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Abstract 

Aerial scene mapping is often done via visual methods, where 

many 2D images are combined together to create 3D maps. There 

are several disadvantages to this approach, however, including 

weather interference, inconsistent or nonexistent lighting, or fast-

moving objects, which often appear as either noise or a blur on the 

created map. Radar technology is mostly used in automotive 

applications, like lane keeping and adaptive cruise control. It can 

also be used, however, for aerial mapping of scenes, by mounting 

the radar to a drone. The radar can then be used to generate a point 

cloud, that can either replace or complement point clouds and 

maps from other sensors. We present an approach for generating a 

point cloud map using aerial radar. We then present an algorithm 

for aggregation of points based on pose, and a method to create 

accurate meshes over mapped terrain, to facilitate path planning 

by ground-based robots. 

1. Introduction 

In aerial robotics, when mapping techniques are necessary, 

typically camera-based techniques are used, such as SVO[1] or 

DSO[2]. However, these techniques face significant difficulties, 

including changing weather conditions like rain or snow, lighting 

condition changes, or just relatively uniform looking terrain, like 

sand, snow, or trees.  Radar, however, is unaffected by weather 

and illumination changes – depending on the frequency of 

operation, allowing it to perform optimally in a wider range of 

conditions and environments. The radar can then be used as an 

alternate method of imaging and mapping.  

Aerial robots, in addition to operating individually, can also be 

used as support vehicles for ground vehicles. In particular, maps 

created by an aerial vehicle can be used by a ground vehicle for 

planning paths. After mapping, processing and segmentation of 

the point cloud are performed, to retrieve the point cloud 

describing the ground and ground level obstructions. A surface can 

then be fit to this point cloud, to describe the terrain for use in other 

applications. 

Section 2 of this paper briefly describes existing UAV mapping 

systems. Section 3 gives an overview of the algorithms used, 

beginning with the radar techniques for creating the point cloud, 

then the algorithm for aggregating points and transforming them. 

Section 4 describes the mesh creation process. Section 5 presents 

the results and discusses conclusions.  

2. Background 

Monocular camera has been shown to be effective at mapping 

indoor and outdoor spaces, as well as providing pose estimation 

and depth estimation using SVO and REMODE [3], by moving a 

camera over a scene to be mapped. However, this has some 

disadvantages. There is significantly lower accuracy when there 

are fewer visible features, such as in a snowy area or in a grassy 

uniform field, and the scene must be well lit and clear of visual 

obstructions, including conditions like fog or night time. Other 

efforts have attempted the use of radar for mapping before, using 

Synthetic Aperture Radar (SAR) to perform mapping of outdoor 

scenes, which was demonstrated by mapping both a populated 

town, and rural areas in [4]. 

3. System Description 

3.1. Radar System 

We use frequency modulated continuous wave (FMCW) [5] 

principle to perform radar to target measurements. The utilized 

low-cost radar has 3 Tx antennas and 4 Rx antennas, a Tx gain of 

12 dBm, and operates at 79GHz with 4GHz for bandwidth. We set 

the Rx chain gain to be 30 dB using an LNA. The radar ADC is 

configured to output 16-bit complex samples. Unless otherwise 

noted, all processing takes place on the radar chip itself, as it 

includes an ARM Cortex R4F microcontroller, with radar 

hardware acceleration. The frame and chirp parameters used for 

this experiment are summarised in Table 1. After processing is 

complete, detected objects are outputted from the radar using a 

Universal Asynchronous Receiver/Transmitter (UART) 

connection to create a point cloud. 

 

 
Fig 1. A block diagram of the radar system.  

The radar is attached to a drone, which is equipped with GPS and 

IMU sensors for pose estimation. 

3.2. Object Detection 

After taking the 1st and 2nd dimension FFT, we use the resulting 

range-Doppler matrix to perform simple constant false alarm rate 

(CFAR) detection of objects. We use an 8-sample window and 4 

guard samples for (CFAR) detection. Objects are identified by 

range and doppler index from CFAR, as well as the calculated 

noise energy in the cell for CFAR. In order to conserve both 

throughput over the UART and processing power, we also use a 

peak-grouping scheme, in which for each peak, neighboring cells 

in which objects are also detected, but are less than the peak, are 

discarded. 

 

After post processing was completed, another 2 complex FFTs 

were performed on the azimuth and elevation antenna array data, 

along with a log-magnitude FFT on the azimuth antenna data. 

These results are then used to perform direction of arrival 



 

estimation, to convert points with detected objects into Cartesian 

coordinates [6]. First, the range of the point to be converted from 

the radar is calculated using (1), in which kr is the range index from 

CFAR detection, fs is the sampling frequency in Hz, N is the 1D 

FFT size, and fc is the frequency slope in Hz/sec, as defined in 

Table 1. 
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Next, we define the angle wx using (2), where k is the range index 

of the point to be estimated in the log magnitude FFT.  
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Using wx, we can then compute a similar angle wz as in (3), with 

P1 and P2, respectively, are being defined as the complex numbers 

corresponding to the point to be estimated in the azimuth and 

elevation array FFT. 
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Next, wx and wz can be converted to coordinates x,y, and z with (4) 

and (5). Given that R is known, we can solve for y using (6) to 

complete our Cartesian coordinates. 
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These Cartesian coordinates are then sent via UART to a receiver 

to perform mapping. 

3.4. Post Processing 

The point cloud was improved by filtering out objects to reduce 

clutter and “phantom” objects, caused by reflections in the scene 

or leakage between the transmit and receive antennae. This is 

performed by removing points that are closer than a certain 

threshold (50cm) to the radar while the radar is in the air and 

objects are known to not be in that vicinity. In addition, if the drone 

is estimated to be a certain distance x meters above the ground, 

points more than 1.5x meters away from the radar can be ignored. 

Finally, since the accuracy of the angle-of-arrival estimation is 

lower at higher angles, objects at a point greater than a certain 

angle from the principal axis (the axis that extends out of the radar 

downwards to the ground) are removed. In this case, points more 

than 25° from the principal axis are removed. 

Finally, to remove spontaneous noise from the point cloud, objects 

can be clustered and points that do not belong to a cluster are 

removed from the image. The DBSCAN algorithm [7] is used for 

this task.  

3.5. Point Integration 

In order to create a map of the entire scanned region, radar point 

clouds taken during flight must be compensated by the position of 

the drone at the moment the radar captured the point cloud. To do 

this, the n points Pi in the point cloud are compensated according 

to the pose of the drone. 

The pose of the drone is given by two vectors: T (the translation 

with elements Tx, Ty, Tz), and q (the rotation of the drone in 

quaternion format). q is a vector of four elements which represent 

the orientation of the drone [6]: 

 𝑞 = 𝑞0 + 𝒊𝑞1 + 𝒋𝑞2 + 𝒌𝑞3 (7) 

A rotation matrix can be formed from this quaternion: 

  

𝑅𝑞 = [

1 − 2𝑞2
2 − 2𝑞3

2 2(𝑞1𝑞2 + 𝑞0𝑞3) 2(𝑞1𝑞2 − 𝑞0𝑞2)

2(𝑞1𝑞2 − 𝑞0𝑞3) 1 − 2𝑞1
2 − 2𝑞3

2 2(𝑞2𝑞3 + 𝑞0𝑞1)

2(𝑞1𝑞3 + 𝑞0𝑞2) 2(𝑞2𝑞3 − 𝑞0𝑞1) 1 − 2𝑞1
2 − 2𝑞2

2

](8) 

 

A point Pi(x,y,z) in drone coordinates can be converted to world 

coordinates by being rotated by the quaternion and then adding 

the translation. Explicitly, this is shown in the equation:  

            𝑃′ = [
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Where Pi’(x’,y’,z’) is the compensated point in world coordinates. 

By converting point clouds from the radar images to world 

coordinates and integrating them over the flight, a point cloud map 

of the environment and terrain can be made. 

4. Mesh Creation 

After the aggregated point cloud is complete, the point cloud itself 

must be processed to remove noise and smooth the point cloud. 

First, outliers are removed from the data by using sparse outlier 

removal [8], where the mean µ and standard deviation σ of nearest 

neighbor distances are calculated, and any points which fall 

outside of µ±ασ are discarded. Next, the point cloud is down 

sampled and a grid average is taken, allowing for some 

preliminary smoothing [9].  

Next, the point cloud must be segmented to avoid irregularities 

when creating the mesh. As can be seen in Figure 3 in the results, 

obstacles with greater heights, or suspended objects such as 

lampposts, manifest in the point cloud as clusters separated from 

the ground. To eliminate these before generating a surface, we use 

DBSCAN [7] to cluster the point cloud. The ground is defined as 

the largest cluster with centroid within 0.2m of ground level, as 

measured from the sensors of the drone. All other clusters are 

removed, as dealing with them is beyond the scope of this paper. 

After overhanging objects have been removed, then further grid 

averaging is used, in order to counteract more angle-of-arrival 

estimation error.  Piecewise linear interpolation is then used to 

form a function which can approximate the surface as measured 

by the radar. 

5. Results 

To test the algorithm, a drone with radar attached was flown above 

a parking lot with two cars and a lamppost, in order to test the 

mesh generation algorithm. The test area is shown in Figure 2, 

while the resulting aggregated point cloud is shown in Figure 3. 



  

The resulting point cloud also includes a third vehicle, which 

parked in the parking lot during the test.  

 

Fig 2. A view of the area where the flight test was conducted. 

 

Fig 3. A side profile of the results from the flight test. The 2 cars and the 
lamppost are circled. 

A processed point cloud and the resulting surface are shown in Fig 

4 and Fig 5, respectively.  

 

Fig 4. Processed point cloud from the flight test. 

 

Fig 5. The surface post processing.  

In this surface, the cars can still be seen as relevant obstacles, 

with the orange topped protrusions from the mesh being the two 

parked cars and one car that drove through the parking lot while 

testing was underway.   

 

6. Conclusions 

Data from the test indicates that surfaces can be modelled with 

reasonable accuracy using radar data from a drone. This 

technology is low cost, low weight, relatively low power, and 

accurate. This technology could be extremely useful for future 

surveying efforts in autonomous aerial robotics, including for any 

sort of collaborative effort.  

There are many areas that can improve this algorithm. The signal 

parameters for the radar could be optimized to increase accuracy, 

the angle-of-arrival estimation can be optimized to reduce error 

inherent in the approach, and a spatial Gaussian filter could be 

implemented to smooth data instead of using grid averaging.  
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