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Abstract

Multi-scale image decomposition (MID) is a fundamental task in
computer vision and image processing that involves the transfor-
mation of an image into a hierarchical representation comprising of
different levels of visual granularity from coarse structures to fine
details. A well-engineered MID disentangles the image signal into
meaningful components which can be used in a variety of appli-
cations such as image denoising, image compression, and object
classification. Traditional MID approaches such as wavelet trans-
forms tackle the problem through carefully designed basis functions
under rigid decomposition structure assumptions. However, as the
information distribution varies from one type of image content to
another, rigid decomposition assumptions lead to inefficiently rep-
resentation, i.e., some scales can contain little to no information. To
address this issue, we present Deep Residual Transform (DRT), a
data-driven MID strategy where the input signal is transformed into
a hierarchy of non-linear representations at different scales, with
each representation being independently learned as the represen-
tational residual of previous scales at a user-controlled detail level.
As such, the proposed DRT progressively disentangles scale in-
formation from the original signal by sequentially learning residual
representations. The decomposition flexibility of this approach al-
lows for highly tailored representations cater to specific types of im-
age content, and results in greater representational efficiency and
compactness. In this study, we realize the proposed transform by
leveraging a hierarchy of sequentially trained autoencoders. To ex-
plore the efficacy of the proposed DRT, we leverage two datasets
comprising of very different types of image content: 1) CelebFaces
and 2) Cityscapes. Experimental results show that the proposed
DRT achieved highly efficient information decomposition on both
datasets amid their very different visual granularity characteristics.

1 Introduction

Multi-scale image decomposition (MID) is a fundamental task in
computer vision and image processing that involves the transfor-
mation of an image into a hierarchical representation comprising of
different levels of visual granularity from coarse structures to fine
details. A well-engineered MID disentangles the image signal into
meaningful components which can be used in a variety of appli-
cations such as image denoising, image compression, and object
classification. For example, in image denoising [1], signal are de-
composed into scales at different frequency bands, and high fre-
quency scales that often represents noise are thresholded or re-
moved to improve visual quality. In the same way, image compres-
sion [2] removes high frequency scale to save storage bits while
preserving information perceptually. In object classification and de-
tection [3], MID provides additional hierarchical relationship along
with the disentangled object features, making classification and de-
tection easier.

Most traditional image decomposition methods built the repre-
sentation on linear basis and non-data-driven basis [4–6], such as
Discrete Cosine Transform (DCT), Wavelet Transform, and Pyramid
Representations. DCT [4] encode images into frequency represen-
tation using summation of cosine functions. Pyramid representation
[6] decomposes the image by iteratively applying a linear smooth
kernel and subsampling the image. The smoothed images from all
iterations create a multi-scale representation. Similarly, instead of
using a single linear filter, Wavelet Transform [5] applies a family of
invertible and orthogonal filters. In Wavelet Transforms, image is
convolved with a high pass filter and a low pass filter at each scale.
The scale information is captured by the high pass filter, and the
response of the low pass filter is passed to the next scale. Among
the decomposition methods, DCT lacks temporal information to rep-
resent non-stationary features such as edges, since its basis func-
tion has an infinite length. Pyramid based transforms and Wavelet

Fig. 1: Deep Residual Transform decomposes the input image (col-
umn a) into 3 bases (column b). Each basis characterizes the input
signal at a particular scale. Column c shows the reconstructed im-
age at each scale.

Transforms captures both temporal and frequency information but
both approaches rely on rigid decomposition structure assumptions
and well engineered basis to band pass certain frequency content
at each scale. Instead of using linear filters, several other studies
[7–9] propose non-linear edge-preserving filters to smooth textures
while keeping structural information from edges, but these filters
tend to over-smooth object surfaces and create cartoon-like repre-
sentations. As the information distribution varies from one type of
image content to another, rigid decomposition assumption leads to
inefficiently representation. For example, if a dataset only contains
information at extreme low or high frequency, some scales repre-
senting the middle frequency band can contain little to no informa-
tion. In addition, nature images consist of complex and non-linear
features, which poses a significant challenge for the above men-
tioned linear MIDs to efficiently represent.

To address this issue, we present Deep Residual Transform, a
data-driven MID strategy where the input signal is transformed into
a hierarchy of non-linear representations. Each representation is
independently learned as the representational residual of previous
scales. In addition, this process allows user to control the level of
details at each representational scale. As such, the proposed DRT
progressively disentangles scale information from the original signal
by sequentially learning residual representations. The decomposi-
tion flexibility of this approach allows for highly tailored representa-
tions cater to specific types of image content, and results in greater
representational efficiency and compactness. In this study, we re-
alize the proposed transform by leveraging a hierarchy of sequen-
tially trained autoencoders. To explore the efficacy of the proposed
DRT, we leverage two datasets comprising of very different types of
image content: 1) CelebFaces and 2) Cityscapes. Experimental re-
sults show that the proposed DRT achieved highly efficient informa-
tion decomposition on both datasets amid their very different visual
granularity characteristics, particularly when studied via frequency
analysis. Figure 1 illustrates a 3 level decomposition produced by
DRT, and the representation at each scale provides unique visual
granularity characteristics. Furthermore, we demonstrate the repre-
sentation flexibility of the proposed DRT by showing how parameter



adjustments can control the coarseness/fineness at each scale.

2 Deep Residual Transform

In this section, we describe the derivation of the proposed Deep
Residual Transform (DRT). We first model the input signal X as the
summation of n bases that characterize the signal information with
increasingly fine details:

X =
n

∑
i=1

bi (1)

where bi is the basis characterizing signal information at ith scale.
Basis at lower scale represents coarse signal structures, while ba-
sis at higher scale represents fine details (e.g. b0 represents the
coarsest signal structures and bn represents the finest details in the
signal). The signal information represented by each basis describes
a unique signal characteristic at a particular scale that is not con-
tained in any other basis. By adding the bases up to a particular
scale j, we can reconstruct a "coarse" version of the original signal,
and we denote it as the reconstructed signal X̂ j:

X̂ j =
j

∑
i=1

bi (2)

When the scale j is at n, we obtain a perfect reconstruction of the
original signal X :

X̂ j=n =
n

∑
i=1

bi = X (3)

The purpose of developing DRT is to decompose a signal into a
hierarchical representation through flexible basis learning. A good
representation basis has two key properties, information preserva-
tion and representation uniqueness. Traditional approaches [5, 6]
rely on rigid decomposition structure and orthogonal basis to define
data-invariant coarseness/fineness boundaries between the scales,
and thus achieve perfect reconstruction and prevent representation
redundancy. Since using learnable basis means the boundaries be-
tween the scales vary with datasets, we take a different approach
by leveraging a deep cascade residual framework that finds basis
sequentially.

Let the initial residual r0 to be input X :

r0 = X =
n

∑
i=1

bi (4)

We rearrange the equation for r0 and obtain the following expres-
sion:

r0 = b1 +
n

∑
i=2

bi = b1 + r1 (5)

where

r1 = ∑
i>1

bi =
n

∑
i=1

bi−b1 = X− X̂1 (6)

and signal r1 represents the reconstruction residual between the
input X and the reconstructed signal X̂1 at scale 1. Similarly, we can
rewrite the equation for residual r1 to obtain the residual r2 at scale
2:

r1 = b2 +
n

∑
i=3

bi = b2 + r2 (7)

where
r2 = ∑

i>2
bi = X− X̂2 (8)

Generalizing the equations above, ith scale residual ri can be ob-
tained by taking the difference of the input X and the ith recon-
structed signal X̂i:

ri = X− X̂i (9)

It can also be obtained by the summation of the i+1th scale basis
bi+1 and i+1th scale residual ri+1:

ri = bi+1 + ri+1 (10)

This equation shows that in order to obtain the basis bi+1 at next
scale, we only need to know the residual ri at scale i. Furthermore,
as the basis bi+1 only characterizes signal information at a particular
scale, any information beyond the scale is contained in its residual

ri+1 for further disentanglement. We set the last basis bn equals to
the n− 1th scale residual rn−1, so that the last residual rn = 0, and
we have a perfect reconstructed signal.

Base on the above observations, we can safely assume that
each basis can be independently learned and has no impact on the
learning of other bases. Thus, we model the basis at scale i as a
function of the residual at previous scale i−1:

bi = fi(ri−1) (11)

where fi is the basis learning function for scale i. Combining the
above expression with Equation 10, we obtain an expression to
learn all basis for i < n:

ri = ri−1− fi(ri−1) (12)

Finally, given the Equation 12, we have a deep cascading resid-
ual framework for DRT where each basis at a scale i is learned as
the representational residual of previous scale i−1 by leveraging a
basis learning function. This framework decomposes the input sig-
nal into a set of learned bases B = {b1,b2, ...,bn} which is organized
in a hierarchical structure that characterizes signal information from
coarse scale to fine scale. Figure 2 illustrates the deep cascading
residual framework for DRT.

2.1 Realization of Deep Residual Transform via Hierar-
chy of Autoencoders

Recent advance in Deep Learning Models has achieved huge suc-
cess on reconstructing and generating inputs using a non-linear en-
coder/decoder style representation [10–13]. In this paper, we use
the simplest encoder/decoder representation, autoencoder [13], as
our basis function for realizing DRT. Through empirical studies, we
observe that compared to typical autoencoder with multi-layer en-
coder and decoder (multi-layer autoencoder), autoencoder with sin-
gle encoder and decoder layer (2-layer autoencoder) provides more
control to the reconstruction coarseness and fineness. Figure 3 de-
scribes the architecture of our 2-layer autoencoder. In particular,
the learning progression of a 2-layer autoencoder (as shown in 4
top row) describes a non-linear transition from coarse structures to
fine details for the representation, whereas the learning progression
of a multi-layer autoencoder (as shown in 4 bottom row) only shows
the illumination change of the representation. Therefore, by lever-
aging early stopping in the learning progression, we can control the
level of details in a representation. However, utilizing learning pro-
gression alone is not enough to disentangle multi-scale information.
The learning process starts with a coarse representation at a partic-
ular scale and converges to a finer representation at another scale.
It is not guaranteed that the starting scale and the converging scale
represents the most coarse structures and the finest details. In fact,
the starting scale and the converging scale are heavily influenced
by the parameters of autoencoder, that are the convolutional filter
size and stride size. In the following, we describe the impact of
each autoencoder parameter, particularly the decoder parameters.
To simplify the design, we mirror the parameter setting of decoder to
encoder except that decoder uses a convolutional transpose layer
and encoder uses a convolutional layer.

• Stride size denoted as θS controls the sampling rate of the
representation. It is the key parameter that controls the con-
verging scale of representation learning (i.e. the learned rep-
resentation will not characterizing any signal information be-
yond the converging scale).

• Hidden Layer Channel Number controls the representation
variation. We observe that excessive channel number leads
to learning representations that are pure noise and have min-
imal impact on the reconstructed signal. Therefore, we keep
the channel number the same as the input channel number.

• Filter size denoted as θ f controls starting scale of represen-
tation learning. Large filter size means autoencoder starts the
learning process with coarse representation, and smaller fil-
ter size means autoencoder starts the learning process with
fine representation.

• Representation degree denoted as θd is derived from filter
size divided by the stride size.

θd =
θ f

θS
(13)



Fig. 2: Deep Residual Transform Framework

Fig. 3: Architecture of the 2-layer autoencoder for basis learning
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(d) (e) (f)

Fig. 4: Basis learning progression using autoencoder at scale 1.
Top row: the learned basis using a 2-layer autoencoder at a) 5th, b)
55th, and c) 299th training epoch. Bottom row: the learned basis
using a multi-layer autoencoder at d) 99th, e) 199th, and f) 299th
training epoch.

Representation degree is the number of self overlaps for each
filter during the convolution computation. Large amount of fil-
ter overlap smooths the representation between stride loca-
tions in a convolutional layer, and low amount of filter overlap
leads to abrupt changes between stride locations, creating to
unnecessary edges. Therefore, representation degree con-
trols the smoothness of the representation. However, higher
representation degree requires more computation and makes
the autoencoder slower and harder to converge. To strike a
balance between smoothness and efficiency, in this paper we
use a representation degree of 4.

Combining multiple 2-layer autoencoders with the purposed
learning framework described in Section 2, we create a hierarchy
of sequentially trained autoencoders that realizes DRT.

3 Experimental Results

To explore the efficacy of the proposed DRT, we evaluate our
method on two datasets comprising of very different types of image
content, CelebFaces Attributes [14] and Cityscapes [15]. Celeb-
Faces consists of human face images, where each face takes up
a large portion of the image. Cityscapes consists of images taken
from car dash cameras while driving around cities. Each Cityscapes
image contains a large variety of objects where each object takes
up a small portion of the image, including buildings, roads, cars, and
pedestrians. The boundaries and edges of these object contributes
the large amount of high frequency information to the image.

We design two experiments to show the representation flexibility
and efficiency of DRT.

In the first experiment, we demonstrate the representation flex-
ibility by evaluating one autoencoder layer of DRT under two dif-
ferent parameter settings. Specifically, we compare autoencoders
with two different stride size while keeping the hidden layer chan-
nel number to be 3 and keeping the representation degree θd to
be 4. The stride size of the first autoencoder is set to be 32, and
the stride size of the second autoencoder is set to be 8. The two
stride size we compare are 32 and 8. The number is chosen to
show large visual gap between the learned basis. Figure 5 shows
the learned bases for both parameter settings. We observe that
the autoencoder trained with larger stride size only characterizes
the coarse structures of human face, while the autoencoder trained
with smaller stride size captures finer details on the face including
hair, eyes, nose, etc.. The spectrum magnitude analysis shows
that the basis learned with large stride size characterizes signal in-
formation in a narrow band around 0 Hz frequency, while the ba-
sis learned with small stride size characterizes signal information
in a broader band around 0 Hz frequency. In the spectrum mag-
nitude analysis, we also see non-uniform distribution in high fre-
quency bands for both learned bases, indicating that autoencoder
is able to learn complex non-linear features that consist of both high
and low frequency information. Furthermore, user can adjust the
coarseness/fineness at a scale by selecting the trained representa-
tion basis from a specific training epoch, as the autoencoder pro-
gressively learns finer details and sharper edges. Figure 4 shows a
learning progression of a basis. In short, the autoencoder of DRT
demonstrates great representation flexibility for characterizing sig-
nal information at a user controlled detail level.

In the second experiment, we apply DRT to CelebFaces and
Cityscapes. In this particular DRT, we use 3 autoencoders layers.
To accommodate the large difference in information distribution of
the two datasets, we use a larger stride size to focus on low fre-
quency representation learning in CelebFaces and we use smaller
stride size to focus on high frequency representation learning in
Cityscapes. The stride size of the three autoencoder in DRT is 32,
16, 4 for CelebFaces, and 8, 2, 2 for Cityscapes. Figure 6 shows the
learned DRT bases for CelebFaces, and Figure 7 show the learned
DRT bases for Cityscapes. By visual comparison, we can see that
each learned basis contains unique and significant visual charac-
teristics of the original image. The visual quality progressively im-
proves as the reconstructed image uses more learned basis. The
spectrum magnitude analysis shows that even the two dataset pos-
sess different information distribution, DRT is able to disentangle
the signal information at clustered area for both datasets and de-
compose the signal into compact non-linear representations.



Fig. 5: Learned basis for the first decomposition scale. Top row:
learned basis in time domain. Bottom: the spectrum magnitude of
the learned basis. Image center corresponds to the frequency at 0
Hz. a) basis learned using an autoencoder with a stride size of 32.
b) basis learned using an autoencoder with a stride size of 8.

Fig. 6: Visual results of basis learned from the CelebFaces. Top
row: learned basis. Middle row: reconstructed image at scale i.
Bottom row: the spectrum magnitude for the corresponding basis.
Image center corresponds to the frequency at 0 Hz.

Fig. 7: Visual results of basis learned from the Cityscapes. Top row:
learned basis. Middle row: reconstructed image at scale i. Bottom
row: the spectrum magnitude for the corresponding basis. Image
center corresponds to the frequency at 0 Hz.

4 Conclusion

In this paper, we presented Deep Residual Transform (DRT), a data-
driven MID strategy where input signal is transformed into a hierar-
chy of independently learned non-linear representational residuals.
The proposed DRT was realized by leveraging a hierarchy of se-
quentially trained autoencoders. Experimental results showed that
the proposed DRT achieved highly efficient information decomposi-
tion on both CelebFaces and Cityscapes dataset, and demonstrated
DRT’s representation flexibility by showing how parameter adjust-
ments can control the coarseness/fineness at each scale. In the
future, we will investigate the use of generative models for to learn
basis in DRT. We will also automate the parameter adjustments int
DRT.
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