
Binary Quantizer
Vahid Partovi Nia Huawei Technologies, Canada
Mouloud Belbahri Huawei Technologies, Canada

Abstract

One-bit quantization is a general tool to execute a complex model,
such as deep neural networks, on a device with limited resources,
such as cell phones. Naively compressing weights into one bit
yields an extensive accuracy loss. One-bit models, therefore, re-
quire careful re-training. Here we introduce a class functions de-
vised to be used as a regularizer for re-training one-bit models. Us-
ing a regularization function, specifically devised for binary quanti-
zation, avoids heuristic touch of the optimization scheme and saves
considerable coding effort.

1 Introduction

Automating complex tasks often requires complex models with too
many parameters. Deep neural networks proved to be a general
tool for automating object detection, image classification, speech
recognition, and recently in machine translation, and text gener-
ation. An edge device such as cell phone, smart watch, smart
wearable, autonomous vehicle, wireless base station, etc have lim-
ited power which restricts the use of such complex models. One-bit
quantization can be regarded as a general method for overcoming
the edge device implementation challenge. However, naively com-
pressing full-precision 32-bit parameters to only one bit, destroys
the model accuracy.

Neural networks include two main components: i) weights ii)
activation function. Both components are computed in full-precision
32-bits most of the time. One-bit quantized version of the weights
is implemented by taking the sign of the weights. One bit version
of the activation function is implemented by replacing the activation
σ(x) with the sign function. Here we focus on providing a general
methodology for quantizing the weights.

There are mainly two approaches for weight quantization: i)
quantizing after full-precision training ii) quantizing during training.
The first approach often leads to an extensive accuracy degrada-
tion. We focus on the second approach and demonstrate how to
quantize weights properly using back propagation.

We propose adding a regularization function to the loss function
and deploy the back propagation to tune the weights appropriately
around binary values as the epochs evolve. The end result of a
proper regularization scheme yields quantized weights with mini-
mal accuracy loss.

Courbariaux et al. (2015) introduced BinaryConnect that trains
deep neural networks with binary weights restricted on {−1,+1}.
The weights are quantized using the sign function. The forward
pass uses the binary weights, and the back propagation step uses
the full-precision weights, but the gradient is evaluated at the bina-
rized weight. Hubara et al. (2016) early after introduced BinaryNet
which quantizes both weights and activations. Most of binary net-
works achieve 24× to 32× compression rate. A careful implementa-
tion often provides 4× to 16× inference speed up, depending on the
hardware, and saves extensive memory and hardware resource.

Rastegari et al. (2016) introduced XNORNet, and proposed to
add a scaling factor to binary weights as a a trade-off between bi-
nary quantization and full-precision computation. While training,
the binarized weights and the scaling factors are estimated simul-
taneously. Zhou et al. (2016) introduced DoReFaNet and general-
ized XNORNet, approximating the full-precision weights with more
than one bit. Lin et al. (2017) introduced ABCNet and show how
to train a binary network by adding a regularization function. This
work formalizes Tang et al. (2017) for binary networks, but gener-
alizes it for scaling factors. We provide a coherent framework to
construct variety of regularization functions using a certain class of
base functions.

Binary quantization is a general method to save computation,
memory, and energy simultaneously. Each weight is stored in only
one bit, so a complex network with million parameters like AlexNet
(Krizhevsky et al., 2012a) can be compressed from 250MB (32-bit
version) to 7MB (one-bit version). Neuronal computation can be
decomposed into two major steps

1. Linear combination computation x>w = ∑n xnwn where xn is
the output of previous layer and wn is the neuron weight and
n indexes the neuron in the layer.

2. Nonlinear activation computation σ(x>w).

In 1., for binary x ∈ {−1,+1} and w ∈ {−1,+1}, the multiplication
operator xnwn ∈ {−1,+1} is equivalent to the XNOR operation. The
sum x>w = ∑n xnwn is, therefore, reduced to count.

This computation simplification allows to compute large net-
works fast and efficiently on a low-resource device using logical
operation and count instruction. However, the main challenge is
to re-train binary weights so that the same network with binary
weights still performs with a reasonable accuracy.

2 Regularization

Back propagation training includes a loss function L(w) combined
with a regularization R(w). Regularization is not only included to
improve model accuracy, but is required to maintain stable numeri-
cal computation. The loss function L(w) is often the squared error
for continuous output and entropy or hinge loss for discrete output.
The back propagation ultimately optimizes

L(w)+λR(w),

where λ is the regularization constant, usually tuned using cross-
validation.

The loss function is often regularized by `1 norm called the
lasso (Tibshirani, 1996), `2 norm called the ridge (Hoerl and Ken-
nard, 1970), or a linear combination of these two called the elastic
net (Zou and Hastie, 2005)

−3 −2 −1 0 1 2 3

−
0.

5
0.

5
1.

5
2.

5

w

f(
w

)

Fig. 1: Examples of several convex functions. The `1 norm (1)
dotted curve , `2 norm (2) dashed curve, and the elastic net (3)
solid curve.

f (w) = |w|, (1)

f (w) = w2, (2)

f (w) = δ |w|+(1−δ)w2. (3)

However, all regularization techniques are not explicitly defined as
above. Implicit regularization such as early stopping, drop out,
data augmentation, model averaging, etc, are employed along with
explicit regularization in practice. Common explicit regularization
functions (1), (2), and (3) encourage training weights about the ori-
gin. In binary training, unlike full-precision, weights must concen-
trate around −1 and +1.

3 Quantizer Construction

Common regularization functions encourage weights to remain about
the origin. It makes more sense for binary networks that regulariza-
tion encourages weights about−1 and +1, suitable for binary quan-
tization. Here we formalize a more general regularization function
to encourage weights about α ×{−1,+1}. So it also includes the
scaling factor α. This allows learning the scaling factor α by only
adding another equation to back propagation for α. Using such reg-
ularizers in binary training provides some advantages compared to
the other heuristic training techniques

1. Back propagation is automatically modified, so no subjective
optimization heuristics is necessary. The regularization func-
tion carries the subjective part, but back propagation remain
the same.

2. Scaling factor training is embedded within back propagation.

3. Any neural architecture can be compressed and quantized
with any of these regularization functions. However, some
architectures over some data sets are quantized more effec-
tively with certain class of these regularization functions.

4. Binary training requires little implementation effort, as back
propagation runs only with a slightly modified objective func-
tion.

Suppose f (w) is a quasiconvex function. The class of quasi-
convex functions is larger than convex, i.e. all convex functions
are quasiconvex, but the converse may bot be true. By the defi-
nition of a quasiconvex function the area below of a section of a
quasiconvex function is a convex set, i.e. f (w) is quasiconvex if
∀a ∈ IR,A = {w | f (w)< a} is a convex set. Equivalently, a function
is quasiconvex if for any two values w1,w2

f (λw1 +(1−λ)w2)< max{ f (w1), f (w2)},

see Fig. 2 for few examples. The quasiconvex functions of Fig. 2,

−3 −2 −1 0 1 2 3

−
0.

5
0.

5
1.

5
2.

5

w

f(
w

)

Fig. 2: Examples of several quasiconvex functions. The scad func-
tion (Fan and Li, 2001) with linear a core and constant tails (solid
curve), with a quadratic core and linear tails (dotted curve), with a
squared root core and tails (dashed curve).

like the convex functions of Fig. 1, encourage weights about the
origin. However, binary quantization requires weights to be trained
about {−1,+1} (Courbariaux et al., 2015). Fully binary weights
cannot achieve the accuracy of full-precision networks. A compen-
sation is made by adding a scaling factor α, so the weights are
encouraged about {−α,+α}. Here we recommend the following
modification to construct a convenient regularizer.

Suppose f (w) is a quasiconvex function

1. centered at the origin, i.e. f (0) = 0,

2. symmetric about zero, i.e. f (w) = f (−w).

Define the f -positive part
+
f (w)

+
f (w) = f (w)I[0,∞](w),

where IA(w) is the indicator function on the set A. For an α > 0

define the inverse image
+
f
−1

(α), where
+
f
−1

(w) is the inverse of
f (w) for w > 0. Belbahri et al. (2019) defines a class of quasicon-
vex functions equivalent to Huber-M convex function (Huber et al.,
1964), an attractive qausiconvex base f (w).

Here we show only two ways (out of many) for constructing a
binary quantizer

R(w) = f (w−α sign(w)) (4)

R(w) = | f (w)−
+
f
−1

(α)|p (5)

These regularizers encourage weights about {−α,+α}. A regu-
larization function always shrinks weights towards {−α,+α}, but
sets weights exactly to these values if the regularization function is
non-differentiable at the minimum (Fan and Li, 2001). Setting val-
ues exactly to {−α,+α} is the target of binary training, therefore
non-differentiable functions at {−α,+α} are more of interest.

The quantizer (5) is always non-differentiable at {−α,+α} for
p< 2, and is always differentiable for p= 2, but regularizer (4) inher-
its its differentiation behaviour at minimum from the base function,
see Fig. 3.

Training scheme of Rastegari et al. (2016) improvises the regu-
larization (5) for p = 2 implicitly. Regularization functions proposed
in Darabi et al. (2019) are a special case of (5) with f (w) = |w|.

−3 −2 −1 0 1 2 3

0.
0

0.
5

1.
0

1.
5

w

R
(w

)

Fig. 3: Examples of several binary quantizers using the base func-
tion f (w) =

√
|w|, to create three different regularizers R(w). The

solid curve, is the regularizer of Equation (4) , dashed curve is (5)
with p = 2, and dotted curve is (5) with p = 1.

4 Binary Training

Training a neural network with binary values is straightforward with
binary quantizer regularization. It is only required to define R(w) =
∑l ∑n R(wln), where l denotes the layers, and n denotes the neurons
per layer to quantize all wln. The weights that are absent in the
regularization term will remain unquantized.

The training objective function L(w)+λR(w) quantizes the weights
towards {−α,+α} for a large λ . The value of λ plays an important
role in properly training the network. Our experiments show start-
ing training with λ = 0 (no regularization) and increasing λ with
logarithmic rate with epochs will train the network faster. Formally,
we suggest λ ≈ εη log(t) where ε is a small positive scalar, η is
the learning rate, and t is the number of epochs. Fig. 4 shows
an example of training weight distribution as the number of epochs
evolve. The number of scaling factors plays a key role in competing
with full-precision networks. Too many scaling factors yields slow
inference implementation, but closes the gap with full-precision net-
works. No scaling factor (setting α = 1) provides easy XNOR im-
plementation, but may lead to a large accuracy loss. Vanishing
scaling factor (setting α = 0) dismisses the neuron and is equiv-
alent to pruning. A scaling factor per layer for a fully-connected
layer, and a scaling factor per filter for a convolutional layer is a
good compromise.

Fig. 4: Weight distribution evolution as the number of epochs in-
creases. Weights are pushed away from zero and concentrate
more about {−α,+α} as training goes on.

5 Application

The CIFAR-10 image dataset (Krizhevsky and Hinton, 2009) con-
tains 60000 labeled for 10 classes 32× 32 images separated into
50000 for training set and 10000 for test set. The ImageNet dataset
(Russakovsky et al., 2015) consists of ∼ 1.2M training images, and
1000 classes. The images are resized to 256× 256 and then are
randomly cropped to 224×224. We investigate the influence of the
regularization functions on training binary networks for these two
datasets. First, we consider the binary quantizer (4) with the qua-
siconvex base function (6) from Belbahri et al. (2019)

fγ,β (w) = γw tanh
(

βw
2

)
, (6)

where tanh(.) is the hyperbolic tangent function, γ > 0 is a shape
parameter and β > 0 is a scale parameter. We test several (γ,β)
combinations. Then, we take the absolute value function f (w) =
|w| as a base for (5) with p = 1, p = 1.5 and p = 2. The resulting
regularization functions are

R(1)
γ,β

(w) = fγ,β (w−α sign(w)), (7)

R(2)
p (w) = ||w|−α|p. (8)

Somehow the quasiconvex base (7) is the analog of the convex
base (8), but the former is more flexible.

We train two different architectures AlexNet (Krizhevsky et al.,
2012b) and VGG (Simonyan and Zisserman, 2014) using the ADAM
optimizer (Kingma and Ba, 2014) on CIFAR-10. We also quantize
AlexNet on ImageNet data. The goal of this study is to show that
our binary quantizer formalizes XNORNet (Rastegari et al., 2016).
The XNORNet architecture is similar to AlexNet, so this is a fair
comparison. The results are summarized in Table 1 and Table 2.

Top-1 accuracy of AlexNet and VGG full-precision models on
CIFAR-10 are 88.58% and 91.72% respectively. Using the binary
quantizers (BQ), the accuracy loss is minimal. Quantizing the net-
work using (8) helps the binary network’s training. The flexibility of
the regularization function (7) helps learning through proper adap-
tation of the objective function, and thus the network to achieve
accuracy close to its full-precision counterpart. Indeed, the loss
accuracy is 1.37% and 0.65% for AlexNet and VGG respectively.
Ideally, the parameters γ and β would be learned with back propa-
gation, and different values can be used for different layers (or even
filters for convolution layers).

Results on ImageNet dataset is summarized in Table 2. We
compare our strategy for different regularization functions to other
binary neural networks: BinaryNet (Hubara et al., 2016) and XNOR-
Net (Rastegari et al., 2016) on AlexNet architecture. Obviously,
since BinaryNet does not use the scaling factor, we see that the
accuracy loss is much higher than that of XNORNet and binary
quantizer (BQ). Training ImageNet is slow, thus we decided not to
fine-tune the hyper-parameters, and only choose a learning rate, a
regularization constant ascent rate of λ . We launch three experi-
ments with the regularization functions (8) and (7) for 100 epochs.

Table 1: Top-1 Accuracy on CIFAR-10 for several binary quantizers
(BQ), quantizing AlexNet and VGG architectures.

Model AlexNet VGG

BQ R(2)
1 86.72% 90.73%

BQ R(2)
1.5 86.37% 90.63%

BQ R(2)
2 86.82% 90.82%

BQ R(1)
1,50 86.70% 90.94%

BQ R(1)
2,50 86.85% 91.07%

BQ R(1)
0.1,10 86.93% 90.83%

BQ R(1)
0.1,100 87.21% 91.00%

BQ R(1)
0.5,10 86.97% 90.86%

BQ R(1)
0.5,100 87.00% 90.85%

Full-Precision 88.58% 91.72%

Table 2: Top-1 Accuracy on ImageNet for several binary quantizers
(BQ), using on AlexNet architecture, compered to BinaryNet and
XNORNet.

Model Fully Binary AlexNet

BQ R(2)
1 Yes 41.4%

BQ R(2)
1.5 Yes 41.3%

BQ R(1)
0.1,100 Yes 42.4%

BQ R(1)
0.1,100 No 44.2%

BinaryNet No 27.9%
XNORNet No 44.2%

Full-Precision No 57.1%

Once again, the flexibility of (7) allows to obtain a better general-
ization of the learned binary network compared to (8). The results
are inferior but in the same order of magnitude as those published
in Rastegari et al. (2016), because we quantize the whole network
while XNORNet leaves the first and last layers unquantized. To
scale our method with XNORNet we left the first and last layers un-
quantized, the accuracy reaches to 44.2% the same as XNORNet.
We believe that fine-tuning thank to the binary quantizers flexibility
allows to beat the existing quantization methods on various archi-
tectures.

6 Conclusion

Binary networks are suitable for edge devices, which deal with
computation resource, inference speed, memory compression, and
low-power consumption constraints. However, such networks are
difficult to train. Back propagation is suitable for full-precision val-
ues and taking the sign of the weights of the full-precision is often
too naive and leads to a great accuracy loss. Recently authors
started modifying back propagation to improve training binary net-
works, but still there is a big gap between accuracy of binary net-
works with full-precision networks. Adding a scaling factor resolves
this problem by compromising between binary and full-precision,
but estimating the scaling factor requires another training strategy.

Here we showed how to construct a regularization function that
suites binary training with an embedded scaling factor. This ap-
proach modifies back propagation with minimal effort and scaling
factor estimation is embedded in back propagation. As the weights
train, the scaling factors are estimated along with weights from their
own updating equation. Our numerical results show this approach
quantizes various architectures successfully.

References

Belbahri, M., S. Darabi, and V. Partovi Nia
2019. Foothill regularizer. Submitted.

Courbariaux, M., Y. Bengio, and J.-P. David
2015. Binaryconnect: Training deep neural networks with binary
weights during propagations. In Advances in neural information
processing systems, Pp. 3123–3131.

Darabi, S., M. Belbahri, M. Courbariaux, and V. Partovi Nia
2019. BNN+: Improved binary network training. Submitted.

Fan, J. and R. Li
2001. Variable selection via nonconcave penalized likelihood
and its oracle properties. Journal of the American statistical As-
sociation, 96(456):1348–1360.

Hoerl, A. E. and R. W. Kennard
1970. Ridge regression: Biased estimation for nonorthogonal
problems. Technometrics, 12(1):55–67.

Hubara, I., M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio
2016. Binarized neural networks. In Advances in neural infor-
mation processing systems, Pp. 4107–4115.

Huber, P. J. et al.
1964. Robust estimation of a location parameter. The annals of
mathematical statistics, 35(1):73–101.

Kingma, D. P. and J. Ba
2014. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980.

Krizhevsky, A. and G. Hinton
2009. Learning multiple layers of features from tiny images.
Technical report, Citeseer.

Krizhevsky, A., I. Sutskever, and G. E. Hinton
2012a. Imagenet classification with deep convolutional neural
networks. In Advances in neural information processing sys-
tems, Pp. 1097–1105.

Krizhevsky, A., I. Sutskever, and G. E. Hinton
2012b. Imagenet classification with deep convolutional neural
networks. In Advances in neural information processing sys-
tems, Pp. 1097–1105.

Lin, X., C. Zhao, and W. Pan
2017. Towards accurate binary convolutional neural network. In
Advances in Neural Information Processing Systems, Pp. 345–
353.

Rastegari, M., V. Ordonez, J. Redmon, and A. Farhadi
2016. Xnor-net: Imagenet classification using binary convolu-
tional neural networks. In European Conference on Computer
Vision, Pp. 525–542. Springer.

Russakovsky, O., J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, et al.
2015. Imagenet large scale visual recognition challenge. Inter-
national Journal of Computer Vision, 115(3):211–252.

Simonyan, K. and A. Zisserman
2014. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556.

Tang, W., G. Hua, and L. Wang
2017. How to train a compact binary neural network with high
accuracy? In AAAI, Pp. 2625–2631.

Tibshirani, R.
1996. Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society. Series B, Pp. 267–288.

Zhou, S., Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou
2016. Dorefa-net: Training low bitwidth convolutional neu-
ral networks with low bitwidth gradients. arXiv preprint
arXiv:1606.06160.

Zou, H. and T. Hastie
2005. Regularization and variable selection via the elastic net.
Journal of the Royal Statistical Society: Series B, 67(2):301–
320.

