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Abstract

In this work, we propose the use of an electrically small novel an-
tenna as a probe combined with a classification algorithm for near
field microwave breast tumor detection. The resonant probe is
highly sensitive to the changes in the electromagnetic properties of
the breast tissues such that the presence of the tumor is estimated
by determining the changes in the magnitude and phase response
of the reflection coefficient of the sensor. The Principle Component
Analysis (PCA) feature extraction method is applied to emphasize
the difference in the probe responses for both the healthy and the
tumourous cases . We show that when a numerical realistic breast
with and without tumor cells is placed in the near field of the probe,
the probe is capable of distinguishing between healthy and tumor-
ous tissue. In addition, the probe is able to identify tumors with
various sizes placed in single locations.

1 Introduction

Breast cancer is considered to be one of the major causes of mor-
tality in women worldwide. The American Cancer Society reported
that more than 40,000 woman died in 2018 due to breast cancer[1].
The same society reported that in 2018, detecting breast tumors at
an early stage causes the mortality rates to drop by 39 % of females
from 1989 to 2015 [1].

Currently, there are three most common clinical detection tech-
niques which use for breast cancer detection including: X-ray mam-
mography, ultrasound scanning and magnetic resonance imaging
(MRI). The current modalities have some limitations for breast can-
cer detection including ionizing radiation, uncomfortable, low sen-
sitivity and Very expensive [2]. Currently, there are three common
clinical imaging and detection modalities used for breast cancer de-
tection: X-ray mammography, magnetic resonance imaging (MRI),
and ultrasound scanning [1, 2]. The current modalities have some
limitations including ionizing radiation,Uncomfortable,low sensitiv-
ity and Very expensive [2].

To avoid all the limitations in the current breast cancer detec-
tion techniques, researchers have shifted their attention to an alter-
native methodology based on microwaves imaging (MI) which has
some advantages for breast cancer detection including inexpensive
and non-ionizing modality [2]. MI is based on the contrast in dielec-
tric properties between normal and tumor breast tissues within the
microwave band [3, 4]. Moreover, the significant differentiation in
the dielectric properties of normal and tumor breast tissues can be
used as the underlying principle for cancer detection using electro-
magnetic waves [3, 4]. Lazebnik et al. presented the variations in
the microwaves dielectric properties of tumors and normal breast
tissues where the value of the permittivity and conductivity of the tu-
mor tissues are higher than normal (healthy) tissues [3]. Recently,
Martellosio et al reported the contrast in the dielectric properties
of normal and tumors breast tissues which show sharp variation in
their dielectric properties in a frequency band from 0.5 to 50 GHz
[5].

In this work, we propose an electrically-small probe with an
ultra-narrow frequency response. The shift in the magnitude and
phase of the reflection coefficient of the probe caused by the pres-
ence of a tumor existing inside a human breast is used as the
primary detection technique. The main idea of the proposed tu-
mor detection modality introduced here is stemming from two main
medical facts. The first is the material composition of the two
breasts of a woman ( left and right) are symmetric [6, 7]. The
second is the unlikelihood that a woman would develop breast tu-
mors in both breasts at the same time and the unlikelihood that a
woman would develop identical breast tumors in both breasts at
the same time [7]. The detection modality introduced here calls for
the detection test to employ two identical probes positioned sym-
metrically with respect the two breasts. The responses of the two
probes were then recorded (phase and magnitude of the reflec-
tion coefficients) and processed using the PCA method to decide
whether or not a tumor is present. If the response of the probes

from both breasts are identical, then the woman breasts are most
likely free of tumors; otherwise, there is a likelihood of the presence
of a tumor that can be either benign or cancerous.

2 Results and Discussion

The probe consists of a four squares loops with matching network
placed at the middle of the probe as shown in Fig. 1. The main
reason of using the matching network with the two inductors is to
miniaturize the probe so that it resonates at low frequencies. Such
low operating frequency is needed to ensure a reasonable pen-
etration level into the breast tissues. The loops were hosted on
top of an RO4003C Rogers material with a dielectric constant of of
εr = 3.38 and a thickness of 1.54mm. The side of the probe has a
length of L = 50mm and width of w = 50mm. The gaps: g1 = 0.5mm
and g2 = 1mm play a major role in the sensitivity part of the sensor.
The inductors: L1 = 0.03uHand L2 = 0.24uH play a major role in
matching the probe with a 50 Ω feed at the desired resonance fre-
quency of 550 MHz as shown in Fig. 2 which lies within the medical
band. The sensor is then simulated in CST Microwave Studio [8].
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Fig. 1: The proposed electrically small probe consisting of four
loops with an extending gap with lumped elements matching net-
work.

Fig. 2: The reflection coefficient of the probe obtain through simu-
lation.

The proposed sensor was then simulated with a realistic fe-
male breast phantom to test its ability to detect the presence of
breast tumor cells. In this work, we used the anonymous breast
MRI datasets which were obtained from the University of Wiscon-
sin online repository to build the breast phantom in the computer
simulation technology (CST)[9, 10]. The realistic phantom is an



anatomically realistic (3D) numerical model with dielectric proper-
ties derived from T1-weighted MRI images using a piecewise-linear
mapping between MRI voxel intensity and the dielectric properties
of the breast [10, 11]. The detests of the numerical phantoms were
processed in MALTAB to ingrate the realistic human female breast
phantom in the CST. The American College of Radiology (ACR)
define four categories of breast composition according to the ra-
diographic density to the density of breast fibrous and glandular
tissues including: (I) almost entirely fat, (II) scattered fibroglandu-
lar, (III) heterogeneously dense, and (IV) Very dense [10].

Without loss of generality, the class breast phantom used in our
work , is the Heterogeneously Dense Breast ID: 062204âĂİ ACR
classification: Class 3. The model has 0.5 × 0.5 × 0.5 resolu-
tion with 219 × 243 × 273 voxels. After processing the available
data in Matlab, the data which includes the breast volume and the
single Cole-Cole model for the frequency-dispersive tissues prop-
erties were used to construct a numerical model in CST as [10]:

ε(ω) = ε
′
(ω)− jε

′′
(ω) = ε∞ +

∆ε

1+( jωτ)1−α
+

σs

jωεo
(1)

where ω is the angular frequency, ε
′
(ω) is the frequency-dependant

dielectric constant, ε
′′
(ω) is the frequency-dependant dielectric losses

and εo is the free space permittivity. The ε∞, σs, τ and α are the
Cole-Cole model parameters obtained from the clinical experimen-
tal data. The breast model has the physical shape of a real human
female breast. Moreover, with a high resolution of 0.5 mm, the
model also includes the following eight tissue types: skin, muscle,
glandular-1,2,3, and fat-1,2,3 [11].

The probe was calibrated with the normal numerical realis-
tic breast phantom where the proposed probe is placed at a dis-
tance of 5 mm away from the healthy breast phantom as shown in
Fig. 3(a). The magnitude and phase of the reflection coefficient of
the probe were then recorded at frequency range 630 to 660 MHz.
Next, a 9 mm tumor was placed at three different locations inside
the healthy breast as shown in Fig. 3(b). The tumor’s dielectric
properties were obtained from cancer surgery as documented in
[12]. The three locations namely L1, L2 and L3 are labeled accord-
ing to the distance between the tumor and the probe where L1 is
the closest from the probe, L2 deeper than the first location L1 and
L3 is the farthest to the probe. The magnitude and phase informa-
tion were then recorded for the breast with the tumor. The data is
then analysed with and without the tumor to decide whether or not
a tumor is present.
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Fig. 3: Simulation setup: (a)Narrow band probe at distance off 5
mm from 3D normal realistic numerical breast phantom model in
CST. (b)The embedded tumor in the normal numerical breast phan-
tom.

Next, we employ the Principle Component Analysis (PCA) method
to reduce the dimensionality of the problem by implementing a vec-
tor space transform [13]. PCA is feature extraction method [14]
which used to emphasize variation of the probe responses data of
both normal and tumours cases . The objective of PCA is to ex-
tract critical information from the frequency response data set and
to express this information as a set of orthogonal variables called
principal components [15]. Thus, via mathematical projection, high
dimensional original data sets can be reduced to small number of
variables without losing much of the original information to analyze
trends, patterns and outliers [16, 14]. Moreover, PCA is used to

make the probe responses data sets of both testing with and with-
out tumor easy to explore and visualize. Once the probe response
of the two testing without and with tumor at the different locations
are recorded ,the probe response was extracted and analyzed with
and without PCA as shown in Fig. 4. The PCA feature extraction
method is applied for both the healthy and the tumourous cases.
The results of Fig. 4(a) show the magnitude of S11 and Fig. 4(b)
show the magnitude of S11 using PCA . Fig. 4(c) shows the phase
of S11 and Fig. 4(d) shows the phase of S11 using PCA. It is evi-
dent from the results that the difference in magnitude and phase
of the reflection coefficient of the probe between the normal and
tumourous case is greater for tumor locations that are closer to the
probe.
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Fig. 4: Simulation results of the probe magnitude and phase re-
sponse for normal breast tissue and breast tissue with 9mm tumor
at three different locations where: a) the magnitude of S11, b) the
magnitude of S11 using PCA, c) the phase of S11 and d) the phase
of S11 using PCA.

Then the simulation was extended to test the ability of the probe
to detect various sizes of tumors in a single location. A tumor is in-
serted inside the same breast phantom with three different diame-
ter sizes namely: 9 mm, 13 mm, and 17 mm, as shown in Fig. 3(b).
The results are shown in Fig. 5 for tumor sizes of 9 mm, 13 mm
and 17 mm, respectively. In all the tumor sizes the probe was ca-
pable of detecting the presence of tumor tissues. Obviously from
the results, larger tumor sizes are easier to detect.

3 Conclusion

In this work, We presented an alternative microwave modality for
breast tumor detection using a single probe. The sensing mecha-
nism is simple and has the advantage of being portable and com-
fortable for the user. Our numerical results have demonstrated the
ability of sensing a tumor that is as small as 9 mm buried inside a
normal realistic female breast phantom.
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