
MonolithNet: Training monolithic deep neural networks via a partitioned training strategy
Rene Bidart University of Waterloo, ON, Canada
Alexander Wong University of Waterloo, ON, Canada

Abstract

In this study, we explore the training of monolithic deep neural net-
works in an effective manner. One of the biggest challenges with
training such networks to the desired level of accuracy is the dif-
ficulty in converging to a good solution using iterative optimization
methods such as stochastic gradient descent due to the enormous
number of parameters that need to be learned. To achieve this,
we introduce a partitioned training strategy, where proxy layers
are connected to different partitions of a deep neural network to
enable isolated training of a much smaller number of parameters
to convergence. To illustrate the efficacy of this training strategy,
we introduce MonolithNet, a massive residual deep neural network
consisting of 437 million parameters. The trained MonolithNet was
able to achieve a top-1 accuracy of 97% on the CIFAR10 image
classification dataset, which demonstrates the feasibility of the pro-
posed training strategy for training monolithic deep neural networks
to high accuracies.

1 Introduction

In recent years, deep learning has revolutionized many aspects of
machine learning through the use of hierarchical feature extrac-
tors trained through backpropagation, rather than through the use
of hand-engineered features which were commonly used in the
past [1]. In particular, a type of deep neural network known as deep
convolutional neural networks (CNN) has demonstrated state-of-
the-art performance on a number of visual perception tasks when
compared to other machine learning algorithms [2].

It was discovered that creating deep neural networks consist-
ing of a large number of layers was crucial to improving the per-
formance in image recognition, but with deeper networks came an
increased difficulty in training the networks to convergence[3]. A
number of solutions have been introduced in recent years to tackle
this problem and improve the training of deeper networks. One
such solution came in the form of batch normalization [4], which
normalizes the layer’s inputs per mini-batch, reducing internal co-
variate shift, and thus allowing for more reliable and faster training.
Another breakthrough in training deeper networks came in the form
of deep residual learning [5], where an architectural change was in-
troduced in the form of residual connections.

Residual deep neural networks surpassed the performance of
previous networks through the use of skip connections between
the layers of the CNN. This enabled the network to learn identity
mappings between layers, enabling networks as deep as 1000 lay-
ers to be trained, setting a new benchmark for image recognition
performance.

In this work, we explore and investigate a partitioned training
strategy to train even larger networks by selectively training parti-
tions of a network in a multi-stage manner. To illustrate the efficacy
of this training strategy, we create a massive deep convolutional
neural network called MonolithNet, which is comprised of multiple
parallel wide residual blocks [6].

Therefore, the key contributions of this paper are: i) the intro-
duction of a novel, massively wide residual network architecture,
and ii) a multi-stage partitioned training strategy to overcome the
difficulty of training such a large network to convergence.

This paper is organized as follows. Section 2 provides a de-
tailed description of the proposed MonolithNet network architec-
ture. Section 3 presents the multi-stage partitioned training strat-
egy used to train MonolithNet to convergence. Section 4 presents
an evaluation of the performance of the trained MonolithNet using
the CIFAR10 dataset, and compares it with other deep convolu-
tional neural networks presented in previous literature.

2 MonolithNet Architecture

The underlying goal behind the design of the proposed Monolith-
Net network architecture is two-fold. First, we with to construct
a deep convolutional neural network architecture that can better

Fig. 1: MonolithNet network architecture. An input layer feeds the
same input to three parallel wide residual blocks, where each block
follows a wide residual architecture [6] with a depth of 28 and fea-
ture expansion factor of 20. Each of these blocks extract different
sets of quantitative features, which are then fed into a concatena-
tion layer, followed by two fully connected layers to output a classi-
fication prediction.

learn a larger, more diverse set of features to improve classification
performance. Second, we wish to construct a massive deep con-
volutional neural network architecture that we can use to demon-
strate the efficacy of a partitioned training strategy for training such
a massive network to convergence. To achieve this goal, we lever-
age the notion of residual learning first proposed in [5], which has
not only demonstrated state-of-the-art performance for a wide vari-
ety of applications such as general image recognition, but has been
recognized in research literature for its terrific ability to perform well
both for feature extraction and fine-tuning[7].

In deep residual networks, skip connections are added between
convolution blocks, so the network has the ability to learn the iden-
tity function and bypass convolutional blocks. Residual mappings
are of the form:

xl+1 = xl + f (xl ,Wl) (1)

Where f is a convolutional block at layer l parametrized by Wl .
In this particular architecture, f is two convolutional layers using
batch normalization and the ReLU activation function. The skip
connection allows the network to ignore the function f by pushing
its weights close to 0, in which case the identity map is learned.

In the proposed MonolithNet architecture, we leverage a partic-
ular variant of the deep residual neural network architecture known
as Wide residual network architecture [6]. The main differences be-
tween the convolutional deep residual network architecture and the
wide residual network architecture lies in the fact that wide residual
network architectures leverage fewer layers, but in each layer there



are significantly more filters. This wide residual network architec-
ture has been shown to provide superior results to the original deep
residual neural network architecture on a variety of data sets, while
being significantly less complex architecturally when compared to
architectures designed through existing neural architecture search
methods, and as such is a good building block for the proposed
MonolithNet.

The proposed MonolithNet network architecture is comprised
of three parallel wide residual blocks, where each block follows a
wide residual architecture [6] with a depth of 28 and feature expan-
sion factor of 20 (which means that the number of filters is 20×
greater than that of the original deep residual neural network archi-
tecture). As such, each block of MonolithNet consists of a different
set of learned weights to capture diverse feature sets. The fea-
tures of the last layers in each of the three parallel wide residual
blocks within the proposed MonolithNet architecture are combined
in a concatenation layer, which is then fed into a 16-neuron fully
connected layer, followed by a ReLU layer, which then feeds into a
final fully connected layer where the number of neurons is equal to
the number of labels being predicted.

3 Partitioned Training Strategy

Training a massive network such as MonolithNet to convergence
while avoiding overfitting is extremely difficult because of the large
number of parameters. To tackle the aforementioned problem, we
leverage a partitioned training strategy where proxy layers are con-
nected to different partitions of a deep neural network to enable
isolated training of a much smaller number of parameters to con-
vergence.

The targeted training strategy for training MonolithNet is shown
in Fig. 2, and consists of three main stages:

1. Partitioned training of individual wide residual blocks

2. Partitioned training of fully connected layers.

3. End-to-end fine-tuning of the full network.

1. Partitioned training of individual wide residual blocks
As the first stage of the partitioned training strategy, each of the
three wide residual blocks are trained in isolation by freezing the
weights of the other wide residual blocks, and a proxy fully con-
nected output layer is connected to the particular wide residual
block we wish to train. This ensures that only one particular wide
residual block will be trained at a time, leaving the other blocks
unaffected during this partitioned training process. Given that we
wish to also encourage diverse feature learning, we train each of
the individual wide residual blocks with a randomly selected subset
of training data. This ensures that each wide residual blocks will
converge to a different set of weights, and thus learn more diverse
features when compared to the other wide residual blocks. This
partitioned training process is repeated for each of the wide resid-
ual blocks.

2. Partitioned training of fully connected layers
After the partitioned training of individual wide residual blocks, we
now focus on the partitioned training of the fully connected net-
work layers in isolation by freezing the weights of the individual
wide residual blocks. The rationale behind this is that, since the
full connected layers are initialized with random weights, there is
a strong probability that the network will not train to convergence
if the entire MonolithNet network architecture is trained end-to-end
at this point. Therefore, by freezing the weights of all the individ-
ual wide residual blocks while the fully connected layers is being
trained, we allow the fully connected layers to be trained in isola-
tion and converge to a good solution. In addition, since training is
performed only on the fully connected layers, the time to conver-
gence is greatly reduced.

3. End-to-end fine-tuning of the full network. After the fully-
connected layers in MonolithNet have been trained in isolation, the
entire network undergoes an end-to-end fine-tuning process to al-
low for all of the weights in the network to be trained in unison to
allow all components of MonolithNet to act cohesively as a collec-
tive. In this part of the partitioned training process, we backpropa-
gate the gradient though the entire network, including each of the

individual wide residual blocks and the fully connected layers as a
whole, thus optimizing the weights of the entire network. This is
done at a lower learning rate than the initial training.

4 Implementation Details

Pre-processing is used during the training and testing process, with
the input images being normalized to 0 mean and standard devia-
tion. Data augmentation is used during training to reduce overfitting
and help generalization, with random horizontal flips and random
crops. Crops are taken by padding the original image by 4 pixels
on each side, and cropping a random 32x32 section of this.

Stochastic gradient descent with momentum is used for all parts
of the training process. Momentum of 0.9 and weight decay of
0.0005 is used for all stages of the training policy.

Different learning rates were used for each stage in the parti-
tioned training process. For stage 1, a learning rate of 0.1 is used,
and this is decreased by a factor of 0.2 on epochs 60, 120 and
160 and is trained for a total of 200 epochs. In stage 2, partitioned
training is performed for 40 epochs with a learning rate of 0.005,
decreased by a factor of 0.3 every 13 epochs. For stage 3, a much
lower learning rate of 0.0001 is used to train the network for 25
epochs, and this is decayed by a factor of 0.2 after 13 epochs.

In stage 1, a batch size of 128 is used to stay consistent with [6],
while in stage two this is increased to 300. In stage 3, the batch
size is reduced to 88 to fit in GPU memory given the size of Mono-
lithNet. All networks are implemented and trained using [8].

5 Experiments

To test the efficacy of the partitioned training strategy and the re-
sulting MonolithNet, we evaluate its accuracy on the CIFAR10 dataset
[9], a widely-used image classification benchmark composed of
60000 32×32 RGB images divided into 10 independent classes.
We used the standard training-testing split, and used similar aug-
mentation and normalization strategies as seen in other networks
tested on this dataset. For evaluation purposes, 11 state-of-the-art
deep convolutional network architectures were also compared in
this study.

As shown in Table 1, it can be observed that the proposed
MonolithNet has significantly more parameters than other deep
convolutional network architectures, with its 457 million being more
than 10× more than the next largest network architecture. Fur-
thermore, the top-1 accuracy of the proposed MonolithNet reached
97% on the CIFAR10 image classification dataset, which is notice-
ably higher than 10 of the tested state-of-the-art hand-engineered
deep convolutional neural network architectures compared in this
study. One of the state-of-the-art hand-engineered deep neural
networks (Shake-Shake 2x96d), which leveraged special training
regularization in the form of stochastic regularization, perform sim-
ilarly to MonolithNet (0.15% higher). As such, the accuracy of
MonolithNet is impressive given that no automated network archi-
tecture search, advanced data augmentation, or special training
regularization strategies were employed to achieve this level of ac-
curacy, and so there could be promise in incorporating these meth-
ods into MonolithNet.

These results show the feasibility of training very large net-
works using this partitioned training strategy, and the effectiveness
of the presented MonolithNet network architecture.

6 Conclusion

In this paper, we introduced MonolithNet, a massive deep network
composed of multiple parallel wide residual blocks, as well as a
partitioned training strategy where partitions of the network were
trained individually. Experimental results achieved an accuracy
of 97% in the widely-used CIFAR10 benchmark dataset demon-
strated the efficacy of the proposed network and the partitioned
training strategy in training such massive deep neural network ar-
chitectures to convergence. In the future, we hope to investigate
using more complex constituent networks as well as improved data
augmentation strategies. Furthermore, a more comprehensive and
fundamental trade-off analysis between the number of wide resid-
ual blocks within the network and the level of performance achieved
would be quite useful to better understand network design.



Fig. 2: Partitioned training strategy for MonolithNet. In stage 1,
each of the wide residual blocks are trained individually in isolation,
while in stage 2 the weights of the three wide residual blocks are
frozen, and only the fully connected layers is trained in isolation. In
stage 3, the entire network is trained in an end-to-end to promote
cohesion of all components of the network.

Acknowledgments

The authors thank the Natural Sciences and Engineering Research
Council of Canada, the Canada Research Chairs Program, and the
Queen Elizabeth II Graduate Scholarship in Science & Technology
for partially supporting this research. Furthermore, the authors
thank Nvidia for the GPUs used in this study that were provided
as part of a hardware grant.

Table 1: Comparison of different hand-engineered deep convolu-
tional network architectures in terms of the number of parameters
and top-1 accuracy on CIFAR10. Networks marked with * leverage
special training regularization techniques.

Network Parameters
(millions)

Accuracy

DenseNet (L=100, k=24) [10] 27.2 3.70%
DenseNet-BC (L=100, k=24) [10] 25.6 3.46%
PyramidNet (alpha=270) [11] 28.3 3.73%
PyramidNet (bottleneck,α=270) [11] 27.0 3.38%
PyramidNet (bottleneck,α=200) [11] 26.0 3.38%
FractalNet [12] 38.6 4.60%
ResNet-101 [5] 1.7 6.43%
ResNet1202 [13] 19.4 7.93%
Pre-activation ResNet [13] 10.2 4.62%
WideResNet-28-10 [6] 36.5 3.89%
Shake-Shake 2x96d* [14] 26.2 2.86%
MonolithNet 437 3.01%

References

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature,
vol. 521, no. 7553, p. 436, 2015.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,” in
Advances in Neural Information Processing Systems 25
(F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,
eds.), pp. 1097–1105, Curran Associates, Inc., 2012.

[3] K. Simonyan and A. Zisserman, “Very deep convolu-
tional networks for large-scale image recognition,” CoRR,
vol. abs/1409.1556, 2014.

[4] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating
deep network training by reducing internal covariate shift,”
CoRR, vol. abs/1502.03167, 2015.

[5] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learn-
ing for image recognition,” in Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pp. 770–
778, 2016.

[6] S. Zagoruyko and N. Komodakis, “Wide residual networks,”
CoRR, vol. abs/1605.07146, 2016.

[7] S. Kornblith, J. Shlens, and Q. V. Le, “Do better imagenet
models transfer better?,” arXiv preprint arXiv:1805.08974,
2018.

[8] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. De-
Vito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic
differentiation in pytorch,” 2017.

[9] A. Krizhevsky, “Learning multiple layers of features from tiny
images,” tech. rep., Citeseer, 2009.

[10] G. Huang, Z. Liu, and K. Q. Weinberger, “Densely connected
convolutional networks,” CoRR, vol. abs/1608.06993, 2016.

[11] D. Han, J. Kim, and J. Kim, “Deep pyramidal residual net-
works,” CoRR, vol. abs/1610.02915, 2016.

[12] G. Larsson, M. Maire, and G. Shakhnarovich, “Fractal-
net: Ultra-deep neural networks without residuals,” CoRR,
vol. abs/1605.07648, 2016.

[13] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in
deep residual networks,” CoRR, vol. abs/1603.05027, 2016.

[14] X. Gastaldi, “Shake-shake regularization,” CoRR,
vol. abs/1705.07485, 2017.


