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Abstract

People move their eyes several times each second, to selectively
analyze visual information from specific locations. This is impor-
tant, because analyzing the whole scene in foveal detail would re-
quire a beachball-sized brain and thousands of additional calories
per day. As artificial vision becomes more sophisticated, it may
face analogous constraints. Anticipating this, we previously devel-
oped a robotic head with biologically realistic oculomotor capabil-
ities. Here we present a system for accurately orienting the cam-
eras toward a three-dimensional point. The robot’s cameras con-
verge when looking at something nearby, so each camera should
ideally centre the same visual feature. At the end of a saccade,
we combine priors with cross-correlation of the images from each
camera to iteratively fine-tune their alignment, and we use the ori-
entations to set focus distance. This system allows the robot to
accurately view a visual target with both eyes.

1 Introduction

We previously developed a robotic head [1, 2] with unique ocu-
lomotor capabilities (Figure 1). The main parameters (range of
motion, stereo baseline, and saccade velocities) are all within hu-
man ranges. The robot uses liquid lenses to change focus distance
within a few milliseconds, and we are in the process of developing
foveated lenses to allow high acuity simultaneously with wide field
of view. As far as we know, this is the only robotic head with ocu-
lomotor capabilities very similar to humans. Each of these capa-
bilities is important to human vision. For example, saccades must
be executed in about 100ms, because several saccades are per-
formed per second, little vision occurs during the movement time,
and visual inference after a saccade develops over 200ms.

Here we describe a system for accurately pointing both cam-
eras to the same target. In contrast with standard stereo camera
systems, humans orient both eyes toward the same target, result-
ing in convergence of up to five degrees or more. This allows de-
tailed sensing and analysis of a selected visual feature, such as a
word of printed text, in the fovea of each eye. Rapid saccades of
both eyes in the same direction are followed by slower corrective
periods in which vergence is fine-tuned [3, 4, 5, 6]. In this work we
emulate this corrective phase, using the cross-correlation of im-
ages from both cameras, to precisely orient the cameras toward
the same visual target.

When viewing objects at closer distances (such as objects within
reach) , coordinated eye movements ensure binocular fusion and
provide triangulation information essential for depth perception in
visual scenes [7]. Maintaining minimal visual disparity in foveated
points of fixation can facilitate fundamental visual functions such as
depth estimation [8], and tracking of moving objects [9, 10].

A number of previous studies have investigated vergence con-
trol on robots [11, 12, 13, 14], and the cross-correlation has been
frequently used [15, 16]. Several previous works used a log-polar
mapping or Gaussian weighting of the correlation function to em-
phasize the central parts of the images [17, 18, 19]. In this study
we apply this approach to a new robot. We also incorporate prior
error probabilities, to achieve robust vergence to small foreground
objects, and we use calculations from the camera angles to set the
focus distance quickly and efficiently.

2 Methods

The goal of this work is to allow the robot to accurately look at a vi-
sual target with both cameras. This includes orienting the cameras
so that the same feature is centred in each one, and also bringing
the images into focus. The command that initiates this process is in
the form of a three-dimensional target point. Selecting this target
point is a task-specific process that is outside the current scope,
but we assume that it corresponds to the estimated position of an
object or feature of interest in the robot’s surroundings.

Fig. 1: This work develops a vergence controller for OREO (Open
Robotic Eyes from Ontario), an open-hardware stereo camera sys-
tem with seven degrees of freedom. Mechanically, OREO outper-
forms previous robotic heads [20, 21, 22], with saccade velocities
and other oculomotor properties within human ranges.

To begin looking at a target, the required actuator positions are
calculated, and set using individual proportional-integrate-derivative
(PID) controllers for each actuator. There is error in this process
due to non-ideal mechanical properties, such as slight misalign-
ment of encoders and play in the joints. So the cameras do not
point exactly where intended. Also, in general, the position of the
target will be estimated imperfectly. As a result of these two factors,
the two cameras generally do not have quite the same features
centred after this actuator-level PID phase.

To orient both cameras more precisely toward the same visual
feature, we introduce a subsequent corrective phase that uses vi-
sual feedback. To begin this phase, a region in the centre of each
image is cross-correlated with the other image, and the peak of
the correlation function is found. Because the images are taken
from different perspectives, and only the central part of one of
the images is used in each case, the results are not symmetric
in general (see Figure 2). The offsets of the correlation peaks from
the image centres are used to calculate the horizontal and vertical
translations of each image that would be required to make them
roughly overlap. These image translations (in pixels) are converted
to angles (in degrees), and each camera is then moved by these
amounts. This constitutes a single step of the correction process.
Multiple steps can be taken to iteratively improve the alignment,
or the method can run continuously to account for possible motion
of the target object in depth. We experimented with standard cor-
relation and also with correlation weighted by a spatial Gaussian
function to emphasize features in the centre of each image.

If there are multiple objects close to the centre of the field of
view, but at different depths, the strongest correlation does not nec-
essarily correspond to the desired target. For example, smaller ob-
jects create smaller peaks in the correlation function. Also, objects
that lack rotational symmetry may create a smaller peak when they
are close to the robot, due to differences in perspective between
cameras. To allow robust vergence toward small, nearby objects,
we incorporated the prior expectation that the desired correlation
peak is close to the centre. This was done by scaling the correla-
tion function point-wise by a Gaussian function. This approach is
closely related to Bayesian incorporation of a prior probability distri-
bution over vergence errors, but we did not explicitly use a statisti-
cal formulation. This approach could potentially be refined in future
work by collecting histograms of misalignments and correlations.
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Fig. 2: Left Camera 1 image with centre Target 1 box in red, and
right Camera 2 image with centre Target 2 box in green. The Target
box from one camera image is moved around the other camera’s
image to find the shifted position in which they are best aligned,
by using the normalized 2D cross-correlation function (plotted be-
low) and choosing the shift corresponding to the peak value (red
x). The optimal position of the Target 2 box on the Camera 1 im-
age is shown by the dashed green box, and the optimal position of
the Target 1 box on the Camera 2 image is shown by the dashed
red box. The maximum shifts that are checked are indicated by the
yellow boxes. The offset amounts are shown in black text. If the off-
sets from each perspective are in the opposite direction, then each
camera should move by half that amount to meet in the middle.
The amount each camera should be moved is in red text.

The focus distance must also be adjusted to clearly image the
target surface. OREO incorporates Optotune EL-10-30 electrically
tunable lenses, which are capable of large changes in focus dis-
tance within a few milliseconds (10%-90% step in <2.5ms). There
are a number of well-established algorithms for automatic focus
correction [23]. A complication is that the blur is symmetric for focus
distances that are too near and too far, so the sign of the required
change can only be determined through exploratory changes. How-
ever, in our system the required focus distance is calculated from
the camera angles. This allows us to find the appropriate focus
distance in one step, using encoders on the camera joints. Figure
3 illustrates our approach. After vergence, the camera angles are
used to calculate distance from each camera to the target surface,
and this distance determines the appropriate input to the tunable
lenses.

3 Results

Figure 4 shows stereo image pairs from an example vergence-
correction sequence. Initially, after individual PID control of the
actuators, the cameras are only roughly aligned (top image pair).
The alignment improves with each correction step.

To improve robustness of vergence toward small foreground
objects, we scaled the correlation functions point-wise with a Gaus-
sian function centred at zero offset. This approach relied on fairly
accurate initial saccades (in contrast with the inaccurate initial sac-
cade in Figure 4), which required an additional calibration step with
a visual target. Figure 5 shows examples of vergence to objects at
different depths using this approach. The scene contains a small
tool 0.5m from the robot and a spray can 1.5m from the robot. In
the background there is a large map on the wall, 2.3m from the
robot. Each panel shows overlaid images from both cameras. The
left panels depict vergence toward the tool in the foreground, and
the right panels depict vergence toward the spray can. Vergence
to each target was achieved simply by saccading close to it, so
that the corresponding peaks in the correlation functions were fairly
close to centre. Without Gaussian scaling of the correlation func-
tions, the robot verged toward the map in the background. This is
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Fig. 3: A) After vergence, the distance to the target is estimated
from each camera’s yaw and pitch angles, which are measured by
optical encoders. In the right diagram, the axis y*' is the y-axis of
the yaw link, which is rotated relative to the head by the yaw an-
gle. B) The focus distance is controlled by applying current to an
Optotune EL-10-30 electrically tunable lens. The plot shows focus
distance vs. current for this lens in series with a manually tunable
lens (Edmund Optics 58-000) that is focused at infinity. This plot
shows means of three measurements per point. Optotune pub-
lishes nominal curves, but recommends manual calibration. Focus
distance was measured only to about 3m.

because the map created a large peak in the correlation functions,
as it covered many pixels and looked similar from the perspective
of each camera.

4 Conclusion

This work allows the OREO robot to accurately orient to a visual
target in three dimensions, including fine-tuning of vergence and
focus distance. Incorporating prior probabilities allows reliable ver-
gence to small foreground objects. Future work with the robot will
focus on lower-level optimal control of coordinated head and eye
movements, and higher-level task-related active vision.
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map in the background in each case.
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