiments using different types of 

hyperspectral. Finally, extensive experiments for selecting the 

best number of layers and hidden layer size.  
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