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Abstract

Convolutional neural networks have recently shown proficiency at
recognizing actions in RGB video. Existing models are gener-
ally very deep, requiring large amounts of data to train effectively.
Moreover, they rely mainly on global appearance and could poten-
tially underperform in single-environment applications, such as a
sports event. To overcome these limitations, we propose to short-
cut spatial learning by leveraging the activations within a human
pose estimation network. The proposed framework integrates a
human pose estimation network with a convolutional classifier via
compressed encodings of pose activations. When evaluated on
UTD-MHAD, a 27-class multimodal dataset, the pose-based RGB
action recognition model achieves a classification accuracy of 98.4%
in a subject-specific experiment and outperforms a baseline method
that fuses depth and inertial sensor data.

1 Introduction

Human action recognition has been an active area of research in
computer vision for several decades due to its wide range of appli-
cations in intelligent video surveillance, sports analytics, rehabilita-
tion, and human-computer interaction. With recent advancements
in sensor technology, action recognition has benefited from the use
of various data modalities, such as 3D skeletal coordinates ob-
tained from depth cameras and wearable inertial sensors [1]. How-
ever, depth cameras are severely limited by their working range,
often fail in outdoor scenes due to sunlight interference [2], and are
not as widely available or economically viable as RGB cameras.
Additionally, wearable inertial sensors can be impractical outside
of research, in cases like professional sporting events or “in the
wild” applications like intelligent surveillance. Consequently, per-
forming action recognition strictly using RGB image data is highly
desirable and remains a considerable challenge in the field of com-
puter vision.

Recently, convolutional neural networks (CNNs) have shown a
great aptitude for visual recognition tasks [3]. For this reason, they
have become the state-of-the-art for RGB-based action recogni-
tion. Incorporating temporal information into CNNs has been ac-
complished by performing 3D convolutions over RGB image se-
quences directly [4], using recurrent networks [5], or by fusing spa-
tial and temporal features (i.e., RGB and optical flow) using dual-
stream networks [6]. Yet, these classifiers rely mainly on global
appearance and thus could potentially underperform in situations
where multiple unique actions exist within a single environment
(e.g., in a sports match).

In a parallel line of computer vision research, CNNs have also
been used extensively to infer 2D human pose from RGB images
[7, 8, 9]. Although these two streams of research share many simi-
larities (i.e., pose estimation and action recognition), using the spa-
tial activations contained within human pose estimation networks to
recognize human actions remains relatively unexplored.

In this work, we integrate a state-of-the-art human pose esti-
mation model with a CNN classifier to perform end-to-end human
action recognition using RGB image sequences as input. This is
accomplished using compressed encodings of spatio-temporal ac-
tivations produced by the pose estimation network (see Fig. 1).
Leveraging the pose information allows us to shortcut spatial learn-
ing. As a result, this action recognition classifier can be trained
quickly and is tractable enough to achieve good performance on
small-scale datasets. When evaluated on a 27-class multimodal
action recognition dataset [10], the proposed RGB-based method
offers comparable performance to a baseline method fusing two
richer, yet impractical data modalities, namely depth maps and in-
ertial sensor data.

Fig. 1: Spatial slices of compressed spatio-temporal pose encod-
ings. The spatial fusion compresses the pose information, enabling
it to be processed by a standard CNN classifier. Sample images
taken from the wave, jog, bowling, and basketball shot classes of
UTD-MHAD [10].

2 Method

To summarize, a person detector is used to extract images from
an action video sample. The detections are resized, cropped and
padded in accordance with the input size of the top-down pose
estimation network. For each frame, the pose estimation model
generates spatial activations for several keypoints (i.e., joints) on
the body. The temporal sequence of spatial activations are com-
pressed into spatio-temporal encodings and are used as the input
to a relatively shallow CNN classifier.

2.1 Compressed Encodings of Spatial Activations

The 2D human pose estimation model used in this action recogni-
tion framework placed first in the 2017 COCO keypoints challenge.
The aptly named Cascaded Pyramid Network (CPN) [9] achieved
an average precision (AP) of 0.721, a remarkable improvement
over the previous year’s winning AP of 0.605. We chose the CPN
more for its efficient network architecture than its high AP.

Recently, hourglass networks have shown prevalence for the
task of human pose estimation [7]. The principle of the hourglass
architecture lies in repeated top-down, bottom-up processing to
consolidate features across multiple scales and encode the local
and global context required for the spatial relationships of the hu-
man body. These hourglass modules are then stacked with inter-
mediate supervision to improve performance. However, there are
computational inefficiencies associated with hourglass stacking as
performance gains drop after two stages, leading to wasteful com-
putations in subsequent stages [9]. The CPN1 was designed to mit-
igate these inefficiencies using a feature pyramid network [11] with
a ResNet-50 [3] backbone. Consequently, the CPN outperforms an
8-stage hourglass network at less than a third of the computational
cost [9].

As with all top-down pose estimation models, a person detec-
tor is generally required. In this work, a simple HOG person detec-
tor [12] was implemented with non-maxima suppression. Using the
bounding box centers returned by the person detector, the images
are cropped, resized, and padded in accordance with the 256×192
input size of the pose estimation network.

The action recognition model, illustrated in Fig. 2, takes as in-
put the batch of detections from an action video sample. The pose

1The CPN TensorFlow model is available at https://github.com/
chenyilun95/tf-cpn

https://github.com/chenyilun95/tf-cpn
https://github.com/chenyilun95/tf-cpn
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Fig. 2: Proposed action recognition model. The classifier takes as input the compressed spatio-temporal pose encodings and includes
four convolutional layers, an average pooling layer, and a final fully-connected layer.

estimation network outputs four-dimensional spatio-temporal pose
activations having the shape (frame, height, width, keypoint). As
a result of the downsampling present in the pose estimation net-
work, the spatial resolution of the output feature map is one-fourth
the size of the input (i.e., 64x48). The pose data is fed into an en-
coding layer that sums the activations about the keypoint axis (see
Fig. 1), concatenates the activations temporally along the chan-
nel dimension, and then resizes to a temporal depth of n frames
using bilinear interpolation. We considered 13 keypoints in total,
including the nose, shoulders, elbows, wrists, hips, knees and an-
kles. Although the eyes and ears were available, they were not
included as their positions are fixed relative to the nose and thus
do not provide any additional spatial information. To facilitate batch
training the classifier, the encodings were generated prior to train-
ing. The effect of the parameter n on performance is discussed in
Section 3.2.

2.2 Classifier Architecture

The classifier takes as input refined spatio-temporal information.
Thus, its architecture does not need to be as deep as typical ac-
tion recognition models and does not require any pretraining. The
architecture details are included in Fig. 2. The classifier contains
just four convolutional layers, an average pooling layer, and a final
fully-connected layer upon which softmax regression is applied to
predict the class probabilities. The first convolutional layer is a 1D
convolution with 64 output channels. The following 3 convolutional
layers use a kernel size of 5 and stride of 2, and halve the spa-
tial resolution of the feature-map. Each time the spatial resolution
is halved, the number of output channels is doubled. The average
pooling layer uses a window size and stride of 4×3. In other words,
the average pooling layer averages the four quadrants of each 8×6
channel. This “quandrant average pooling” layer was responsible
for roughly 5% improvement in performance over the commonly
used global average pooling layer. The resulting 2×2×512 feature-
map is then flattened and used as input to a final fully-connected
layer.

2.3 Implementation Details

Each convolutional layer is followed by the ReLU activation func-
tion. Batch normalization was not used. All network weights were
initialized with Xavier initialization [13]. Dropout [14] was applied
at a rate of 50% after flattening the 2× 2× 512 feature-map and
proved to be critical to training (see Fig. 3). Various forms of data
augmentation were implemented. Small translations were applied
to account for HOG detector noise, small rotations for posture and
movement variation, and horizontal and vertical scaling between
0.75 and 1.25 for different body types. All data augmentation was
applied randomly with a probability of 50%. To optimize the net-
work, we use the Adam [15] algorithm with a fixed learning rate of
0.001 and batch size of 64. All training was performed on a single
Titan Xp GPU.

3 Experimental Results

3.1 Dataset

UTD-MHAD [10] was used for evaluation. UTD-MHAD is a 27-
class multimodal dataset containing RGB images, depth images,
3D skeletal coordinates, and inertial sensor data. The dataset
was chosen because it comprises high-level body movements with
minimal scene interaction, making it suitable for pose-based action

recognition. Furthermore, previous works have used this dataset
to evaluate action recognition models using other data modalities.
Assessing the practicality of these approaches through compar-
ison with an RGB approach is of interest and has not yet been
done, likely because the dataset is too small to effectively train any
existing CNN action recognition models end-to-end.

The 27 actions are as follows: (1) swipe left, (2) swipe right,
(3) wave, (4) clap, (5) throw, (6) cross arms, (7) basketball shot,
(8) draw X, (9) draw circle clockwise, (10) draw circle counter-
clockwise, (11) draw triangle, (12) bowling, (13) boxing, (14) base-
ball swing, (15) tennis forehand, (16) arm curl, (17) tennis serve,
(18) push, (19) knock on door, (20) catch, (21) pick up and throw,
(22) jog, (23) walk, (24) sit to stand, (25) stand to sit, (26) lunge,
(27) squat.

The actions were performed by 8 subjects, four male and four
female, with each subject performing an action four times. After re-
moving three corrupted samples, the dataset includes a total of 861
samples. Three experimental protocols have been used previously.
The first is “cross-subject” (CS), where the data from subjects 1, 3,
5, 7 are used for training and the data from subjects 2, 4, 6, 8 are
used for testing. The second is “subject-generic” (SG), where an
8-fold leave-one-out cross-validation is performed, i.e., each sub-
ject is used as a test subject while the remaining seven subjects
are used for training. The third protocol is “subject-specific” (SS),
where the model is evaluated on each subject using 2 trials for
training and 2 trials of testing. For the SG and SS experiments, the
classification accuracy is averaged over the 8 trials.

3.2 Impact of Temporal Resizing and Dropout

To investigate the impact of the temporal resizing parameter n and
dropout, the model was trained using values of n ranging from 2
to 64, with and without dropout. For this hyperparameter search,
subject 1 was held out for testing and no data augmentation was
used. Due to the stochastic nature of training on a GPU, the model
was trained 3 times for each value of n. The mean classification
accuracies are shown in Fig. 3. The results show that dropout
regularization improves training significantly. Furthermore, classi-
fication performance saturated around n = 32, which was used to
generate the results in Section 3.3.
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Fig. 3: The effect of temporal resizing parameter n and dropout
on classifier performance. Subject 1 was held out for testing, and
no data augmentation was used. The error bars represent two
standard deviations over the 3 trials.

3.3 Comparison with Other Modalities

To our knowledge, no existing RGB-based action recognition mod-
els have been evaluated on UTD-MHAD. This is likely because ex-



Method CS [10] SG [1] SS [1]
Kinect 66.1 74.7 85.1
Inertial 67.2 76.4 88.3
Kinect + Inertial 79.1 91.5 97.2
Proposed (RGB) 76.1 89.1 98.4

Table 1: Classification accuracies on UTD-MHAD for the three ex-
perimental protocols. A comparison of the proposed RGB method
to baselines that use Kinect and inertial sensor data. To date, no
existing RGB methods have been evaluated on UTD-MHAD.

isting RGB CNN models are not tractable enough to perform well
on small datasets. One of the key advantages of our system is that
it can be trained effectively using limited data, as demonstrated by
the results in Table 1.

We chose to evaluate our model against the dataset baselines
that use two richer data streams, including depth motion maps gen-
erated from the Microsoft Kinect, and inertial sensor data. Specif-
ically, three baselines for each experiment are considered, includ-
ing those using depth and inertial data individually, and a fused
approach where both modalities are combined at the decision level
using a collaborative representative classifier [1, 10]. The results
in Table 1 indicate that our RGB-based method outperforms the
data-fusion baseline in the SS experiment. For the SG and CS
experiments, our approach falls within 2.4% and 3.0% of the data-
fusion baselines, respectively. As expected, the best performance
is seen in the SS experiment due to the minimal amount of variance
within the intra-subject video samples.

Fig. 4 depicts the confusion matrix for the evaluation of the
proposed model on the test dataset in the CS experiment. Fre-
quent misclassifications were observed between the bowling (12)
and lunge (26) classes, and the throw (5) and knock on door (19)
classes. These classes consist of very similar body movements.

4 Discussion

The proposed RGB action recognition model was demonstrated to
perform comparably to a method that fused two richer, yet imprac-
tical data streams from depth cameras and inertial sensors. These
results put into question the practicality of action recognition mod-
els utilizing these modalities, given their limitations in comparison
to RGB images. Furthermore, it was demonstrated that tractability
can be maintained using RGB by shortcutting spatial learning with
the integration of a human pose estimation network. Currently, hu-
man pose estimation is a highly active area of research. Future
pose-based RGB action recognition models may reap the benefits
of pose estimation advancements such as 3D pose estimation, and
body segment identification.
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