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Abstract

Shifted Superposition (SSPOS) is a resolution enhancement method
where apparent high-resolution content is displayed using a low-
resolution projection system with an opto-mechanical shifter. While
SSPOS-enhanced projectors have been showing promising results
in still images, they still suffer from motion artifacts in video con-
tents. Motivated by this, we present a novel approach to appar-
ent projector resolution enhancement for videos via motion-based
blurring module. We propose the use of a motion detection module
and a blurring module to compensate for both SSPOS-resulted and
natural motion artifacts in the video content. To accomplish this,
we combine both local and global motion estimation algorithms to
generate accurate dense flow fields. The detected motion regions
are enhanced using directional Gaussian filters. Preliminary re-
sults show that the proposed method can produce accurate dense
motion vectors and significantly reduce the artifacts in videos.

1 Introduction

High-resolution content projection systems have become increas-
ingly popular in consumer markets. Projectors with ultra-high-resolution
have been widely used in theaters and amusement parks. While
they have been available for several years, such high-resolution
projectors are still extremely costly. As such, displaying high-resolution
content using low-resolution projector is highly desired.

The concept of resolution enhancement using low-resolution
projectors has been explored in past literature, and a number of ap-
proaches have been proposed. In the proposed method, we make
use of the SSPOS method proposed by Barshan et al. [1]. Given
an input high-resolution image, SSPOS generates two optimized
low-resolution sub-frames and superimposes them in a rapid suc-
cession with a fraction of a pixel shift, resulting a perceived high-
resolution content. Input images are pre-distorted using Wiener
deconvolution for optical aberration from the projector-lens sys-
tems. However, Wiener deconvolution generates motion artifacts
due to its inherent sharpening in video content. Flickering arti-
facts typically appears when moving regions with texture details
are sharpened. Therefore, it is crucial to estimate the motion of
the regions as humans perceive it and enhance them separately.
In our work, we propose a motion-based apparent resolution en-
hancement method which is accomplished by two separate mod-
ules: a motion detection module and a blurring module. This ap-
proach allows the detection of regions with specific motion direc-
tions in the input video and applies different enhancement on the
regions based on their underlying motion characteristics. We pro-
pose a novel motion detection method which leverage both local
and global motion estimation methods to generate accurate dense
motion fields. Directional Gaussian filters are applied to enhance
the motion regions based on their magnitudes and directions.

Optical flow has achieved great success in estimating pixel-
wise flow. However, optical flow focus on local analysis which leads
to errors in motion estimation known as aperture problem. Further-
more, because of the brightness constancy assumption, motion
vectors inside the textureless objects cannot be detected. Sev-
eral methods have been proposed to overcome the shortcomings
of previous models [3, 6]. Yang et al. [2] proposed several energy
functions combining three assumptions: brightness constancy, gra-
dient constancy and smoothness constraint. Bruhn et al. [4] pro-
posed a method combining local and global (CLG) optic flow. Liu et
al. [5] realized CLG method with coarse-to-fine frame to get faster
calculation. In this paper, we will apply those method to estimate
motion between successive frames in the video in order to attenu-
ate the artifacts appeared during movement.

2 System Model

The pipeline for the proposed resolution enhancement method is
visualized in Fig. 1. In the resampling module, each high-resolution

frame is reproduced by two low-resolution frames and the two frames
are combined with pixel shifting. The pixel shifting is accomplished
by shifting the image by one pixel and resampling the image. In
the pre-distortion module, a Wiener deconvolution operation is ap-
plied to enhance the image. In the motion estimation module, a
combined global and local method is applied to detect the motion.
And then different Gaussian filters in four directions are applied to
furthur enhance the motion regions.

Fig. 1: Pipeline for proposed resolution enhancement method

3 Methods

3.1 SSPOS

The resolution of a video can be enhanced by generating two low
resolution frames from the high resolution frame and displaying
them within the retinal integration time to achieve higher perceived
resolution.

The two sub-frames I1 and I2 are produced by minimizing the
distance between the perceived projector output and the high-resolution
target frame. The perceived projection output can be estimated by
multiplying the point spread function (PSF) of the projector with the
sub-frames independently. The two low-resolution sub-frames are
generated with an offset of less than one pixel. The shifting is im-
plemented by re-sampling the sub-frames and shifting diagonally.

Correspondingly, the hardware configuration is set to produce
shifted superimposed projection so as to reconstruct the high-resolution
frame. The SSPOS is implemented in hardware by optics and me-
chanics to diagonally move the projected image with a small por-
tion at the target frame rate. The piezoelectric actuator is used to
slightly spread the transmissive glass portion to two different po-
sitions so that the refraction moves the projection beam between
the two positions within one pixel vertically and horizontally. In this
case, the original 60Hz ultra-high-definition video is reproduced by
a 120Hz low-resolution video shown in two shifted pixel positions.

3.2 Wiener Deconvolution

The projected frames are degraded because of the blurring and
noise. The observed image can be modelled as:

y(t) = h(t)∗ x(t)+n(t) (1)

where x is the source image, y is the observed projected image, h
is the impulse response (point spread function of the projector/lens
system), and n is additive noise.

The objective of deconvolution is to restore a observed de-
graded image to its original form. The Wiener filter is a linear time-
invariant filter whose can compute a statistical estimate of the un-
known original signal using the known observed degraded signal
as an input and filtering that known signal to produce the estimate
as an output which would come as close to the original signal as
possible. The Wiener filter can be discribed as follows:



G( f ) =
1

H( f )
[
|H( f )|2

|H( f )|2 + N( f )
S( f )

] (2)

where G(f) and H(f) are the Fourier transforms of g and h at
frequency f, S(f)is the mean power spectral density of the original
signal x(t), N(f) is the mean power spectral density of the noise n(t).

Thus by pre-distorting the source frames with Wiener filter, the
projected frames can be greatly restored.

3.3 Motion Estimation

3.3.1 Grey value constancy assumption

The primary assumption of optical flow estimation is to assume that
the grey value of a pixel remains consistent. [10]

I(x,y, t) = I(x+u,y+ v, t +1) (3)

Ixu+ Iyv+ It = 0 (4)

Which involves minimizing the brightness between correspond-
ing pixels. Here the energy function is defined on the two constants
u and v at location (x,y,t).

Edata =
∫
(|(Ixu+ Iyv+ It)2|)dx (5)

where the Ix, Iy = ∇I1 = J1 and It = ei is the temporal derivative
which varies along with the video sequence. By minimizing the
energy function, the unknown optic flow vector (u,v) can be deter-
mined by solving ∂uEdata = 0 and ∂vEdata = 0, which gives Eq. 6,
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A∆u = b (7)

let A =

[
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]
and b =

[
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]
.

However, this is not sufficient to uniquely calculate the two un-
knowns u and v, which is known as aperture problem. Supposing
that a slanted edge is moving horizontally, and if the matching hap-
pens in a completely textureless region, it’s hard to recover the true
motion from Eq. 7.

3.3.2 Gradient constancy assumption

The gradient of the image grey value is assumed not to vary due to
the displacement. [6] This gives

∇I(x,y, t) = ∇I(x+u,y+ v, t +1) (8)

EG =
∫
|∇I(x+u,y+ v, t +1)−∇I(x,y, t)|2dxdy (9)

3.3.3 Smoothness Assumption

Because of the aperture problem, only the flow in normal direc-
tion to the gradient can be estimated, which caused ambiguous in
flat regions. No neighboring pixels are taken into account. Thus
imposing spatial smoothness constraints to the flow field is neces-
sary and useful. The smoothness constraints, shown as squared
penalties, assumes that adjacent pixels should move together as
much as possible:

ESmooth = ∑(u2
x +u2

y + v2
x + v2

y) (10)

3.3.4 A Combined Local-global (CLG) Method

The total energy is the weighted sum between the data term and
the smoothness term

E(u,v) = EData + γEG +αESmooth (11)

with some regularization parameter alpha > 0. Now the goal is to
find the functions u and v that minimize this energy.

If the local and global estimation are combined together, either
the robustness of local approaches or the density of global meth-
ods could be gained. we replace [JiJT

i ] and Jiei in Eq. 10 with the
A and b in Eq. 7 [4, 10], then local constraints elements are used
in global minimization functions.

3.3.5 Coarse to Fine

Coarse-to-fine strategy can incrementally compute the optic flow
field for arbitrary video sequence since this strategy is based on
an image pyramid model. The resolution is refined from the top-
most coarse scale to the lowest fine level step by step. Coarse-to-
fine approach can also help us to accelerate the searching process
when minimizing the well-defined alignment cost function.

The algorithm starts from the coarser levels at the top of the
pyramid fully searching over a smaller number of pixels for the best
displacement u that minimize the difference between two frames.
For energy functional with a global minimum, the motion vector
estimated from this level will be used to correct/warp one of the
frames before a search at next finer level. There only small dis-
placement fields are required to computer at the next finer level
and only the motion increments du and dv between the first image
and the warped second image are estimated.

E1
data =

∫
g∗M1(x,y)|I1(x+u1,y+ v1)− I2(x,y)| (12)

where g is a Gaussian filter. M1 and M2 is the visible mask of a
layer at frame H and I. (u1,v1) is the flow field from H to I. The data
term E2

data for (u2,v2) is defined similarly.
While Coarse-to-fine method might cannot gain the same result

as a full search, the calculation for final displacement field obtained
by a summarizing all motion increments is much more accurate and
faster [5].

3.3.6 Gaussian Filter

In order to eliminate the artifacts appeared when the finest areas
are moving, Gaussian filters are applied to the motion area to blur
it in corresponding directions. Here we defined a four-direction fil-
ter which can divide the estimated motions to horizontal, vertical,
main-diagonal and anti-diagonal direction separately. And then all
of the four-direction motion vectors will pass through a magnitude
filter to reduce the noise. Finally, Gaussian filters in these four di-
rections are applied on the moving regions according to the motion
direction of each pixel.

4 Results

In this section, the efficacy of the proposed motion detection method
is demonstrated on various test videos. To investigate the perfor-
mance of the proposed method, motion detection algorithm was
performed on videos with different scene characteristics: synthetic
and real-world scene.

We made comparison to the results of the other methods. Fig. 3
shows our method compared to the Classic+NL-fast method [7],
and Combined Local-Global method [8] as well as Robust Discontinuity-
Preserving approach [9]. In general, by inspecting visually, our re-
sult for motion estimation is better and gives accurate, dense and
smooth motion flow fields.

5 Conclusion

In this paper, we present a motion-based projector apparent reso-
lution enhancement method. Given a high-resolution input image,
SSPOS performs resolution enhancement by computing optimized
low-resolution sub-frames, de-blurring the images by passing them
through Wiener filter while blurring the regions that have motion ac-
cording to their motion direction to reduce flickering artifacts, and



Fig. 2: Video scene and motion detection result. (a): girl walking
from left to right. (b) toy train running from right to left. c) racing car
drifting towards bottom left of the frame

Fig. 3: Comparison with algorithms proposed in [8, 9] on the
"shifting lines" sequence, "anti-clockwise spinning" sequence, and
"wheeling a bicycle" sequence.

rendering them in rapid succession with a fraction of a pixel shift.
We showed that our motion estimation module can produce robust
dense motion vectors and our final results weaken the artifacts ap-
peared by movement in the video.
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