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Abstract

Radiometric compensation enables data projectors to use textured
surfaces such as automobiles, building and theater stages as pro-
jection screens, accomplished by modelling the reflectance char-
acteristic of the surface and inverting it to find the compensation
function. In this paper, we explore the effects of point spread func-
tion / blur of the projector on the performance of existing radiometric
compensation algorithms. Two changes to the existing model are
proposed which help to consider projector blur in model learning.
Proposed changes can be combined with any radiometric com-
pensation strategy to improve its perceptual performance without
increasing the computational complexity.

1 Introduction

Projection onto three dimensional textured surface requires geo-
metric and radiometric compensation to correct for the distortions
due to the projection surface. The compensation requires a pro-
jector – camera setup as shown in Fig. 1. The camera provides
feedback of the projection which can be used to learn the sur-
face reflectance properties. The compensation models developed
with the learned properties can be used to modify the incoming
target image such that the modified image, when combined with
the background’s shape and texture, gives the appearance of an
undistorted target image.

Structured light patterns [1] are used to find the geometric map-
ping between the projector and camera. The pixel correspondence
from the mapping is necessary to correlate the camera pixels to
its corresponding projector pixels. After geometric mapping, radio-
metric compensation is required to correct for the target image’s
texture distortion due to the projection surface. To understand the
surface’s texture characteristics, a calibration set is formed by pro-
jecting a series of colored images and capturing its response. The
radiometric functions fr developed from the calibration set, mod-
els the transformation of the projector image P by the projection
surface to produce the captured camera image C:

C = fr(P) (1)

This function is developed for each projector – camera pixel pair, as
the background texture and colour can vary, essentially arbitrarily,
from pixel to pixel. The compensation function fc is found by in-
verting the radiometric function fr. The compensation function can
take any target image T as input and produce the compensated
projector image Pc:

Pc = f−1
r (T ) (2)

Cc = S(Pc) (3)

where S represents the transformation by the background surface.
Cc is the camera captured compensated image, ideally equivalent
to the target image T . Since the radiometric function is developed
for each projector pixel, it is necessary for the model to be simple
and efficient. In this paper, we explore the two widely used radio-
metric compensation models. Bimber et. al. [2] proposed to model
the radiometric function as follows,

CL = EM+PLFM (4)

F is the form factor, M is the surface color and E accounts for envi-
ronmental light. CL is the color reflected from the surface and PL is
the color from the projector for channel L. The model is developed
for each pixel in every channel of the projector. Grossberg et. al.
[3] proposed a framework to find the radiometric function and pro-
jector response function assuming the camera response function
is known. The radiometric function was modelled using matrices
as follows,

C =V P+K, (5)

Fig. 1: Projector-camera system for radiometric compensation.
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Here, unlike Bimber’s model (4), each channel of the camera de-
pends on all three channels of the projector. This is required as the
projector and the camera can have overlapping spectral responses.
Similar to Bimber’s model (4), Grossberg’s radiometric model (5) is
developed for each projector-camera pixel pair. The different vari-
ations of the model were proposed in literature [4, 5, 6, 7]. The
existing radiometric compensation models assume that the lumi-
nance of one projector pixel affects the reading of only one camera
pixel and does not consider inter-pixel coupling [8].

In this paper, we propose a novel radiometric compensation
framework that can be combined with the existing models to in-
crease its performance. The following section discusses the effect
of inter-pixel coupling on radiometric compensation model’s perfor-
mance. Section [3] explains the proposed framework. Section [4]
describes the experiments setup and results followed by conclu-
sions.

2 Limitations

The existing radiometric models assume that each camera pixel’s
intensity depends only on its corresponding projector pixel intensity
and environmental light. In practical scenarios, capturing the pro-
jector image, leads to the luminance of one projector pixel, affecting
the intensity reading of multiple adjacent camera pixels. The pres-
ence of the inter-pixel coupling [8] can lead to incorrect learning
of the radiometric model and lead to artifacts in the compensated
camera image.

A part of the background shown in Fig. 2a was illuminated by
the projector. Fig. 2b shows the histogram equalized camera im-
age, displaying the effect of inter-pixel coupling. The brightness
leakage from the illuminated regions to the non-illuminated regions
is captured by the camera. The existing radiometric compensation
does not consider inter-pixel coupling, so the additional intensity
in the non-illuminated regions is associated with the background
texture, resulting in incorrect learning of the surface properties. A
major source of inter-pixel coupling is at the projector. The point
spread function of the projector can blur the input image creating
spatial dependencies. Since the blur of the projector depends on
the contents of the input image, different projector images in the
calibration set can lead to different performance by the compensa-
tion model. For a spatially uniform projector image Pu as shown in
Fig. 3, the projector’s blur function will not alter the intensities of the
image.

B∗Pu = Pu (7)

As Pu does not contain any contrast, it will not be affected by the
blur B. If the calibration set is developed with similar projector-



camera images, the radiometric function f̂ calculated from this set
will not be aware of the blur function of the projector.

f̂ = argmin
f
‖ f (Pu)−S(B∗Pu)‖

= argmin
f
‖ f (Pu)−S(Pu)‖

(8)

Where S represents the distortions by the background surface. The
compensated projector image Pc for a given target image T is cal-
culated as follows,

Pc = f̂−1(T ) (9)

The calculated Pc, unlike the uniform projector images in calibration
set Pu, will not be spatially uniform in intensity. Since the radiomet-
ric compensation model did not consider the effect of B, distortion
of the non-uniform Pc by the blur function B, will necessarily lead to
artifacts in the compensated camera image:

B∗Pc 6= Pc (10)

S(B∗Pc) 6= S(Pc) = T (11)

Using spatially uniform projector images in the calibration set can
cause artifacts in the compensated camera image. So we need a
framework which can optimize the performance of the compensa-
tion model by using the most suitable calibration set.

3 Proposed Method

In the previous section, we discussed existing radiometric com-
pensation algorithms and their limitations. Since the models do
not consider inter-pixel coupling, which are prominent at the sur-
face edges [8], compensation may fail to fully hide the background
texture.

We propose two changes to the existing radiometric compen-
sation framework. The radiometric model is developed for each
pixel in the projector image, so the changes are proposed in such
a way that it does not increase the model’s complexity. First, the
compensation function is deduced directly from the calibration set.
Second, the calibration set is modified to contain spatial uniform
camera images and their corresponding projector images.

The human visual system is sensitive to abrupt changes in in-
tensity [9]. So the emphasis of the proposed model is to obtain
smooth images on the projection surface which can completely
hide the background texture. Sankar et. al. [10] studied the im-
pact of calibration images on the performance of radiometric com-
pensation. Due to the presence of inter-pixel coupling, existing
radiometric compensation models produce artifacts with patterns
similar to the pattern of camera images in the calibration set. So
the proposed approach modified the calibration set to contain spa-
tially uniform camera images. The smooth camera images reduce
the patterning of the artifacts leading to perceptually pleasing com-
pensated images.

After obtaining the calibration set, the compensation function is
defined as

P = fi(C), (12)

where P and C are projector and camera images from the calibra-
tion set. The existing radiometric function models the background’s
surface reflectance and inverts the model to find the compensation
function. Due to the presence of inter-pixel coupling, the compen-
sation function may not be equivalent to the inverse of the radio-
metric function. Hence, directly developing the compensation func-
tion from the calibration set gives the best estimate of the required
function. The proposed model also avoids the noise amplification
of the forward approach and makes the radiometric compensation
algorithm more robust.

Using uniform camera images Cu also lead to non-uniform pro-
jector images Pnu. So the compensation function calculated from
the proposed calibration set includes the projector’s blur effects
during model learning as follows,

f̂i = argmin
fi

‖ fi(S(B∗Pnu))−Pnu‖ (13)

The two proposed changes inherently learn the effect of inter-pixel
coupling by making minimum changes to the existing radiometric
compensation. The smooth camera images needed for the calibra-
tion set are acquired through an iterative approach. The iterative

(a) Background (b) Camera image

Fig. 2: One block of (a) the background was illuminated and (b)
shows the histogram equalized camera image of the illuminated
background. We can observe that the brightness leakage from the
illuminated region to the non-illuminated region is captured by the
camera.

(a) Projector image (b) Camera image

Fig. 3: Conventional calibration set with spatially uniform projector
image and its corresponding camera image.

(a) Projector image (b) Camera image

Fig. 4: Proposed calibration set with spatially uniform camera im-
age and its corresponding projector image.

approach is only used in the offline process to form the calibration
set. The compensation function developed from the calibration set
is then used with the incoming target images to find the compen-
sated projector image.

4 Experimental Results

A Christie Digital Systems single chip 1920× 1200 DLP projector
and a 5M-pixel camera were used to form the projector–camera
system. The experiment was carried out on a printed background
as shown in Fig. 2a. The background was designed to contain
sharp edges with varying levels of contrast to help visualize the
brightness spread and understand the influence of inter-pixel cou-
pling.

Structured light patterns from gray–scale coding [1] was used
to find the geometric mapping between the camera and projector.
For unidentified projector pixels, the nearest neighbour method was
used to find the corresponding camera pixel. After geometric map-
ping, the calibration set was formed using an iterative approach. 10
projector – camera image pairs were created, requiring 8−12 itera-
tions per image, to form the calibration set. The proposed changes
were applied to Bimber’s [2] radiometric model for each projector-
camera pixel pair, compared with the original model as shown in
Fig. 5.

The artifacts encountered during evaluation can be divided into
radiometric artifacts, due to incorrect learning, and saturation ar-
tifacts, where the computed compensated projector image values
go beyond the dynamic range of the projector. In this study, we
feel that radiometric compensation algorithms should be evaluated
on their ability to reduce radiometric artifacts, so only unsaturated
pixel locations were considered in error calculation.

A total of 15 target images were tested, projecting onto the
background in Fig. 2a, for which the compensated results are sum-
marized in Table 1 and Fig. 5. Interestingly, the RMSE results of
the proposed approach, as shown in the table are frequently in-
ferior, and yet visually the results as shown in the figures are far
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Fig. 5: The results of the proposed approach applied to Bimber’s model, given the background of Fig. 2a, one test per row. In every
case the proposed approach leads to significant visual improvements in performance

Image Uncompen-
sated Bimber Proposed

Bimber

Green 48.98 10.28 8.64

Grey 51.97 4.58 5.17

Pears 48.22 12.22 13.52

15 Test
Images 50.35 8.43 8.14

Table 1: RMSE scores for the images in Fig. 5.

stronger, clearly suggesting that alternative metrics to RMSE need
to be tested as a next step.

In Fig. 5, three spatially uniform images and one complex coloured
image (Pears) were used as targets. Even a casual glance at the
figures reveals that the conventional model routinely leaves visually
apparent artifacts, even in the textured Pears image, whereas the
proposed method, learning the compensation model directly from
uniform calibration images, leads to significantly improved compen-
sation in all cases.

5 Conclusions

In this paper, pixelwise radiometric compensation algorithms were
explored, specifically considering the influence of inter-pixel cou-
pling for backgrounds having sharp edges. A novel approach was
proposed, in which the compensation model is learned directly
from smooth calibration images so that the model will reproduce
smooth regions well, since the human visual system is far more
sensitive to non-uniformities in smooth regions, as opposed to mi-
nor imperfections in textured ones.

Ongoing work in this research will test the proposed approach
against additional linear and nonlinear radiometric compensation
methods, and to develop human–visual–system related metrics,
rather than RMSE, for evaluations.
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