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Abstract

The row-column method is a simplification technique used to re-
duce the complexity of a fully addressed 2-D array. Although it
greatly reduces the number of physical connections required as
well as the amount of data to be handled, it still has limitations; its
imaging data output is sparse, it suffers from speckle noise, and its
spatially-dependant point spread function is riddled with edge arti-
facts. In this work, we propose a row-column ultrasound imaging
system, termed CRUIS3D, that uses a 3-D edge-guided random
field approach to compensate for the limitations of the row-column
method. Tests on CRUIS3D and previously published row-column
systems show the effectiveness of our proposed system as a tool
for enhancing 3-D row-column ultrasound imaging.

1 Introduction

3-D ultrasound imaging offers opportunities that cannot be found in
2-D imaging [1]. To acquire a 3-D ultrasound image, either a 1-D
array is mechanically moved to cover a volume (which introduces
unwanted artifacts) or a 2-D fixed transducer is used. Although
a 2-D transducer is preferred, a fully addressed N ×N array re-
quires N2 connections. This poses a challenge both in physically
addressing the high number of connections as well as dealing with
large amount of data produced [1]. One way to simplify the fully
addressed 2-D array is to use an orthogonal set of N rows and N
columns, as shown in figure 1, where one set could be responsible
for transmit beamforming and the other for receive beamforming.
Using this row-column method, which was first proposed in [2], the
number of connections required is reduced to N +N.

Fig. 1: The row-column setup a) is a combination of two orthogonal
sets of 1-D arrays arranged in rows b) and columns c)

The row column method still suffers from a few intrinsic limita-
tions: data is inherently sparse, it suffers from speckle noise found
in all ultrasound images, and the point spread function (PSF) is
spatially dependant and suffers from edge artifacts. A few pro-
posed row-column ultrasound imaging systems attempt to address
some of these limitations. Some attempted to focus primarily on
transducer design to improve image quality. These include a sys-
tem proposed by [3], which we will use as a baseline system and
will henceforth be referred to as baseline RC, and a system that
integrates apodization in its transducer design, presented in [4]
and [5]. Another group of proposed systems attempt to address
the row-columns limitations algorithmically. In [1], a compensated
system was proposed that uses a multilayared conditional random
field (MCRF) based approach to address these limitations, another
[6] was proposed with an extended MCRF that leverages informa-
tion in 3-D to get better images. Both systems had a problem with
edge preservation and tended to oversmooth images. In this re-
search, we propose CRUIS3D a compensated row-column ultra-
sound imaging system that leverages information in 3-D using an

edge-guided stoachastically fully connected random fields that is
capable of addressing the row-column method’s limitations.

The rest of the document is organized as follows: Section 2 will
outline the methodology our proposed system follows, Section 3
will detail the tests we performed and discuss the results, Section
4 concludes the document.

2 Method

The proposed system can be outlined in two parts: characterization
and compensation.

2.1 Characterization

Three models are used to characterize the baseline RC system:
an image formation model, a noise model, and a PSF model. All
three will now be outlined.

2.1.1 Image formation model

Image formation can be described using:

gr(x,y,z) = M(x,y,z)[ f (x,y,z)∗h(x,y,z)+u(x,y,z)]. (1)

where x, y, and z are the Cartesian coordinates. The term gr(x,y,z)
is the observed RF image, M(x,y,z) is the data acquisition unit’s
sampling function, f (x,y,z) represents the tissue reflectively func-
tion, the operator ’∗’ denotes the convolution operation, h(x,y,z)
represents the PSF function (PSF), and u(x,y,z) is the noise com-
ponent.

2.1.2 Noise model

In [7], a number of distributions to model speckle were proposed.
Empirical testing done on our captured data showed that the best
fit is the Fisher-Tippett distribution:

p(I(x,y,z)) = 2exp
[
(2I(x,y,z)− ln2σ

2)− exp
[
2I(x,y,z)− ln2σ

2]]
(2)

where I is voxel intensity and σ is the standard deviation.

2.1.3 Point spread function model

Sound pressure emitted from the transducer weakens as it moves
away from the transducer [8], creating a varying beam profile that
needs to be taken into account in order to compensate for it. For
the spatially dependant PSF of the baseline RC system, we use
a model based on the Tupholme-Stephanisshen model for spatial
impulse response that was furthur derived for the pulse echo case
in [9]. According to this model, the one way impulse response of a
row-column system at point ~r1 with a transducer of geometry S and
point ~r2 is is given by:

h(~r1,~r2, t) =
∫

S

δ
(
t− |~r1−~r2|

c
)

2π|~r1−~r2|
dS (3)

c here is the speed of sound at a homogeneous medium and δ (.)
is the Dirac delta function. The PSF can then be expressed as:

Hpe(~r1,~r2, t) = h(~r1,~r2, t)∗h(~r2,~r1, t) (4)

These three models are used to characterize the three intrinsic
limitations mentioned earlier. We will use them to compensate for
these limitations in the second stage.



2.2 Compensation

The compensation stage attempts to solve the inverse problem of
equation 1, leveraging information from the characterization stage.
Is is essentially an image reconstruction problem, and to solve it
we formulate it as a Maximum a Posteriori (MAP) problem, where
a posterior distribution P(F |G) is maximized:

F∗ = argmax
F

{
P(F |G)

}
(5)

where F∗ is the MAP solution, F̄ is the possible results set, and G
is the observation.

To model this conditional probability without specifying a prior
model, we can use conditional random fields (CRFs). First pro-
posed by [10], CRFs are generally expressed in the form:

P(F |G) =
1

Z(G)
exp
(
−ψ(F,G)

)
(6)

with Z being the partition function and ψ(·) a combination of any
arbitrary unary and pairwise potential functions:

ψ(F,G) =
n

∑
i=1

ψu( fi,G)+ ∑
c∈C

ψp( fc,G) (7)

with C being a set of a clique structure for each node.
The general CRF model considers local interactions within rela-

tively small clique structures, while fully connected conditional ran-
dom fields (FCRFs) consider node interaction within a global scale
[11]. FCRFs has a huge computational cost, one way to address
this cost is to consider stochastically fully connected random fields
(SFCRF), where a clique structure is based on various indicator
functions. A clique structure C can be represented as:

C = {Cp(i)}n
i=1 (8)

Cp(i) =
{
(i, j)| j ∈ N(i),1S

{i, j} = 1
}

(9)

with the stochastic indicator function 1S
{i, j} defining whether two

nodes can construct a clique. The function used in the proposed
system is a combination of three probability distributions: one based
on spatial information Ps

i, j, another based on data relation among
states Qd

i, j, and the final one based on edge information Re
i, j. The

full stochastic indicator function is expressed as:

1S
{i, j} =

{
1 Ps

i, j ·Qd
i, j ·Re

i, j ≥ γ

0 otherwise
(10)

With the clique structure set by this indicator function, we can
now discuss the potential functions.

The unary potential function is a data driven function that in-
corporates the information corresponding to the observation into
the random field model. It also incorporates the spatially varying
PSF, and is formulated according to the noise model presented in
equation 2, since that is how we assume the image is degraded.

The pairwise potential function incorporates spatial information
into the model. These functions act on the subset of random vari-
ables in the clique structure set by the stochastic indicator function
from equation 10. The pairwise function used in this system is
based on two penalty terms:

• Spatial proximity penalty : this penalizes voxels that are far
away since we assume that the farther away a voxel is, the
less likely it belongs to the same label

• First order variation penalty : this helps preserve the bound-
aries of the estimated image by using differences in intensity
to outline tissue transitions [1].

With the potential functions defined, we can formulate an en-
ergy function to drive the MAP problem:

E(F,G,Cr) =
n

∑
i=1

ψu( fi,G,Cri)+ ∑
c∈C

ψp( fc,G). (11)

Equation 5 can be reformulated as:

F∗ = argmin
F

{
E(F,G,Cr)

}
. (12)

System PSNR (dB) CoC ENL

CRUIS3D 31.9254 0.3622 0.3062

3D-CRC [6] 30.2045 0.2050 0.4851
Baseline RC [3] 27.3844 0.0198 0.2355

Integrated Apodization [4] 26.2299 0.0201 0.1618

Fully addressed 2-D 27.9111 0.0078 0.0371

Table 1: Quantitative evaluation for the simulated phantom. The
proposed CRUIS3D outperforms all systems in literature when it
comes to PSNR and CoC, while the oversmoothing 3D-CRC has
higher ENL.

Gradient descent algorithm is used to solve this MAP problem.
With data sparsity taken into account through the pairwise po-

tential function, and speckle noise as well as the spatially depen-
dant PSF taken into account, all the suggested intrinsic limitations
are now addressed. The edge guided stochastic indicator function
along with the longer range internodal connection of the SFCRF
model should strengthen and maintain inhomogenous areas and
preserve edges by preventing oversmoothing. We will now test our
proposed system.

3 Results

In order to evaluate our proposed system, we used simulated ul-
trasound scans and compared our system against previously pub-
lished systems in literature to highlight the value of incorporating
the edge guided approach and leveraging information in 3-D.

3.1 Simulation

Ultrasound imaging simulation was done using the open source
MATLAB toolkit Field II [12]. Beamfoming in a manner similar to
the row-column method was performed. Envelope data from the
scans were mapped using linear interpolation into a 3-D lattice and
passed to the compensation stage.

The phantom being tested consists of four point source in 20
mm × 20 mm × 60 mm volume. The point source are located at
[x,y,z] = (0,0,30), (0,0,35), (2,2,40), and (-2,-2,40) mm.

3.2 Quantitative Evaluation

Peak signal-to-noise ration (PSNR), coefficient of correlation (CoC),
and expected number of looks (ENL) are the metrics used to eval-
uate the performance of our system. All three metrics were defined
according to recent literature[13, 14]. Quantitative comparison be-
tween CRUIS3D and other systems in literature are summarized in
table 1.

Quantitative analysis shows that CRUIS3D outperforms 3D-
CRC in both PSNR and CoC, indicating better noise suprresion
as well as edge preservation. 3D-CRC had a higher ENL value
indicating smoother regions, meaning CRUIS3D edge guided ap-
proach did address the oversmoothing issue 3D-CRC has. CRUIS3D
outperformed all other systems across the three metrics.

3.3 Visual Evaluation

A 2-D slice taken from the middle of the 3-D outputs of all sys-
tems is shown in figure 2. A closer look at the reconstruction of
each point source is shown in figure 3 The top point source was
best reconstructed with CRUIS3D and 3D-CRC, while the middle
point source is best seen in the fully addressed approach. The
bottom two point sources (which should not be seen in this mid-
dle slice) are mostly suppressed in all systems but is clearly visi-
ble in the fully addressed array. CRUIS3D suppressed the ringing
artifacts seen in the baseline RC and the top and bottom points
source in the fully addressed array, while having a closer look to a
point source than the integrated apodization system. 3D-CRC has
bigger point sources than CRUIS3D, showing our edge guided ap-
proach addressed the oversmoothing issue. These observations
are supported by the quantitative evaluation.



Fig. 2: Visual comparison between the proposed system and other
systems in literature. a) shows the phantom, b) is the image from
CRUIS3D, c) is image from 3D-CRC[6], d) is the image from the
baseline RC [3], e) is the image from integrated apodization system
[4], and f) is the image from a fully addressed 2-D array.

4 Conclusion

In this work, we proposed CRUIS3D: a compensated row-column
ultrasound imaging system that leverages 3-D information within a
stochastically fully connected 3-D random field with an edge guided
stochastic indicator function that is capable of addressing the in-
trinsic limitations of the row-column method. We achieved state of
the art performance compared against other published row-column
systems in literature under PSNR, CoC, and ENL as well as through
visual evaluation. This shows the value of edge-preservation to
prevent oversmoothing.
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